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PCAC consistency. II. Charmed meson two- and three-body nonleptonic weak decays
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We extend the notion of PCAC (partial conservation of axial-vector current) consistency to calculate

eight two-body weak decays D~K~, KK, mm and seven three-body weak decays D~K~m, KKm., m.mw.

Most of the fifteen predicted amplitudes are in reasonable agreement with the experimental results.

PACS number(s): 13.25.+m, 11.30.Rd, 11.40.Ha

I. INTRODUCTION M =Mcct+Mccz+O(mtr /mD ), (2b)

M =Mcc+Mp Mp(0)

Even though the values of Mcc and Mp(0) depend on
which final-state particle is taken soft, the difference
Mcc Mp(0) is independent of this choice. This is what
is meant by "PCAC consistency. "

When applying PCAC consistency in paper I to
K ~mw decays, we required Mcc for q i ~0 to be the sur-

face term Mp —Mp(0) when q2~0, up to PCAC correc-
tions O(m /mx ) =7%. This corresponded to the dou-

ble PCAC consistency relation for E ~2m:

M =Mccoy +Mcc2+ 0(m „/mx ), (2a)

where the subscripts 1,2 refer to the final-state particle
taken soft. For the D decays the analog of (2a) is

We have shown in the preceding paper (I) [l] that par-
tially conserved axial-vector current (PCAC) techniques
can be quite successful in reproducing the experimental
data for kaon nonleptonic weak decays. In that paper we
demonstrated that PCAC consistency accurately predicts
all seven K ~2m. , 3m decay amplitudes.

In this paper (II), we generalize PCAC consistency to
the charmed sector and show that the same prescription
that worked so well for kaon decays in paper I will also
give reasonable results for charmed decays, as indicated
in Ref. [2]. Specifically, in Sec. II we predict eight decay
amplitudes for the two-body D ~~a, KK, K~ decays. In
Sec. III we extend our analysis to seven nonresonant
three-body D -+Km.~, KKm. , 3m decays. We then summa-
rize our findings in Sec. IV.

We emphasize that although we will be applying pion
and kaon PCAC to charmed decays, where either final-
state meson can be taken soft alone with the initial D
meson always on mass shell, the resulting soft PCAC am-
plitude will not be the entire physical amplitude, just as it
is not for kaon decays. This is because overall four-
momentum conservation dictates that there must be ener-

gy dependence due the nonsoft final-state mesons. As ex-
plained in paper I and explicitly demonstrated in the Ap-
pendix, the amplitude at the soft point (Mcc) is part of
the constant background that, when combined with the
four-momentum variation of the pole term (Mp), leads to
the physical amplitude [3]

&~, A, IH. I A, &

~Mcc=( '/fp)& Afl[Q~s H ]I A;&

=(i /fp)[iffjk & Ak ~H~ ~ A; &

tf,,„&—Af)H. (A„&], (3)

where fp is the appropriate decay constant (f„or fthm }.
The last equality follows from the chiral-symmetry state-
ment that the usual weak Hamiltonian density H~, gen-
erated by left-handed currents, is orthogonal to right-
handed charges. This corresponds to the CS equal-time
commutation relations

I
I

~ n
I

K
I

7T

(a)

I
I
Ipo - vr, K
Ip

-- m, K
(b)

FIG. 1. Tadpole graphs for (a) K~m.m decays and (b)
D ~KK decays.

where the corrections are again of order
O(mx /mn)=7%. In the double PCAC consistency re-
lation (2a), used in paper I, the decaying kaon was always
kept on mass shell when the final-state pions were taken
soft. Similarly, in this paper we study the double PCAC
consistency relation (2b} with the decaying charmed D
meson always kept on mass shell when the final-state
pions or kaons are taken soft.

