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Fractai phase space as a diagnostic tool for high-energy multijet processes
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The fractal phase space introduced by the Lund group for the description of QCD multijet phenomena

is discussed using a different choice of coordinates. We advocate these coordinates as a useful diagnostic
tool in the analysis of complex event structures. Features of QCD such as color coherence or "angular
ordering, "and the "string effect,"are described in this language.

PACS number(s): 13.87.Fh, 12.38.Bx, 13.65.+i, 13.85.Hd

I. IN'I'RODUCTION

The so-called lego plot, introduced to the best of my
knowledge by the British-Scandanavian Collaboration at
the CERN Intersecting Storage Ring [1], has taken its
place as an important diagnostic tool in contemporary
particle physics. This occurs because for many purposes
the most convenient variables to describe particle, par-
ton, or jet coordinates are the rapidity y (or pseudorapidi-
ty ri), azimuthal angle P relative to the collision axis {or,
in e+e applications, the thrust axis), and magnitude of
the momentum transverse to that axis, p, . The reasons
for this choice include the following.

(1) Invariant phase space is simply described with this
choice:

cf p =p, dp,

dydee

.

(2) These variables have simple transformation proper-
ties under longitudinal Lorentz boosts

p, —+p„P~P, y~y+const . (1.2)

(3} The populations of produced particles are, in the
absence of QCD jets, distributed very uniformly in the
variables y and P, while they are rather sharply centered
in p, about the mean value (p, ).

It is especially this third feature that motivated much
work [2] in the early 1970s on building an analogy be-
tween populations of produced particles in the y-P plane
with populations of particles in a two-dimensional fluid.
On average, uniform density is expected in each case, and
to a large extent, this has been found experimentally.

With the advent of QCD, this picture has changed
somewhat. The emission of perturbative gluons by the
partons participating in the underlying collision process
leads to clustering in the lego plot [3]and, on occasion, to
strong concentrations ofp, (jets) within small regions ofy
and P.

In an interesting series of papers [4], Andersson,
Dahlqvist, and Gustafsson have shown how this leads to
an extension of ordinary phase space to one which is frac-
tal in nature and which provides, even in the presence of
QCD jet phenomena, a way of maintaining a uniform
measure (produced particle density} in the extended

phase space. It is the purpose of this paper to elaborate
on this approach, using coordinates somewhat different
than employed by the Lund group, but which we find
more convenient. The main point is simply the sugges-
tion that fractal phase space, using this choice of vari-
ables, may be a convenient and practical diagnostic tool
in the phenomenological analysis of multiparticle and
multijet processes at high energy.

In Sec. II we review the properties of the lego variables

g and p. In Sec. III we introduce jets into the lego plot,
along with a definition of jets which leads to the exten-
sion into fractal phase space. Section IV is devoted to ki-
nematics, where the same multijet production phenome-
nology is viewed from a variety of reference frames. Sec-
tion V is devoted to a more geometrical view of extended
phase space, using an analogy to plumbing. In Sec. VI
we extend the picture to include the leading-logarithm
multijet description of perturbative QCD. In Sec. VII we
describe in plumber's language the "color-coherence" or
"angular-ordering" efFects present in QCD. Section VIII
is devoted to an illustration of these ideas using the well-
known "string effect" in the processes e+e ~qqg and
e+e ~qqy. In Sec. IX we make a few comments re-
garding hadron-hadron collisions. Concluding remarks
are contained in Sec. X.

II. REVIEW OF LEGO VARIABLES

6./=2'/9=0. 69&=0.70 . (2.1)

Likewise, the radial coordinate, essentially 8, is subdivid-
ed by a factor of 2, so that the pseudorapidity' g

We shall not explicitly distinguish the rapidity y from pseu-
dorapidity q in what follows.

In a high-energy fixed target experim-ent, almost all
particles are produced at small angles. If we place a
screen transverse to the incident beam direction and
downstream of the target, the particle distribution im-
pinging on that screen will be nonuniform. However, if
we subdivide it as shown in Fig. 1(a), then within each
cell the mean number of particles will be roughly the
same. Note that in Fig. 1(a) we have divided the azimuth
into nine sectors, so that
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g = —ln tanO/2 (2.2)

is divided, to excellent accuracy, into subintervals of the
same size:

d X(n) =0.5
d Y/ d

0.5 dX &1,
277 d 7j

(2.4)

even at Superconducting Super Collider (SSC) energies.
The virtue of the usual lego plot is that it maps this

picture into rectangular rj-(() coordinates, as shown in Fig.
1(b), because the resultant particle density is approxi-
mately uniform when expressed in this way, and the ele-
ment of area is proportional to the phase-space area.

