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PCAC consistency. I. Kaon two- and three-body nonleptonic weak decays
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We show that the current-algebra —PCAC (partial conservation of axial-vector current) procedure ap-
plied consistently to each final-state pion predicts seven E~2n. and X~3m. decay amplitudes that very
accurately reproduce the experimental results.

PACS number(s): 13.25.+m, 11.30.Rd, 11.40.Ha

I. INTRODUCTION

In this paper (I), we use chiral-symmetry (CS) and par-
tially conserved axial-vector current (PCAC) techniques
[1], extended via "PCAC consistency, " to calculate the
seven charge modes of E~2n. , 3m weak decays. In the
following paper (II), we will apply similar PCAC con-
sistency methods to 16 two- and three-body charmed-
meson weak decay modes. Previously, we briefly
sketched the phenomenological application of these
current-algebra-PCAC ideas not only to the kaon sector,
but also to the charmed-meson and baryon sector [2], for
two-body nonleptonic weak decays. Here we go into con-
siderably more detail concerning PCAC consistency and
also extend the analysis of kaon two-body decays to
three-body decays.

We will use the CS-PCAC reduction in Sec. II to relate
the E—+me amplitudes to one-body E~m. reduced ma-
trix elements, which can be calculated from meson or
quark loop graphs. We also include the small effects of
final-state interactions in our analysis. In Sec. III the
analogous CS-PCAC reduction will be employed to con-
nect the E~3m. amplitudes to the E~2vr transitions
that were determined in Sec. II. The result of this study
is that the PCAC consistency predictions for the seven
E~2~, 3~ decay amplitudes are consistently in good
agreement with the data. We summarize our results in
Sec. IV and verify PCAC consistency for E2 in the Ap-
pendix.

Many of the first attempts at explaining the E~2m, 3m

decays, using PCAC and current-algebra ideas, utilized
energy-dependent parametrizations of the amplitudes [3].
By constraining the parameters through PCAC, various
ratios of physical observables were predicted. A slightly
different approach was used in Ref. [4] to reduce the
number of parameters in Ref. [3]. In these studies tad-
pole graphs were employed to systematically account for
the rapid variation of momenta in E~2~, 3m. decays.
There were still unknown parameters in the latter ap-
proach, but these were further reduced by overall
momentum conservation [1,5]. Still, these rapidly vary-
ing pole schemes for two-body decays are di5cult to gen-
eralize to three-body decays.

In order to avoid such pole complications, in this paper
we use PCAC consistency to circumvent the rapidly
varying pole terms altogether. &e will predict all seven

ccl +Mcc2+ mK (2)

This double PCAC consistency relation (2) has an advan-
tage over Eq. (la) because all that needs to be determined
is the charge commutator amplitude for each soft pion,
which is partially required by Eq. (la) in any case. In
other words, the complicated pole contributions drop out
of the analysis when employing the prescription Eq. (2)
rather than (la}. Nevertheless, in order to appreciate the
true significance of the double PCAC consistency relation
(2), it is important to verify in detail that the complicated

E~2~, 3~ decay amplitudes, including appropriate
hI= —,', —', parts, with no free parameters and without ex-

plicit calculation of the pole terms.
To begin, we write the decay amplitude in the form

M =M&+M, where Mz is the rapidly varying pole con-
tribution and M is the background term that varies slow-
ly with momentum. The amplitude M is found by letting
one of the pions go soft, which results in the amplitude
having the on-shell form

M =Mcc+Mp Mp(0)

The charge commutator amplitude Mcc in (la) is the am-
plitude M at the soft point, and the "surface term"
Mp Mp(0} accounts for the rapid variation of pion mo-
menta and modifies Mcc in (la) away from the soft
momentum limit.