The prescriptions of Eqs. (2) call for calculating the
equal-time charge commutator for each final-state parti-
cle and then adding the two commutator terms together.
The advantage of using Eqs. (2) as opposed to Eq. (l} is
that one need not calculate the detailed pole terms corre-
sponding to Fig. 1. The charge commutator amplitude

Mcc, is found from the traditional chiral-symmetry (CS)
PCAC reduction (i.e., soft meson theorem). For pseudo-
scalar meson state P and general hadron states A (in this
paper the states A will also be pseudoscalar mesons), this
reduction is
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[Q+Q5, H ]=0 or [Q5,H ]=—[Q,H ] . (4)

In (3) we have also employed the strong-interaction trans-
formation law for hadron states:

&m. +IH ID+)~», = (—G~/&2)s, c,f„f~m~
= —9.9X 10 GeV (8b)

Q, lw, &=if,,„lw„& . (5)

II. TWO-BODY D DECAYS

In this section we apply the M«, +M«2 prescription
(2b) to the nine D~PP transitions. We begin with the
Cabibbo-suppressed D ~me decays that are quite similar
in structure to the K ~me. decays of paper I. If we apply
Eq. (2b) together with the CS-PCAC reduction (3), we ob-
tain the real amplitudes

Again, we stress that the initial hadron state A, will not
be taken off mass shell even though its flavor structure
may change. That is, a charmed D meson could obtain
the flavor structure of a charmed F meson via the trans-
formation law in Eq. (5), but it will remain on the D mass
shell.

where fr =1.8f [5], f„=93MeV, and s, c, =0.22. In
order to keep the reduced matrix element (8b) constant,
we employ overall momentum conservation for D~m.m,

which requires 2pz p„=mz. The minus sign in (8b) is
due to the Glashow-Iliopoulos-Maiani (GIM) mechanism
[6]. Adding (Sa) and (Sb) together yields the net reduced
matrix element

IH ID+) = —6.4X10 GeV (8c)

The loop-plus-pole combination in (8c) is quite similar to
that for &

m+ IH E+ ) in paper I.
In order to compare (6)—(8) with experimental data,

one must in general introduce final-state interactions
(FSIs). We shall assume that FSIs only rotate the ampli-
tudes in isospin space without introducing additional
inelasticity parameters. The experimental amplitudes in-
cluding FSIs for D —+ms decays are basically the same [4]
as for E~em decays:a,

=( I/&2f ) &
n. + IH ID+ ),

am = —
~ & ~'~'IH. ID'& = (1/f. ) & ~olH„ID'&,

(6a)

(6b)

i50 2 i52
M+ =aoe +—,a2e

I5O 4 I52
Moo =aoe —

—,a2e

i 52
M+o = —&2a2e

(9a)

(9b)

(9c)

=(1/2f )[&2&m-'IH ID ) —&m+IH ID+)] . (6c)

The next task is to compute the reduced matrix ele-
ments appearing in (6). In Ref. [4] the reduced matrix
element in (6b) was estimated to be a+ =ao+ —', a2 = —0.49 X 10 GeV, (loa)

To link the real theoretical D ~no predictions (6} to
the experimental complex amplitudes (9), we decompose
Eqs. (6) into their isospin components in analogy with (9}:

=+2.5X10 GeV (7)

aoo=ao ——3az =0.27X 10 GeV,

a+o = —&2a2 =0.53 X 10 GeV,

(10b)

(10c)

(8a)

The second contribution is from a 8'-pole graph depicted
in Fig. 2, which is the exact analog of Fig. 1 and Eq. (8)
for K~2m decays in paper I:

w+

where the numerical value in (7) is the reduced matrix
element that fits the kaon decays so well in paper I. The
meson loop model of Ref. [4] finds the same
intermediate-state mesons for both Cabibbo-suppressed
K —+m and D ~~ transitions, suggesting the equality
in (7). A quark-model calculation of (7) gives essentially
the same numerical result.