III. JETS

A jet is a local concentration of produced particles in

ri, (ti space with a total transverse momentum p, in excess
of some minimum value, typically at least a few GeV.

There are a variety of possible algorithms for defining
jets, but for our purposes it is convenient [5] to define a

Ag=ln2=0. 693=0.7 .

Actually, the mean number of particles per cell as defined
here is

jet as all particles within a circle in the lego plot with ra-
dius 0.7, provided the summed p, within the circle exceeds
the threshold value. To be sure, this algorithm does not
state how to precisely choose the center of the circle and
how to deal with jets which overlap, i.e., jet pairs whose
axes are, say, 1 unit of rl-p apart. Both these questions
will be addressed later.

With the above definition of a jet, we may expect the
population within the circle of radius 0.7 to be nonuni-
form and, in fact, similar to the fixed-target population of
Fig. 1(a). It is natural, therefore, to introduce polar coor-
dinates within the circle of radius 0.7 [Fig. 2(a)]. And, as
before, it is again natural to remap those polar coordi-
nates into rectangular coordinates [Fig. 2(b)]. In this
composite phase space the population of produced parti-
cles should be, within statistical Auctuations, fairly
uniform —provided there are no additional jets in either
the original lego plot or the extension we have created
and provided the p, of the jet is large enough for a "cen-
tral plateau" region to exist.

In a normal pp collision the area of the lego plot (i.e.,
the region populated by the produced particles in a gen-
eric "minimum-bias" event) is approximately
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FIG. 1. (a) Phase space as seen in fixed-target geometry. (b)
The same phase space as described in the lego variables rj and P.

FIG. 2. (a) Lego plot within which a jet is found within a cir-
cle of radius 0.7, as exhibited. (b) The same lego plot, but with
the contents within the circle of radius 0.7 remapped into rec-
tangular lego variables.
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A =2m. lns . (3.1)

If a pair of jets appear in the final state corresponding to
a hard collision with momentum transfer p„then the
area of the extended lego plot is

A'=2m lns +2alnp, , (3.2)

and the multiplicity of produced particles grows accord-
ingly.

In QCD extra gluons of lower-p, scales can also be ra-
diated. This provides new populations of jets, which
again extend the entire lego plot, including the extensions
we have exhibited. The self-similar character of this ex-
tension should be evident. This gives rise to a phase-
space area with a fractal dimension. The total area will
depend on the "resolution, " i.e., the value of minimum p,
chosen. We do not follow the mathematics of this here,
much of which can be found in the series of Lund papers
[4]. If the minimum p, scale is chosen to be roughly
where ordinary hadronization takes over and below
which observable jet structure is at best obscure and at
worst nonexistent, then once all jets with p, exceeding the
minimum value have been included we expect the popula-
tion of produced particles in the extended phase space so
generated to be reasonably smooth.

(a)
' region

This is compensated by the phase space -21np, con-
tained within the jets (circles of radius 0.7}. This differs
from the examples given in Sec. III, which extended the
total phase-space area. Here a coordinate rotation
should not (and does not} affect the physics.

It is interesting that if one draws, as shown, tangents to
the circles of radius 0.7, they serve as a quite practical
definition of the boundary of the phase space. That is, if
one estimates (see Appendix) the mean number of parti-
cles ( n ) leaking to the outside, the answer is

( )
1 zx dN 1 dN

(4.3)
2 dg 8 dg

where R =0.7 is the radius of the circle defining the jet
and dN/dg is evaluated for the rapidity at the center of
the circle, in our case, ri =in(~s )/p, .

Evidently, if there is a stray particle on the outside, it
will preferentially be found at an azimuthal angle P near
that of the "jet." Likewise, there will be a depletion
within the "allowed" phase space in the azimuthal direc-
tions opposite to those of the jets [points A and B in Fig.