The notion of PCAC consistency dictates that one
should obtain the same result in (la} no matter which
final-state pion is taken soft (with the kaon always on
shell) when computing Mcc and Mp(0). That is, in order
for (la) to make physical sense, the K —+2m. amplitudes
must obey the condition

M =Mcct+Mp Mpt(0) =Mccz+Mp Mp2(0) (lb)

where the subscripts 1 and 2 denote which pion is taken
soft. The requirement (lb) can be satisfied by the two re-
lationships

Mp Mp}(0)™ccrcMp Mpz(0) ™ccl (lc)

both found to be empirically valid within the 10%%uo PCAC
error. The meaning of (lc) is that the surface term gen-
erated by one pion must correspond to the charge com-
mutator due to the second pion. Inserting (lc) into (lb)
then leads to the on-shell E~2~ decay amplitude
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[Q+Q5 H ]=0 or [Q5 H ]=—[Q H ].
Also employed in (3) is the strong-interaction transforma-
tion law

Q, IA, &=f...lA, &. (5)

II. K~2m DECAYS

The first processes to which we apply our double
PCAC consistency relation (2) are the EI= ,' dominated-
E~2n. decays. This prescription, embodied in Eqs. (2)
and (3), leads to the real amplitudes [verified from (1) in
the Appendix]

=i&~+~ IH ICo&-

=(1/~2f )(@+ IH~ IK+)(1 m /mid )—,

am =i & ~'~'IH. I&')

=( —1/f. ) & ~'IH. IIt') (1—m 2. /mx2),

(6a)

(6b)

rapidly varying pole versions of (la) —(lc) really do lead to
the simple form of (2). We carry out this mathematical
exercise in the Appendix specifically for E ~mw decays.

The usual soft-pion CS reduction gives the charge corn-
mutator amplitude Mcc with the kaon always on mass
shell.

(m. . AfIH IA;)~Mcc=( ilf—)(Afl[QJ5, H ]IA;)

=(ilf )[iffjk( AklH~I A; &

if,;k&
—AflH„I A„&],

(3)
where A denotes a general hadron state (here m. or E}and
f„=93 MeV. The last equality in (3) follows from the
usual weak Hamiltonian density (H ), generated from
left-handed currents, being orthogonal to right-handed
charges. This latter chiral-symmetry statement corre-
sponds to the current-algebra equal-time commutation
relations

&2(~'I—H. II.")+(G, /v'2)s, c,f.f,m,'
—4.QX 1Q GeV (8)

for fz =1.25f, f =93 MeV, and stci =0.22.
To relate the CS-PCAC consistency relations (6), using

(7) and (8), to those found from experiment, we must last-
ly include the effects of final-state interactions. The com-
plex experimental amplitudes corresponding to the real
CS-PCAC Eqs. (6) can be written as

i60 2 i52
M+ =a &/ze +—,a 3/2e

i50 4 i52
Moo =a &/2e

—
—,a3/2e

M+0=" 2a3/2e
'2

(9a)

(9b)

(9c)

where the subscripts on the real amplitudes a&/z, a3/2
refer to the isospin of H, while the subscripts on the
phase shifts 5 refer to the isospin of the final states. To
couple the real Eqs. (6) with the complex Eqs. (9), we first
express (6) as

Not only does (7) predict from (6b) the K ~2m. ampli-
tude aoo =25 X 10 GeV, which is only S%%uo lower than
the experimental result [9], but the scale (7) is likewise
compatible with the m. pole amplitude for KL ~2y decay
[1,10] and also needed in the chiral Lagrangian approach
[11]. The second important feature of Eqs. (6) is the man-
ifest b,I=

—,
' structure of the right-hand side (RHS) of (6c),

as is necessary for the EI=—,
' transition E+~m.+m. .

This satisfying PCAC consistency result does not occur if
only one pion is reduced in for E+—+~++ and the rapid-
ly varying pole term is ignored.

The reduced matrix element (n.+IH~ ~E+ ) in Eq. (6a)
is approximately dominated by a EI=—,

' loop graph,
which is &2 times the scale in (7). However, the
E+~~+ transition also has a 8'-pole graph, depicted in
Fig. 1, which must be added to the dominant EI=

—,
' loop

contribution from Eq. (7):

=(1/2f }[&rr+IH. I&+&

+&2&m'IH IIt'&](1—m /m ) . (6c)

a+ =a»2+ —,'a3/2 =28. 1 X 10 GeV,

aoo =a
&/2

——', a3/2 =24.8 X 10 GeV,

a+o =&2a3/2 =2.3X 10 GeV,

(loa)

(lob)

(10c)

The (1—m /mz) factors in (6) guarantee that these
E +2rr amplitudes va—nish in the strict SU(3} limit, as
they must [6] because of C-parity considerations. This
factor, corresponding to the 0 (m /mz ) PCAC error in
Eq. (2), appears naturally when computing the Ez am-
plitudes through Eqs. (1}.