The reduced matrix element in (6a) has two contribu-
tions, the first of which is a EI=—,

' loop contribution
given by [4]

&
~+ IH. ID+ &g..p= v'2& ~'IH. ID'&

—3 5X 10 GeV

where the numerical evaluations in (10) result from sub-
stituting the reduced matrix elements of Eqs. (7) and (8c)
into Eqs. (6). We can now solve the real Eqs. (10) for the
real ao 2 and insert the latter into Eqs. (9) to find the com-

plex amplitudes M. In order to avoid the unknown phase
shifts 5o z in (9), we can take a combination of IM+
and IMool that does not depend on phase shifts [7].
Specifically, our theoretical D ~arm amplitudes obey the
constraint

21M+ —
I

+ IMool =3ao+ —38a&

=0.56 X 10 ' GeV

where we have inserted the values ao= —0.24X10
GeV and a2= —0.38X10 GeV, derived from (10), into
(11). The experimental analog of (11) is proportional to
the sum of the D ~++sr, m. m branching ratios and is
given by

,+ I M~ I,„,= (0.62+0. 12) X 10 "GeV

(12)

FICi. 2. W'-pole graph for (m. IH ID+ ).
The matrix element

I M+ I
in (12) is found from the

Particle Data Group (PDG) listings in Ref. [8], while
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iMooi follows from Ref. [9]. The prediction (11) com-

pares well with the experimental data in (12). There is no
phase shift complication in the decay D+ ~m+m. , which
has a pure I =2 final state. We simply compare the pre-
diction (10c) with the experimental bound [8]

iM+oi t(0.56X10 GeV (13)

Although (10c) is only slightly below the bound of (13),
the W-pole estimate in (8b) means that the theoretical
value of a+& = f &

—m+m iH iD+ ) in (6c) contains a mix-
ture of hI= —,

' and —,
' parts. Since in fact a+p must be

pure AI= —,', one can show that the reduced matrix ele-

ment &n iH iD ) in (6c) also has an additional (but
small} bI= ,' com—ponent which reduces the resulting

pure b,I=
—,
' a+o in (10c) to be (safely) below the experi-

mental bound in (13). Our predictions as well as the ex-
perimental branching ratios for D~m. m. are tabulated in
Table I.

In principle, one could use the experimental decay
rates to obtain a best fit to the amplitudes in Eqs. (9), thus
replacing M+, Moo, M+o with ao, az, 5o—5z. Then, by
using this fitted 5o—5z and the theoretical values for
an & from (10), one could Predict the D ~m+n, no.no

decay amplitudes separately. However, because
B(D+~n+n ) is not yet known, such a procedure is not
yet possible for D~n.~, but we will employ this pro-
cedure for D ~KK, Km later in this section.

In particular, we next study the Cabibbo-suppressed
D~EK decays, where FSIs are very important. The
double PCAC consistency relation (2b) and the CS-PCAC
reduction (3) predict the real amplitudes

given that fF=fa [5]. [In Refs. [2] and [4] we ignored
the small contribution of (15b) relative to (15a)]. The net
reduced matrix element is then found by adding (15a) and
(15b}to arrive at

&
K+ iH iF+ ) =0.15 X 10 GeV (15c)

The experimental amplitudes for D~KK, which in-
clude FSIs, can be written as

i5O i5)
M+ =ape +a &e

i5O i5)M= —ape +a&e

i5)
M+p =2a, e

(16a)

(16b)

(16c)

Decomposing Eqs. (14) into their isospin components as
well as inserting the reduced matrix element (15c) yields

The main contribution to the reduced matrix element in

Eqs. (14) is from the W-pole graph of Fig. 3, which in
analogy to (8b} is given by

&K+IH IF+ &rg, =(GF&v'2)sicifxfFrnD

=0.12X 10 GeV (15a}

where the F is on the D mass shell, 2pD.pz =mD, and

fF =1.8f [5]. There is also a loop contribution to this
reduced matrix element that, when calculated through
the quark model, is simply related by SU(3) to Eq. (8a):

&K+iH iF+ )„,=(f /fir)&n+iH iD+)i„p

=0.03X10 GeV, (15b)

= —
~ &

K+K IH. ID'&

=(IW2f )&K'IH. IF' &,

a on
= i & K K—

i H i D ) =0,
(14a)

(14b)

a+ =ap+a
&

091X 10 GeV,

app= —ap+a& =0 GeV,

a+p 2a& =0.91 X 10 GeV .