IV. SOME KINEMATICS

Before continuing this discussion, let us review a few
kinematic facts of life. These will help in resolving the
aforementioned question of separating overlapping jets
and of distinguishing those properties of the picture we
have introduced which have an invariant meaning from
those which depend upon the frame of reference used.
These ideas are best exhibited in examples drawn from
e+e physics, rather than hadron-hadron collisions.
The two points we make, quite elementary, are that a ro-
tation of coordinates can (1) create "kinematic" jets and
(2) expand or contract the "size,"as seen in the lego plot,
of real jets.

We first consider the classic two-jet final state for the
process e e ~qq, as seen in a variety of coordinate
frames.

In Fig. 3(a} the qq jet axes are along the longitudinal
direction, and we obtain the standard lego plot, with a
more-or-less uniform particle distribution within. Note
that we distinguish the c.rn. system (c.m.s.) frame of the
parent virtual photon by shading the region of the phase
space for which the produced particles have low, sub-
GeV, momentum in that frame. This has an invariant
meaning, and can be useful in more complicated situa-
tions to be described in what follows.

In Fig. 3(b) we have rotated coordinates by an angle

(c)
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2p~8= «1,
S

(4.1)

l-lns —21np, . (4.2)

and we see two "jets" at the edge of the longitudinal
phase space. Note that the longitudinal phase space has
shrunk from an original length l -lns to a new length

FIG. 3. (a) Lego plot for a two-jet e+e ~qq event, with lon-
gitudinal coordinates chosen to be the axis of the qq jets. Note
the new "pixel size" hg=hP=2. 1 (and the impossibly high &s
chosen). (b) The lego plot for the same process, but viewed in a
coordinate system rotated by an angle 0-2p, /&s « 1. (c) The
same two-jet event, but with a "typical" production angle 0-1.
The distribution has been boosted along the z axis in prepara-
tion for another rotation of coordinates.
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3(b)]. This will be discussed further in the context of the
"string effect'* in Sec. VIII.

In Fig. 3(c) we have rotated coordinates further to a
"typical" value, so that the separation hq of the two jets
is ~2 units. We have also boosted the configuration
along the z axis into a "fixed-target" geometry—
although this change is not very noticeable at this point
because of the simple transformation properties of the
lego variables under the boost.

However, having made the boost, we again consider a
rotation of coordinates. The effect is best seen by first
mapping the distribution into polar coordinates [Fig.
4(a)] and then making a small rotation —which simply
amounts to a translation of axes in Fig. 4(a).

Once the translation has been made [Figs. 4(b) and
4(c)], polar coordinates may be reintroduced and the map
to lego variables performed. Depending upon the magni-
tude of the rotation, we may end up again with a two-jet
configuration, overlapping jets [Fig. 5(a)] or a single jet
[Fig. 5(b)]. This latter configuration is what one would
expect if one had fixed-target kinematics (positrons in-
cident on atomic electrons) and a stupid choice of z axis,
i.e., one not along the beam direction.

The example of overlapping jets in Fig. 5(a) is especial-
ly instructive. It shows that even when jet products over-
lap in the lego plot they need not overlap intrinsically (al-
though they occasionally will). And a way to resolve the
ambiguity when it occurs is to first make an appropriate
longitudinal boost and to then make a simple, small rota-
tion of coordinates. The best choice is probably to rotate
in such a way that both jets shrink into a common circle
of radius 0.7. Then, upon remapping the contents into
lego variables, the two jets will in most cases be resolved.
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FIG. 4. (a) Lego plot of Fig. 3(c) remapped into fixed-target
polar coordinates. (b) The polar plot of (a) after a rotation of
coordinates. The rotation angle is such that the jets X and Y
overlap, i.e., have a separation of order 1. Note that the circles
defining the jet region have shrunk. (c) The same polar plot, but
with a larger rotation angle, such that both jets X and Y shrink
into a single circle of radius 0.7.

FIG. 5. (a) Polar plot of Fig. 4(b) remapped into lego vari-

ables. The dashed lines show circles of radius 0.7 drawn around
the jet cores X and Y, which have shrunk as a consequence of
the coordinate rotation. The circles of radius 0.7 overlap, a sit-

uation best avoided by an additional coordinate rotation. Note
we have chosen /=0 at the center of the lego plot in order to
better display the jets. (b) The polar plot of Fig. 4(c) remapped
into lego variables. Essentially, all collision products are now

found within the circle of radius 0.7 shown.