To appreciate that the CS-PCAC consistency relations
in (6) are of physical significance, we first ignore the small
final-state-interaction eFects (justified by empirical
hI =

—,
' dominance) and estimate the real transition aoo in

(6b). Then computing the reduced matrix element
(w IH IK ) in both a quark loop model [1,7] and a
meson loop model [8], we predict

=27.7 X 10 GeV, (1 la)

where the numerical values on the RHS of (10) come
from using the reduced matrix elements (7) and (8) in (6).
Finally, inserting the values a~/2 27.0X10 GeV and
a3/2--1. 65 X 10 GeV, derived from (10},into the mag-
nitudes of the complex Eqs. (9},leads to the magnitudes

I
=[ 1/2+ 3/2+ al/2a3/2cos(&o

(~ IH )E )=—2.5X10 GeV (7) FIG. l. 8'-pole graph for the transition (m+IH I11;+). .
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IM~ I

= [u i/2+ u 3/2 +i/zu3/zcos(&0 fiz) l'

=25.8 X 10 GeV,

I M+o I

= i/2tz 3/z =2. 3 X 10 GeV,

(1 lb)

(1 lc)

where we have employed the experimental ~m. phase
shifts at the K mass [12],50—5z=55 .

The K~m.m. predictions (11) compare quite well with
the experimental decay amplitudes [9]

IM+ l,„,=(27.6520.07) X 10 GeV,

IM~I,„,=(26.26+0. 12) X 10 GeV,

IM+Ol,„,=(1.834+0.007) X 10 ' GeV .

(12a)

(12b)

(12c)

Of course, the b,I=
—,
' prediction (1 lc) is further removed

from the experimental results than (1 la) and (1 lb). This
is due to the extremely delicate cancellation in (6c), and
so (1 lc) is really only accurate to one significant figure.

III. K —+3m DECAYS

We now extend our double PCAC consistency
prescription (2) for two-body K~2m decays to include
the three-body K~3m decays. When one considers the
transitions i & m n m

I H~ E &
= A in the context of Feynman

amplitudes, the final-state pions are treated as indepen-
dent, and statistical factors of N =2! or 3! for identical
pions are included to reduce the experimental phase
space. However, when employing our PCAC consistency
procedure, independent final-state pions would suggest
the symmetrized form Mcci+Mcc2+Mcc3 But then
the reduced matrix element & nnlH~ IE &

w. ould "know"
about the above symmetrization, whereas Feynman am-
plitudes continue to treat the pions as independent. This
mismatch means that we must multiply

Mcc, +Mcc2+Mcc3 by an additional factor of —,
' to ob-

tain the Feynman three-body transition (where the pions
are again treated as independent and the kaon is always
on mass shell):

& A; Aj IQk zf/ki& Ai Aj I+ifjkl & A; Ail . (14}

It turns out that the symmetry of Eqs. (13) and (14) and
the antisymmetry of the structure constants f;~k in (14)

=T'(Mcci+Mccz+Mccz )+0(m~/mx ) .

In contrast with two-body transitions, when the soft-
pion reduction is performed on three-body decays, the
charge operator Q acts back on a two-pion final state. To
cope with this situation, we let Q operate on each final-
state pion and add the results together in this extension
of the strong-interaction transformation law (5):

=(1/i/2f „)& m+~ IH

A~+=; &~o~o~+IH. IX+ &

=(1/2+2f )[ &~'~'IH. IIt'&

+i/2&~+~'IH II~+ &]

=(1/2i/2f. ) & ir'ir IH. II~'&

(15a)

(15b)

A+-'=i&~'~ ~'IH. II(.,'&
=(—1/2i/2f )[ &~+~ IH I&'&

—&z& ~+~'IH. II&' & ]

=(—1/2i/2f )& ~'~'IH. I&'&, (15c)

A, =i&~'~'~'IH. Irc,'&

=( 3/2i/2f )&~'~'IH I&'&, (15d)

where we have used the E—+me sum rule
M+ —Moo=i/2M+0 to deduce the RHS equalities in
Eqs. (15b) and (15c). If we then input our theoretical pre-
dictions for the K ~2m amplitudes [Eqs. (1 la) and (1 lb)]
into Eqs. (15), we obtain the theoretical magnitudes of the
E~3m transitions:

I

A++ 1=1.94X10-'

I
A

I
=0.97 X 10

IA' 'I=o.9lxlo-',

IA~~I=2. 72xlo '.