(17a)

(17b)

(17c)

~+.=-~&K'K lH. ID &

=(1W'2f, )&K'lH. IF'& . (14c)

Again, we eliminate the phase shift dependence by com-
puting the combination of theoretical D ~KK ampli-
tudes:

iM+ i~+ iM~i~=2(an~+a f )

TABLE I. Two-body charmed-meson decay branching ra-
tios. =0.83X10 ' GeV (18)

D ~K
DO~K O~O

D ~K m++K m.

D+ KO +

D ~K+K
D ~K K
D ~K+K +K K
D+ —+K K+
DO~m-+m- +m-Om-O

D+~~+~o

BR,„(%)
37
19'
5.6
2.8
0.38'
0.10'
0.48
1.2
0.20
0.48

BR pt (%)

3.71+0.25"
1.9+0.5'
5.6+0.6 '
2.8*0.4b

0 45+0 07"
0 11+0.06d

056+0 09 '

0.84+0.27
0 21+0 04 '

(0.53

The branching-ratio data for this D ~KK combination
gives

iM+ i,„~,+iMooi, „~,=(0.97+0.16)X10 ' GeV

(19)

which is near the theoretical prediction in (18). We
derive iM+ i in (19) from the PDG compilation [8],
while iMooi is found from Ref. [10].

Alternatively, we could solve Eqs. (16) for 5o—5„
which, assuming ac =a& from (17b), results in

'These branching ratios are computed using phase shifts (20b)
and (30) found from a fit to the experimental amplitudes.
Reference [8).

'Reference [12].
dReference [10].
'Reference [9).

F+

FIG. 3. W-pole graph for (K+ iH iF+ ).
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tan[(5o —5, )/2]= IMool, „~,/IM+ I,„„,=0.51,

&o
—

&i =&4' .

(20a)

(20b)

[Equation (20b) is not significantly changed when the as-
sumption ao =a &

is not used. ] The value (20b) then leads
to the complex amplitudes for D ~KK decays,

IM+ I =2a&cos[(5o—5&)/2]=0. 81 X 10 GeV, (21a)

FIG. 4. II/-pole graph for (m.+IH IF+ ).

mediate meson states as the Cabibbo-suppressed K ~m
transition, thereby yielding

I Moo I

=2a, sin[(5o —
5& ) /2] =0.41 X 10 GeV,

IM+o I =2a, =0.91 X 10 GeV,

(21b)

(21c)

(K IH ID ) =&2(c, /s, )(m. IH IK )

= —0. 16X 10 GeV (26)

which compare well with the experimental D~KK am-
plitudes

I M+ I,„p,=(0.87+0.08) X 10 GeV,

IM I,„,= (0.44+0. 10)X 10 GeV,

IM+ol, „~,=(0.77+0. 13)X 10 GeV,

(22a)

(22b)

(22c)

where (22a) and (22c) are found from Ref. [8] and (22b)
follows from Ref. [10]. The theoretical and experimental
branching ratios for D~KK are listed in Table I. One
additional point to note is that Eqs. (21a) and (21c) pre-
dict IM+ I

& IM+ol irrespective of the reduced matrix
element (15c) or the phase shift differenc (20b).