Another way is simply to choose a circle of radius R &0.7
sufficient to contain a11 jet products and then remap to polar
coordinates. I am not sure which choice is to be preferred.
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We also mention here a way of resolving the issue of
how best to center the circle of radius 0.7 surrounding a
jet core. If the contents of the circle, when expressed in
lego variables, have a leading "kinematic jet" [Fig. 3(b)],
then the center has been chosen unwisely. Any choice
that does remove the leading "kinematic jet" [Fig. 3(a)]
may be deemed acceptable; i.e., the variation in such
choices may be a measure of the intrinsic uncertainty in
determining the coordinates of the initiating parton.

V. PLUMBING

log

2
pt

The lego surface is periodic in P, so that it really is the
surface of a cylinder; i.e., a pipe. From this point of view,
the addition of extra QCD jets to a collinear two-jet lego
plot, as in Fig. 3, simply amounts to cutting holes of ra-
dius 0.7 in the pipe (which has in these units radius 1)
and attaching new pipes to it, each of length
lnp, (Fig. 6). Likewise, the "kinetnatic jets" correspond
to "elbows" —90' bends —in the pipe (Fig. 7). This col-
lection of plumber's fittings can be augmented by "caps,"
representing the leading-particle regions of phase space at
the ends of the lego plot, regions which arguably ought to
be left in polar coordinates rather than being mapped
into lego variables (Fig. 8).

We now see that changes of coordinate systems can
create or move elbows in sections of pipe, without
significantly changing their overall length, something
which, as mentioned in Sec. IV, is an intrinsic property.
"Tees" and caps are likewise intrinsic properties of the
event as well. A "tee" represents a vertex where a gluon
was emitted, and so it is labeled by an a, (p, ), with
a reasonable estimate of 1np, being the length of the shor-
test section of pipe emergent from the "tee."

One other type of plumber's fitting, a connection or
sleeve, is appropriate for marking a specific region on a

FIG. 7. Plumber's view of the "kinematic jets" of Fig. 3(b),
generated by a small coordinate rotation from Fig. 6(a) [or 3(a)].

pipe (piece of lego plot). We encountered already such a
case in e+e ~qq, where the shaded rapidity region (Fig.
3), which exhibits the frame in which the initial-state vir-
tual photon is at rest, is an intrinsic property of the event
structure and is useful to mark.

There evidently are also generalized "tees" correspond-
ing to vertices where two or more gluon jets emerge from
the same region of phase space. These are relatively rare
and will be neglected in what follows.

VI. QCD LEADING LOGARITHMS:
DECORATING THE PLUMBING

For a given event the basic architecture will be defined
by the configuration of the highest-p, jets, i.e., the pieces
of pipe of greatest length. The generic e+e ~q event
we discussed has two pieces of pipe of length ln s, con-
nected by a y' (or Z) "sleeve, " which marks the e+e
c.m.s. frame.

In most cases no additional QCD jet will have p, —~s.
But occasionally there will be "Mercedes" three-jet

Fragmentation region "cap"

(b)

FIG. 6. Lego plot of Fig. 3(a) rolled up into a cylinder or
"pipe." (b) A two-jet event; the jet products are found on the
surfaces of the new pipe segments.

FIG. 8. (a) "Caps" attached to the ends of the lego plot, in-
tended to cover the leading-particle fragmentation region. (b) A
plumber's view of (a).
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FIG. 9. Plumber's view of a "Mercedes" three-jet final state
in e+e ~qqg.

(a)

events, where the junction "tee" occurs at the y*
"sleeve" (Fig. 9). But whatever the structure at the
highest-p, scale is, we may then expect a "decoration" of
the basic structure from lower-p, gluon (or qq) jets. The
probability per unit rapidity of finding an extra jet of
scale p, attached to a quark line is [6], in the "leading-
logarithm" approximation,

dp 3a, (p, )

~
dp,

d 7j 27K p
(6.1)

So, until the scale is quite low, not too many will occur.
One must "decorate" from the highest-p, scales to the

lowest. That is, one breaks up the p, range into intervals.
Starting with the highest p, which is relevant, one ap-
pends the pieces of pipe of length lnp, . Then one goes
down in scale and adds the shorter lengths to the entire
structure. As already mentioned in Sec. II, this will gen-
erate an architecture for this plumbing which is fractal.
The procedure will terminate (as far as perturbative QCD
is concerned) when the pipes to be added have no
significant length, but are all cap. At the lowest-p, scale,
one then has to somehow address the physics of hadroni-
zation. The net result, however, should be a quite uni-
form distribution of particles over the entire structure of
plumbing generated perturbatively.