(16a)

(16b)

(16c)

(16d)

Here we have multiplied (15) by the factor (1—m„/mx )

in computing (16) [though the latter is not required by CP
invariance and C-parity symmetry, it makes Eqs. (16)
compatible with (13) as well as with Eqs. (6}]. Two-pion
final-state interactions enter Eqs. (15) and (16} through
Eqs. (11), but for simplicity we have ignored the explicit
three-pion final-state interactions in these equations as is
traditionally done [13].

To compute the experimental X~3~ amplitudes A,
we employ the usual three-body phase-space integral [14)
(N is the statistical factor mentioned previously}

cause the terms, arising from the charge operator acting
to the left on the final states, to cancel. This leaves only
those terms where Q operates to the right on the kaon in-
itial state, which greatly simplifies the analysis.

Applying the triple PCAC consistency prescription
(13) to the four IC ~3m. decays yields the Feyninan ampli-
tudes

A++- =i & ~+~+~-IH„II~' &

M—
1/2

M}3]
I
A Iz J~~ — ~'d [s —4p ][s —(M +m) ][s —(M —m) ]

4p S

(17)
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where M is the kaon mass, m is the odd-pion mass, and p
is the non-odd-pion mass. We have assumed that the am-
plitude A in (17) is constant, which is empirically valid to
5%. The integrals I in (17) for the four cases of interest
are I(++—)=0.798, I(00+)=0.996, I(+—0)=1.95,
and I(000)=0.397 in units of 10 GeV. With these
values for I and the observed decay rates [9], we find the
experimental E~3~ Feynman amplitudes to be

I

A++ I,„,=(1.93+0.01)X 10

I A 1„=(096+0.01)X10

I
AL+ I,„,=(0.9020.01)X 10

I Ar l,„,=(2.63+0.05) X 10

(18a}

(18b}

(18c}

(18d)

which agree very well with the theoretical predictions
(16).

IV. CONCLUSION

In summary, we have employed the concepts of chiral-
symmetry and PCAC consistency to explain all seven
K~2~, 3m weak decays. We began in Sec. II by intro-
ducing our procedure for K ~2m decays where it is
shown that the decay amplitudes have the double PCAC
consistency form Mcci+Mcc2 while also accounting for
the momentum variation in these decays. This prescrip-
tion gives the AI =

—,
' scale of the E ~m.~ decays

(justified in detail in the Appendix), as well as the EI=
structure of the K+~~+a decay.

We also obtain the correct AI= —,', —,
' structure of the

E—+3m decays in Sec. III when the CS-PCAC consisten-
cy technique is extended to three-body decays. In this
case the Feynman amplitude has the form
—,'(Mcc, +Mcc2+Mcc3), the logical extension of the
K~2m amplitude. The factor of —,

' is due to symmetriza-

tion effects of the three final-state pions. This procedure
gives the correct magnitudes for the four E—+3~ ampli-
tudes.

In short, CS-PCAC consistency is essentially a model-
independent scheme which explains the seven nonlepton-
ic weak kaon decay rates with no new parameters and no
dynamical assumptions except for the scale of the single
reduced matrix element (n IH IK )If . (The latter

can be computed from quark or meson loops [1,7,8].) Al-
ternatively, we give our K~2m predictions (11} and
K ~3m predictions (16) by listing the seven branching ra-
tios in Table I. We will extend this PCAC consistency
procedure to charmed-meson decays in paper II.
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APPENDIX

Here we verify that the (tedious} rapidly varying pole
prescription in Eqs. (1) leads to the total on-shell
K ~m'~ amplitudes as obtained using the much simpler
double PCAC prescription (2}. First, we compute the
ofF-shell K ~m'mj decay amplitude for the tadpole graph
of Fig. 2 [1,5,15]:

Mp'=
&0IH. IK'&

4f~
X I

ie'~ [—2k (p, —p ) —p; +pj ]

+5'J[(p;+p ) +p;+p —2m„]I . (Al)

When one conserves the four-momentum k =p, +pi,
even off the pion mass shell, so that p ~mz as p;~0,
then (Al) requires the surface terms for the various
charge modes K ~~ ~ and K —+m+m.