Finally, we apply the double PCAC prescription (2b} to
the Cabibbo-enhanced D ~Km decays [11],which leads
to

If we decompose Eqs. (23) into their isospin com-
ponents as well as insert the reduced matrix elements (25)
and (26) therein, we find, for D ~K' decays,

a+ =v'2a, /z+a3/2 2. 80X10 GeV, (27a)

aoo = —a, /, +v'2a3/2 —1.03 X 10 GeV, (27b)

a+0 =3a3/2 =1.34X 10 GeV . (27c)

We can again choose the following D ~Km amplitude
combination where the phase-shift difference does not
enter:

I M+ I
+

I Moo I

=3(a &/z +a 3/2 )

=8.9 X 10 ' GeV (28)

The corresponding experimental branching ratio sum for
D ~Km. decays is seen to be

a = i&K —~+IH ID )

=(1/&2f ) & ~'IH. IF' &

+(1/v'2frr)(1 f~/f )&K'IH—.ID ),
a = i(K —mlH ID

=(1/2' }(2fxIf 1)(K—
(23a)

(23b)

IM+ I,„,+ IM~I,„,=(8.9+0.9)X10 ' GeV (29)

where IM+ I
is taken from Ref. [8] and IMool from Ref.

[12]. The data sum in (29) is in excellent agreement with
the prediction (28).

Alternatively, we can solve Eqs. (24) self-consistently
for the phase-shift difference, then giving [13]

a = i &K a+I—H„ID+ &
~1/2 ~3/2 (30)

=(1/+2f )&~'IH. IF' &

+(1/v'2f )(K 'IH. ID'& (23c)

l /2M+ =v'2ai/ze +a3/z~

~1/2 ~ / ~3/2
Moo = a )/2e + & 2Q3/2e

(24a)

(24b}

The experimental D ~Km amplitudes, with FSIs includ-
ed, can be expressed as

I

=2.41x lo-' Gev,

IMool =1.67X10 GeV,

IM+ol:1 34X 10 GeV

(31a)

(31b)

(31c)

Utilizing this phase-shift difference in (30) together with
a &/2 1 ~ 66 X 10 GeV and a 3/2 0.45 X 10 GeV, de-
duced from (27), we find that the absolute magnitudes of
Eqs. (24) for D ~K' decays become

3/2 (24c) The theoretical D —+Km predictions (31) are in very good
agreement with the experimental data

The reduced matrix element (m+IH IF+ ) in (23), hav-

ing no loop contributions, is found solely from the 8'-
pole graph of Fig. 4:

(m. +IH IF+ ) =(G~/v'2)c, f f~mD

=0.42 X 10 GeV (25)

where once again the F is on the D mass shell and
2pD p =mD. The Cabibbo-enhanced D ~K transi-
tion in (23) was found in Ref. [4] to have the same inter-

l,„„=(2.43+o. 12)x lo-' Gev,

IM~ I,„,=(1 74+0.23}X10 GeV,

IM+o I,„,= ( 1.32+0. 10)X 10 GeV .

(32a)

(32b)

(32c)

The numerical evaluations in (32a) and (32c) follow from
the PDG [8), while (32b), as stated before, is derived from
Ref. [12]. The close agreement between (31c) and (32c)
(also noted in Refs. [2,4]) is a cheek on the theoretical
link in (23c) between the apparently unrelated dynamical
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reduced matrix elements (25) and (26). All the two-body
D decay branching ratios, both theoretical and experi-
mental, are listed in Table I.

III. THREE-BODY D DECAYS

A"'= i—(K '~+~'IH. ID+ &

=(1/v'2f. ) & ~'K 'IH. ID'&

—(1/2fx )(n+K IH ID+&, (35b)

We now extend PCAC consistency to the nonresonant
three-body decays of D mesons. We generalize the ampli-
tude (2b) for two-body decays to the three-body decay
amplitude (up to 10%%uo PCAC corrections) as the triple
PCAC consistency relation