(b)

FIG. 10. {a)Extended lego plot for the process e+e ~qqgg.
(b) The plumber's view of (a).

are three such regions, as shown in Fig. 12. The radia-
tion from color line A fills the region A shown in Fig.
12(a), in a manner identical to gluon emission from a qq
pair, creating the two-jet configuration shown as the
shaded region. In a similar way, regions B and C of the

VII. QCD COHERENCE EFFECTS:
COLORING THE PLUMBING

Amplitudes for radiation of @CD jets must obey the
rules of "color coherence" or "angle ordering" [7], and it
is appropriate here to describe (without derivation) what
it means in this language. We consider for definiteness
the process e+e ~qq+gluons. Suppose there are two
additional highest-p, gluons, so that the lego plot is as in

Fig. 10(a) and the corresponding plumbing as in Fig.
10(b). The problem we consider is how the amplitudes
for subleading jets of lower p, are to be computed. To
answer that first requires attaching color labels to the
quarks and gluons (Fig. 11). Once this is done, the radia-
tion of the subleading gluons is to be calculated by con-
sidering the soft, subleading gluon emission from each in-

dividual color line as if it were a qq pair. What this
means in terms of the lego plot variables is that the distri-
bution of radiated gluons is an incoherent sum (to leading
order in N„the number of colors) of contributions from
distinct subregions of the lego plot. In our example there

B B

(b)

FIG. 11. (a) Feynman diagram for the process e+e ~qqgg,
with color labels attached to the lines. (b) Schematic of the
color flow.
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lego plot are populated from the radiation from lines B
and C. We see that the gluon jets get twice the radiation,
because gluons have two color labels, not one. [Actually,
the ratio should be 2N, /(N, —1)=—', when the color fac-
tors are computed more carefully. ] In fact, it is some-
times convenient to think of the gluon lego plot as double
sided [8], with each side labeled by one of its color in-
dices. Then half of the subleading jets emerge from the
back side, the other half from the front. However, for
quark jets there is only one color index and, hence, only
one distinguishable side.

In terms of plumbing this picture translates simply into
"painting" the appropriate surfaces of the pipes with the
appropriate color, A, B, . . . , in accordance with the am-
plitude for the process. The emission of subleading jets
from these surfaces is then an incoherent sum of gluon
emissions from each section of plumbing labeled by a
given color index. Since any such subsystem is essentially
a set of pipe segments connected effectively by elbows, an
easy way to determine the gluon radiation from a given
subsystem is to carry out a sequence of Lorentz boosts,
which straighten out the bends in that subsystem, leaving
effectively a straight section of pipe. The decoration of
subleading jets onto that subsystem is identical to
decorating subleading gluons onto a collinear qq pair.
(Of course, once such a subleading gluon is radiated, the

(a)

lego surface must be "repainted" appropriately. )
There is, to be sure, some ambiguity on how to

decorate elbows and tees. But probably the most con-
sistent rule is to perform the decoration of a subsystem in
its collinear reference frame as suggested above (i.e., in a
frame where the plumbing painted with the subsystem
color index is a straight pipe). We shall give an example
of how this works in Sec. VIII, where the "string effect"
in three-jet production is discussed.

In all this discussion we again emphasize that the
decoration process must proceed from high-p, jets to low,
so that the full fractal structure of the phase space is
created. Because of the running ofa„it is mainly low-p,
minijets which will be the predominant feature generated
by this process.

VIII. AN EXAMPLE:
THE "STRING EFFECT" IN e+e ~3 JETS

The processes e+e ~qqg and e+e ~qqy have pro-
vided a classic example of QCD coherence efFects [7]. We
here review the phenomenon in qualitative terms from
our point of view. What we will compare is the particle
density emitted opposite to each of the jets. This can be
defined in a precise way, by specifying in all cases a refer-
ence frame in which the remaining two jets are collinear.

Start with the process e+e —+qqy and first estimate
the particle production opposite the y. The lego plot is
shown in Fig. 13, and the particle density is to be com-
puted at point A. Clearly, this is just d N/d q d P for an
ordinary e+e ~qq event.

