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We have discussed the energy dependence of the parameters {n ) and K of the negative-binomial dis-
tributions for the full phase-space charged-particle multiplicity distributions in pp /pp collisions. It was
shown that, under the assumption that multiparticle production is a stationary branching process, there
exists a relation between the two parameters {n ) and K. A similar relation can also be derived empiri-
cally, from information-theoretic entropy considerations. The energy dependence of one parameter then
automatically determines the energy dependence of the other. It was then argued from entropy con-
siderations that there should be an upper bound for {n ) or conversely a lower bound for K as a function
of energy. New parametrizations for the energy dependence of K were given, taking into account that K.
should have a lower bound, which together with the relation between the parameters {n ) and K predicts
that the average number of particles cannot be increased indefinitely with increasing c.m. system energy.

PACS number(s): 13.85.Hd, 12.40.Ee

I. INTRODUCTION
In recent years the negative-binomial distributions
(NBD’s)

I'(n+K)
I'(n+1)I(K)

X[K/({n)+K)I¥, (1

P(n)= [{n)/({n)+K)]"

with two parameters {n) (average of the distribution)
and K (width of the distribution), are being widely used to
describe the multiplicity distributions (MD’s) of pro-
duced charged particles in full phase space as well as in
limited phase space, from a variety of collisions such as
hadronic [1], hadron-nucleus [2], nucleus-nucleus [3,4],
ete™ [5], etc. The energy dependence of the parameters
(n) and K for hadronic collisions has also been studied
by the UAS5 Collaboration [1] in the energy range 10—900
GeV. It was found that, while the parameter {(n) in-
creases, the parameter K decreases with the c.m. energy.
While the energy dependence of {n) can be understood
from general physical considerations, the same cannot be
said about the energy dependence of the parameter K.
The true theory of the multiparticle production process

should be QCD. At these high energies (several hundreds
of GeV), scattering of two nucleons proceeds via the
scattering between the constituents, namely, the quarks
and gluons. However, most of the particles emitted in
the process are soft particles, rendering the perturbative
approach inapplicable. Thus, presently, we cannot de-
scribe the multiparticle production process in terms of its
true theory, i.e., QCD. We can at best make some mod-
els to describe it. Various theoretical attempts have been
made to obtain a NBD law for hadronic collisions from
general principles, such as the stochastic model [6,7],
quantum-statistics model [8], cluster model [9-11], sto-
chastic branching model [12,13], and string model [14].
But we have not understood why the NBD works so well
for such a wide variety of reactions. More importantly,
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none of the models proposed until now can explain satis-
factorily what K represents or why it decreases with ener-
gy. However, it will be unrealistic to attach too much
importance to the fact that the NBD can describe multi-
plicity distributions from a variety of collisions. Being a
two-parameter ({n ) and K) distribution, the NBD can go
from a wide distribution (geometric or Bose-Einstein) for
K =1 to a narrow distribution (Poisson) for K = . It is
thus flexible enough to accommodate a wide variety of
distributions with changing (n ) and K.

In the present paper, we study the energy dependence
of the parameters of the NBD. It will be shown that the
energy dependence of K can be understood from a simple
model of stochastic branching process. We assume that
the multiparticle production process is a ‘‘stationary”
branching process. We also assume that the charged-
particle multiplicity distributions obey, strictly, the NBD
law, which is the result of the stationary branching pro-
cess. Then the two parameters (n ) and K of the NBD
are not independent; rather, they are connected by a sim-
ple relation. The energy dependence of one parameter
automatically determines the energy dependence of the
other. It will also be shown that empirically a similar re-
lation can be obtained from (information) entropy con-
siderations.

In Sec. II we shall describe briefly the stationary
branching process and obtain the relation between the
parameters {n ) and K. In Sec. III an empirical relation
between (n) and K will be obtained from entropy con-
siderations. It will be argued that the maximum-entropy
consideration constrains the average number {n ) to have
an upper bound, corresponding to maximum entropy. In
Sec. IV new parametric forms for the parameter K will be
considered and its consequences will be discussed. A
summary will be given in Sec. V.

II. STOCHASTIC BRANCHING PROCESS
AND RELATION BETWEEN (n ) AND K

If the random variable is discrete, like the multiplicity
of electrons in a cosmic-ray shower, and if the condition-
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al probability P(n,t,/n t,) is zero for n, less than n, at
any time t, greater than ¢, then we say that the process
involves only branching and no recombination. A
branching process need not be Markovian, but it must
have the property that the n particles at any given time
do not interact with each other; they can only create
more particles separately and independently. We define
the generating function for a branching process as

Fi(s,t)= 3 s"P(n,t|1,0), )

where P(n,t|l,0) is the conditional probability that,
given [ particles at time ¢ =0, there will be n particles at
time ¢ =¢. The central property of the branching process
can be expressed by the equation

Fi(s,t)=|F(s,0)|", 3)
where
F(s,t)=F(s,t)= 2s"P(n,t|1,0) .

Now, for a branching process with only one type of
particle produced and a continuous evolution parameter
t, the generating function (F) for the process satisfies the
reverse Kolmogorov differential equation

dF

i G(F,t) . 4)
The specific nature of the evolution parameter (¢) will not
be needed for our purpose. A stochastic evolution gen-
erally involves real time, which has no counterpart in
particle physics. Hwa [12] has discussed this aspect in
detail. We only say that it is possible to connect the evo-
lution parameter ¢ with energy in an indirect way.