=(1/2')[(~+K
+v'2(1 —fxlf )(n K IH ID &],

(35c)
M =Mcc) +Mcc2+Mcc3 (33)

where we first apply the PCAC and charge-algebra reduc-
tion (3) to each of the three final-state mesons and add to-
gether the resulting charge commutator matrix elements.
Underlying Eq. (33) are pole terms, such as the K and n
poles, as needed in paper I for E~3m. decays, and D and
E poles for D ~Em.m, etc. But the simpler triple PCAC
consistency prescription (33) proceeds as in the two-body
decay case (2b) without explicitly having to calculate pole
terms. However, in contrast with the two-body decays,
for three-body decays we have charge operators acting on
two-particle states. To analyze this configuration we al-
low the charge operator to act on each final-state particle
and then add the results together, generating an exten-
sion of the strong-interaction transformation law (5):

( A; A J I gk =if(k( ( A( A
I
+if k( ( A; A ( I

. (34)

We now use (3), (33), and (34) to compute the five non-
resonant D~Em.~ decay amplitudes 3 in terms of the
three D ~Em amplitudes:

A ++= i(K ~—+n+IH ID+. &

=(&2/f )[(n+K IH~ ID &

—(1 f If )(~'K'IH. ID'&],
(35a)

I

=(ilf )(2 f Ifx)(~'K'IH. ID'& . (35e)

If we use the usual Km. sum rule &2MOO=M+o —M+
[obeyed by the complex D ~Km. amplitudes in Eqs. (24)],
to eliminate (n K IH ID & from the above Eqs. (35b)
and (35c), we find the D ~Kn.m. relationships

A + = —A + =A ++/2v'2, (36)

which are approximately satisfied by the data.
Because of the complex nature of the D ~E~ ampli-

tudes (24) and the sizable effects of the FSI, we cannot
simply insert the experimental D~K~ amplitudes into
Eqs. (35) when calculating the D ~Knmamplitude. s. In-
stead, we insert the complex forms (24) along with the
predicted D —+Km values of a ]y2 1 ~ 66 X 10 GeV,
a 3/z 0.45 X 10 GeV, and, from (30), 5, /z

—
5z/z = 87'

and finally take the absolute magnitudes to find the
theoretical nonresonant amplitudes:

=(lW'2f )[(~+KolH ID+&

—(1—f If )(m.+K IH IDO&],

(35d)

A ~= i & K'o~o~'IH. ID'&

I
A ++I =( 2lf )[2a ~/z+(2 —3f If&) az/z

—2v'2(2 —3f /fx )a&/zaz/zcos(5&/z —fiz/z)]'/z

=36X 10

I
A +'I =

I
A ++ I/2v 2=13X10-'

+'I =
I
A ++I/2&2= i3x io-'

I =(1/&2f )[2(1 f /fx) a, /z+(2+f —/fx) az/z

2(2+f Ifx )(1 f Ifx)ailza3/zco (foal/2 fi3/z)]

=10X10 ',
~Al=( f1/)(2 —f /f~)l(m'K IH ID &I=23x10

(37a)

(37b)

(37c)

(37d)

(37e)

To extract the experimental amplitudes from the measured decay rates, we must compute the standard three-body
phase-space integral [14]. Assuming that the amplitude is constant results in the decay rate

1/2

r=[2/X(8 M)']IAI' f',
4p S

(38)
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I &,„,", 1=(36.4+3.0) X10 ',
~ A,„+, i

=(11.0+3.9)X10

I &,„,", I
=(17.4+4.4) X 10-',

~ A, „+„, =(21.5+3.0) X 10

(39a)

(39b)

(39d)

The first three experimental D ~Kerr am.plitudes in (39)
agree fairly well with the first three theoretical predic-
tions in (37).