It is more interesting to compute the density opposite
the q jet in the frame in which y and q are collinear. The
lego plot is shown in Fig. 14, and the plumbing is essen-
tially an "elbow" as far as hadron emission is concerned,
since we have just boosted the uniform two-jet distribu-
tion seen in Fig. 13 to a different Lorentz frame.

To estimate the density at the base of the "elbow, "
point B, it is convenient to boost to a fixed-target frame
of reference and remap the configuration in polar coordi-
nates (Fig. 15). The density at point 8 is just what one

(b)

(a)

FIG. 12. (a) Regions of phase space for which subleading
gluons may be emitted from the leading quark lines. (b) Region
of phase space from which subleading gluons can be radiated
from the virtual quarks produced by the y*.

FIG. 13. (a) Lego plot for the process e+e ~qqy in a refer-
ence frame in which the qq pair is collinear. (b) A plumber's
view of (a) ~
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FIG. 14. (a) Lego plot for e+e ~qqy in a reference frame
in which the yq pair is collinear. (b) A plumber s view of (a).

7 x 0.7 Lego unit
ferenoed to y-q axis

FIG. 17. (a) Color flow in the lego plot for the process
e+e ~qqg in a collinear qq frame. (b) Color flow in the lego
plot for the process e+e ~qqg in a collinear gq frame.

gets by extending the lego variables centered around the
q-jet core into the remainder of the phase space, since in
this frame there is just a collinear jet configuration with
axis in that direction. %hat now needs to be done is to
compare in the neighborhood of point 8 this measure
with the lego-plot measure centered about the y-q jet
axis. This is just the area of the shaded sector versus the
area of the crosshatched one. The ratio is about —,'.
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renced to q jet 0
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FIG. 15. Lego plot of Fig. 14 remapped into polar coordi-
nates after a large boost in the z direction. Jet Core
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FIG. 16. Color labels for the process e+e ~qqg.

Jet Core

FIG. 18. (a) Rapidity distribution of particles produced op-
posite the gluon jet in e e ~qqg, as seen in a collinear qq
reference frame. (b) Rapidity distribution of particles produced
opposite a q jet in e e ~qqg, as seen in a collinear gq refer-
ence frame.
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Hence we conclude that the particle density opposite the
q jet (in this collinear frame) is about 25% of the density
opposite the photon jet {in the qq collinear frame). In
passing we note that the density expected in the "forbid-
den" region of the lego plot, i.e., the region to the left of
the tangent CD in Fig. 14(a), is quite small since it corre-
sponds to the region interior te the circle CDE in Fig. 15,
which covers only 50% of a unit hghP as measured
from the q-jet axis. This qualitative result is made more
quantitative in the Appendix.

It is now straightforward to consider the process
e+e ~qqg. Given the color labeling shown in the
Feynman diagram in Fig. 16, we paint the surfaces of the
lego plumbing as shown in Fig. 17. Figure 17(a) is ap-
propriate to consider the particle density opposite the
gluon jet where we see [Fig. 18(a)] a net depletion of
-50% relative to the densities in the rest of the qq jets.
In Fig. 17(b},however, where the kinematics is appropri-
ate to the distribution opposite the q {or q} jet, we see an
enhancement of 25% relative to what is expected in the
quark jet. This is the "string e5ect," expected theoreti-
cally and seen experimentally.

cident initial-state gluons are usually specified to have a
definite longitudinal momentum pI =xpb„and a
"small, " usually unspecified, transverse momentum p, .
Once the p, is specified, say, 0.7 GeV within a factor of 2,
the initial-state rapidities of the incident gluons can be es-
timated within an uncertainty of order +0.7. %e mark
these regions of phase space as "hole-fragmentation" re-
gions, since in the collision those initial-state partons are
abruptly transported to some distant region of phase
space, thereby requiring some special final-state hadroni-
zation to occur in their original region of phase space
[10]~

The "color-dipole" rules of leading-logarithm pertur-
bative @CD may now be applied in a straightforward
way. The extended lego plot is shown in Fig. 20, with the
rules for coloring the surfaces shown. Then the process
of decoration of the phase space with softer jets, minijets,
and hadrons, as described in previous sections, may

(a)

IX. HADRON-HADRON COLLISIONS:
"HOLE FRAGMENTATION~

In hadron-hadron collisions there is always the pre-
ferred axis of the incident beams which provides the nat-
ural coordinate system for laying out the lego variables.
In general, the analysis parallels what we have already
discussed. Here we only mention one additional feature,
of importance because the initial-state partons responsi-
ble for the hard collisions carry color. Initial-state color
leads to initial-state gluon radiation, and it is appropriate
to describe its properties in the language we have intro-
duced. Suppose for definiteness the process is gg~ggg,
with color indices labeled as shown in Fig. 19. The in-

AE DE

g Jet

& A

(a)

(b) C

FKs. 19. (a) Feynman diagram and (b) a choice of color in-
dices for the process gg ~ggg.