(M+:p + ~0) or K ~n n+(M +:p ~0):
(0IH IK ) 2m

1—,(A2a)
4f„mxMP —Mp (0}=—

(0H. K') m'.
M+ —M+ (0)=

&0IH. IK')

2f
Mp

+ —Mp +(0)=—
2m

2
m&

(A2b)

(A2c)

M =( /f )( 1[g',H ]IK')

=(iy2f. ) & ~'IH. IK'), (A3a}

The (equal-time) charge commutators are found from (3)
with f =93 MeV:

TABLE I. Nonleptonic kaon decay branching ratios. Mcc =(—i~f )&~ I[Qs' '"' ' H ]IK'&

BRth (%)' BR pt (%) =(iaaf. }&~OIH.IKO), (A3b)

Ks m' m

K+—+m. +m. +m.

K+~m-'m'm+

KL~~+~ m-'

KL, mm m.

68.8
30.3
33
5.64
1.76

12.7
23.1

68.61+0.28
31.39+0.28
21.17+0.16

5.59+0.05
1.73+0.04

12.38+0.21
21.6+0.8

'We have used the observed K+,Ks,KI lifetimes in computing
the branching ratios, although the Ks lifetime is also predicted
in our analysis.
bSee Ref. [9].

I
I

gK
s 0 - fT

K
%a~%a %a~

FIG. 2. Rapidly varying tadpole for K —+m.m. decays.
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( t /f )( +
I [Q(1+ t2)/v2 H ] IK0)

= ( t /—f.)[&~'IH. IK'&+2 '"-& ~'IH. IK+ &] .

(A3c)

=( i—/&2f )(tr+IH IK+)(1—m'„/m~z) .

(A5c)

The charge commutator reduced matrix elements
(trIH IK) in (A3) can be further reduced to (OIH IK )
by again applying Eq. (3), but without any rapidly vary-
ing tadpole component, resulting in

(tr IH IK ) ( i/f —)(0 [Q„H ]IK')

=(i /2f „)&OIH. IK'&,

(tr+IH IK+)~( i/f—)(Ol[Q" ' ',H )IK+)

=( i/v—'2f„)(OIH IE ) .

(A4a)

(A4b)

=(i/f )(n'IH. IK')(1 —m'. /mx ), (A5a)

=(i/f )(n. IH IK )(1—m /ming), (Asb)

Finally, inserting (A4a) into (A2) and adding the result
to (A3), according to the rapidly varying pole prescrip-
tion M =Mcc+Mp —Mp(0) of Eq. (la), leads to the on-
shell b I=

—,'E,„amplitudes

Note that (A5b) is identical with (ASc), since Eqs. (A4)
imply that (tr IH IK ) is equivalent to
( —1/&2)(sr+IH IK+). Thus the three final forms for
the rapidly varying pole K2 amplitudes indicated in (1)
and explicitly displayed in (AS) are indeed the same as
obtained in Eqs. (6) using the much simpler double
PCAC consistency prescription Eq. (2). However, Eqs.
(A5) are pure b.I= ,', while—Eqs.(6) also contain EI=
pieces. Also note that M+ =M + even though the
component Mcc and Mp Mp(0) terms are each
different in the two cases. This is an explicit example of
PCAC consistency: The overall on-shell E ~~+a. am-
plitude remains unchanged regardless of which pion is re-
duced. Also see Ref. [16].

With hindsight, the resulting weak scales of EC —+n m

and Ko~tr+sr in (A5a) and (ASb) are double the origi-
nal values [17] obtained by assuming constant matrix ele-
ments with no momentum variation. Not only do the
latter weak scales fail to explain model calculations, but
such a constant matrix element approach is also incom-
patible with our PCAC consistency scheme in Eqs. (2)
and (6) [which obviously doubles the weak scale in (6b) by
Bose statistics].
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