If we now apply our triple PCAC consistency relation
(33) to the two measured Cabibbo-suppressed decays
D+ K+K ~+,m+m+~, we find

where Ã is a statistical factor for identical particles and,
in this case, p=m mass, m =K mass, and M=D mass.
The values for I in (38) for the five cases of interest are
I( —++ ) =3.09, I(0+0)=6.16, I( —+0)=6.17,
I (0+ —

) =6.09, and I(000)=3.08 in units of 10 GeV.
Using the experimental nonresonant branching ratios [8]
along with (38) then leads to

D ~K m m

D+ ~0 + 0

Do~a-~+~0
D' Z "~+~-
D Km~
a+ ~K+K
D+ ~~+~'m

6.5
1.8
0.72
0.39
1.0
0.16
0.08

6.6+1.1
1.0

1.2+0.6
1.8+0.5

0.39+0.09
0.21+0.06

'See Ref. [8].

results in (42), the ratio between the two does agree with
the data. We have compiled the theoretical and experi-
mental branching ratios for the seven nonresonant three-
body decays, examined in this section, in Table II.

IV. CONCLUSION

TABLE II. Three-body nonresonant charmed-meson decay
branching ratios.

BR,„, (%)'

(40b)

To estimate (40a) numerically, we must insert the com-
plex amplitude structure (16) together with the predicted
values ao =a

&
=0.455 X 10 GeV and 5o—5, =54' from

(20b), which results in

= (a, Iv'2f „)[1+2(f If~ )cos(50—5, )

+(f /f )2] 1/2

=5.6X 10 (41a)

Since there is no interference in (40b), we can simply use
the experimental magnitude of (m+~ ~H ~D ) to pre-
dict [15]

~&~'~+~ (H ~D'&~=3. 1X10 '. (41b)

In order to compute the experimental amplitudes, we
employ Eq. (38) with @=K mass and m =ir mass for
D+ ~K+K ~+ and, for D+ ~n+m ~, p =m =n
mass. The phase-space integrals I, in these two cases, are
I(KKn)=3. 25 and I(3m)=4. 88 in units of 10 GeV
Substituting these integrals I into (38) and employing the
experimental nonresonant decay widths [8], we then find
the two Cabibbo-suppressed transition amplitudes to be

i(K K ~+iH iD )i,„,=(8.6+1.0)X10

1

&~+~+~ IH. ID+ &I..p, =(5.2+0.»X1o ',
(42a)

(42b)

in rough agreement with theory (41). Although both
(41a) and (41b) are somewhat short of the experimental

=(lid'2f )[&K'K
—(1 f If' )—(K+K iH iD+ ) ],

(40a)

i(~+~+~—IH„~D+) =(v'2' )(~+~—
~H ~Do)

In this paper we have computed decay amplitudes for
the nine D~m~, KK,K~ decays as well as for seven
D ~K~m, KK~, ~~a. decays, the majority of which com-
pare rather well with the experimental data. In particu-
lar, we gave a brief summary of our theoretical technique
in Sec. I. We explained that our PCAC consistency pre-
dictions are not simply the soft-meson amplitudes, but
also include (rapidly varying) surface-term corrections.
Then, by requiring PCAC consistency (giving the same
overall amplitude no matter which pion or kaon is
reduced in), the resulting surface term (i) was recast
as a second charge commutator, leading to
M=Mcc, +Mcc2, and (ii) accounted for the necessary
momentum and energy variation of the amplitude.

We then proceeded to calculate PCAC consistency am-
plitudes for the two-body D meson decays in Sec. II. We
used two techniques to handle the phase-shift dependence
of the D matrix elements. The first was to take com-
binations, proportional to the sum of the two D branch-
ing ratios, that do not depend on phase shifts. The
second method was to fit the phase shifts to the experi-
mental complex amplitudes (M) and then incorporate the
theoretical real amplitudes (a) to make predictions for
the individual D decays. The latter procedure was only
possible for the D ~KK,K~ processes because of lack of
information in D~m.~ decays. Most of the predictions
were in very good agreement with the experimental two-
body decay data as listed in Table I, and in fact all pre-
dictions were within or near one standard deviation from
data.

Finally, in Sec. III we generalized our PCAC con-
sistency analysis to include the three-body
D~Km.~,KK~, ~m.vr decays and tabulated the results in
Table II. We introduced the logical extension of the dou-
ble PCAC consistency amplitude (2) to triplet PCAC con-
sistency in Eq. (33): M =Mcci+Mcc2+Mcc3 This
prescription allowed us to relate the three-body ampli-
tudes of Sec. III to the two-body amplitudes from Sec. II,
which, with the inclusion of the two-body final-state-
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interaction relations, again for the most part reproduced
the experimental results.