FIG. 20. (a) Lego plot for gg —+ggg. The "hole" fragmenta-
tion regions mark the estimated rapidities of the initial-state
gluons. (b) Rules for "coloring" the lego plot for determining
emission of subleading gluons, in accordance with the choice of
color indices shown in Fig. 19(b).
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proceed as before.
In a high-p, binary gluon-gluon collision, there is pre-

dicted to be considerable extra multiplicity along the
beam-jet directions, extending out to—but not
beyond —the hole fragmentation regions. It would be in-
teresting to see how sharply this effect is seen experimen-
tally and whether it is sharp enough to distinguish
initial-state quarks from initial-state gluons.

The concepts of hole fragmentation also apply to
lepton-hadron collisions; the rules for color flow in this
case are similar and are left to the interested reader.

X. CONCLUSIONS

Of what use is all this? We believe that the variables
we have used are a practical tool for describing complex
event structures containing jets in terms of (fractal) exten-
sions of phase space and also that the definition ofjet that
is used is suf5ciently precise to be a very practical one.
The problem of distinguishing distinct jets which overlap
when viewed in the usual lego variables may be resolvable
using the flexibility in choosing coordinates, as described
in Sec. IV. The description appears to be eminently suit-
ed for visual computer displays of event structure, and we

hope that someone expert in software development might
pick this idea up.

Important here is our emphasis on individual particles
and not on transverse-momentum flow. There is a need
to display distributions of "entropy" (particle numbers)
as well as "energy" (transverse momenta); these are com-
plementary concepts. Also noteworthy is the need for
very good resolution in b,g and b,P of individual hadrons
(and photons) in order to delineate accurately the popula-
tions in the extended phase space.

This work was stimulated in large part [11] by con-
sideration of the physics associated with a full-acceptance
detector for SSC scale proton-proton collisions. A prime
goal of such a detector, or any other having broad rapidi-
ty acceptance, should be the perception and classification
of patterns or morphologies of individual events which
have considerable complexity. One's choice of coordi-
nates or descriptive elements is for such applications cru-
cial. We believe the choice made here has much virtue
and is worth pursuing.
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The four-momentum of the primary quark is
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and the four-momentum of a secondary hadron will be

l„-=zp„+(k,)„, (A3)
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In order that the hadron rapidity exceed the jet rapidity
by an amount R (the radius of the circle defining the jet
contents, R =0.7), we must have

Izp, I

("7hadron )jet)
zp, +k,
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expected to be on average no more than 1 GeV. The lon-
gitudinal momentum Ak is chosen such that I =0. What
we really need are the rapidities of a primary quark and a
secondary hadron, which are
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The condition in Eq. (A7) can only be satisfied if
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APPENDIX

Zp0= «1.
v's

(A 1)

Consider the process e+e ~qq, with the jets pro-
duced at a small angle 0 relative to the e+e collision
axis:

1 —e « 1+e
Izp, I

(A8)

and only then for a limited set of relative orientations.
For a given magnitude of k, and z, the geometry is shown
in Fig. 21. We see that the azimuthal angle P must be
less than a value $0, which, to reasonable approximation,
is given by the expression
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FIG. 21. Geometry for the calculation of leakage into the ra-

pidity gap.
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Here x =Ik, l/lp, l, and the integration only goes over
values of the variable for which the square root is posi-
tive. Since k, disappears from the estimate, we may aver-
age over all values of k, . Finally, in the limit of large R,
the formula simplifies with the substitution y =1+we
The result is, approximately,

dto(I —to )
~1 dN

7r der —1

For fixed Ik, l we may therefore estimate the "leakage"
hX to be

which is what was quoted in Eq. (4.3)
A more complete analysis is straightforward, but is

best done directly via Monte Carlo simulations.
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