When applying PCAC consistency in these two papers
(I and II), we have always kept the decaying IC or D
meson on mass shell. The final-state (Nambu-Goldstone)
pions and/or kaons are taken soft separately, while
simultaneously accounting for surface-term momentum
variation in the double and triple PCAC consistency rela-
tions (2) and (33). In our opinion the key unifying idea
for PCAC consistency applied to both K and D decays is
this momentum variation. As long as such momentum
variation, as represented by the addition of two and three
equal-time charge commutators, is taken into account,
one almost always finds approximate agreement with
1ow-energy physics.

The underlying issue is, what is the upper bound for
momentum variation in low-energy chiral-symmetry-
breaking physics' Most people believe that 1 GeV sets
this scale. We suggest that, even though the typical de-

cay momenta for D decays of 700-900 MeV are only
slightly below this 1-GeV scale, we will not violate the
latter if we always keep the D meson on mass shell when
consistently folding in the momentum variation in D de-

cay channels.
For example, the momentum dependence in the re-

duced matrix element (a+~H~~D+) in Eq. (8b) isp p~.
Always keeping the D meson on mass shell, we account
for this two-body momentum variation by conserving the
overall D ~~m four-momenta pz =p +p' so that
2p pz=mz when both pions are on mass shell. If in-

stead p' ~0, then p p~ ~m~. But if p ~0, then

p .p~ ~0. The average of the latter two limits then cor-
responds to our overall momentum variation prescription

p pz=(mal+0)/2=mn/2 used in Eq. (8b) and in Eqs.
(7), (10), and (11) in Ref. [2]. Three-body momentum
variation corresponds to the double PCAC consistency
relations (2), while four-body momentum variation corre-
sponds to the triple PCAC consistency relation (33). A
similar pattern holds for K~2m. , 3m. decays in paper I,
and in this sense a 1-GeV chiral-symmetry-breaking scale

appears to be continued slightly higher by our PCAC
consistency approach. The fact that some of the D
meson three-body decay amplitudes do not agree well

with the data might indicate that we have reached the
limit of applicability of PCAC.

As always, PCAC results must be compared with data
in order to know the size of the PCAC corrections. We
suggest that the compatibility of data with our PCAC
consistency analysis for 7 K and 16 D decays almost uni-

formly shows that the PCAC errors are within 10%, as
anticipated. One expects the PCAC consistency correc-
tions for K~2m, 3' decays to be O(m /mx)-7%, as
stated in (2a) and shown in paper I, and likewise the
corrections to (2b) and (33) for charmed meson decays to
be 0 (mx /m~ )-7%. We suggest the almost exact paral-
lel between the PCAC consistency for E decays (E on
shell) and D decays (D on shell) is more than the small
7% PCAC error, but includes the overall compatibility
with experimental data of our 7 K —+2m, 3m. amplitudes in
paper I and our 15 D ~m.m, KK, Km. ,K~m. ,KKm, ~m.~ am-
plitudes in this paper II.

In e8'ect, in this paper we have predicted 15 charmed-
D-meson weak-decay amplitudes based only on the
Cabibbo-enhanced scale (,EC ~H~~D ) and the Cabibbo-
suppressed scale (n ~H ~Do). In fact, these two scales
are related to the K ~~a. reduced matrix element
(,~ ~H ~E ), and the latter was the basis for the seven
kaon decays in paper I. This K~a. transition, in turn, is
determined by the charmed D mass or c-quark mass due
to dynamical loop graphs [3,4, 16]. Thus, not surprising-

ly, the charmed mass sets the dynamical scale for
charmed weak decays and also for the EI=—,

' enhanced
K ~2~ decays.
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