For a stationary branching process, the reverse Kolmo-
gorov differential equation factorizes into an F-dependent
and a time-dependent part:

dF
dt S(F)g(e) . (5)

With this brief introduction of the branching process,
we now proceed to obtain a relation between the parame-
ters (n ) and K of the NBD for a charged-particle multi-
plicity distribution for pp /pp collisions. We assume that
the negative-binomial distribution law for multiplicity
distributions is the result of a stationary branching pro-
cess.

The generating function of the NBD is given by

F(x)=[1+(1—x)Xn)/K] X
=[1+(1—x)m]° X, (6)

where we have introduced a new parameter m =<{n ) /K.
From Eq. (6) we obtain
A ewr(/K) K pO—F R K m) e )
dt dt dt
Equation (7) satisfies the boundary conditions as re-
quired by a branching process, namely, G(F= 1,£)=0
and G(F,t)—0 as F—0. Chliapnikov and Tchikilev [13]
also obtained the same relation. They then demanded
that the right-hand side (RHS) of Eq. (7) factorizes into F
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and ¢ if
(1/K) 2K = constx (K /m) 9™ | ®)
dt dt
and solving (8) obtained the relation
1/K=a+bInm , 9)

where a and b are two constants to be determined. How-
ever, the factorization property of the stationary branch-
ing process is not satisfied until the term F /K is present
in Eq. (7). Indeed, putting Eq. (8) into (7), we obtain

ar _ _ _pl/k dam
it [const X FInF—F(1—F )](k/m)dt

=f(F,k(t))g(t)7f(F)g (1) . (10)

This clearly shows that relation (9) has no theoretical
basis. We also note that Chliapnikov and Tchikilev [13],
while fitting data, noticed that a quadratic term In’m is
required by the data. The relation is also not consistent
with the energy dependence of K as obtained by the UAS
Collaboration [1].

It is imperative that the term should be eliminat-
ed from Eq. (7) before the condition (5) of a stationary
branching process can be applied. One possible way to

FI/K

eliminate the term F!/X is to consider Eq. (7) near F=~1.
Then

(1-F'5=(1-F)/K , (11)
and Eq. (7) becomes

dF _ dK dm

i FInF(1/K) ar F(1—F)1/m) ar (12)

Equation (12) clearly factorizes into F- and t-dependent
terms when
(1/7K) %K — constx (1/m) 4™ . (13)
dt dt
Solving (13), the desired relation between the parame-
ters K and m of the NBD can be obtained:

K=A4m?% (14)

where A4 and B are the two constants to be determined.

We would like to add a few words about approxima-
tion (11), which is valid for F—1. Approximation (11) is
exact at F=1 and also for K =1. We note that as such
the generating function [F(x)] of a probability distribu-
tion gives no information about the measurable quanti-
ties; rather, its various-order differentiations in the limit
x —1 give measurable quantities. This in turn means
that the generating function near 1 determines the physi-
cally measurable quantities. Approximation (11) is very
accurate in the neighborhood of x =1 or F=1. Then,
since we are interested in obtaining a relation between the
parameters {n) and K of the NBD, which are deter-
mined in terms of the first and second derivatives of the
generating function, relation (14) will necessarily be a
good one. As will be evident later, experimental data also
suggest a relation such as (14).

In Fig. 1 we present the experimental K and m as ob-
tained by the UAS5 Collaboration [1] by fitting pp /pp
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FIG. 1. NBD parameters K and m=(n ) /K in the energy
range 10-900 GeV for pp /pp charged-particle multiplicity dis-
tribution as obtained by the UAS5 Collaboration. The solid line
is a fit with Eq. (14).

multiplicity data over the energy range 10-900 GeV.
The experimental values of {n ) and K were taken from a
compilation by Gupta and Sarma [15]. The data are well
fitted with Eq. (14) with 4=10.52+0.15 and
B=—0.516+0.009. The experimental data then confirm
the existence of such a relation. Equation (14) can be
rewritten to bring out in an absolutely transparent way
the relation between {7 ) and K:

(n)=95.37/K%%6 (15)

Unlike the relation obtained by Chliapnikov and
Tchikilev [13], this relation is consistent with the ob-
served energy dependence of {n) and K. As the energy
increases, {n) increases (more particles are produced
with more energy), and the parameter K then decreases.

III. ENTROPY
AND RELATION BETWEEN (n ) AND X

It has been recently observed that the experimental
multiplicity distributions in a hadronic interaction obey a

5
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¢
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FIG. 2. Entropy of pp /pp charged-particle multiplicity dis-
tributions as a function of c.m.s. energy (V's). The solid line is a
fit with Eq. (17).
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new kind of scaling law [16,17]. The scaling variable in-
volved is the entropy or more exactly the information-
theoretic entropy defined as

=— 3 P,InP, . (16)

In Fig. 2 we show the calculated entropy for the
charged-particle multiplicity in pp /pp collisions in the
energy range 10-900 GeV. They were calculated by tak-
ing the NBD law for the multiplicity distributions with
the parameters (7 ) and K as obtained by the UA5 Colla-
boration [1,15]. As observed earlier [16], the entropy
is a smooth function of the c.m. energy (V's), the func-
tional form of which can be conveniently parametrized as

W=a+BInVs , 17

with a=1.378+0.031 and $=0.43310.008. In Fig. 2 we
show the parametrization (17) for the entropy against the
experimental values. The parametrization (17) agrees
very well with experiment. We note that the observed en-
ergy dependence of (information) entropy is expected
from physical considerations also. Entropy, as defined in
Eq. (16), is the average of the self-information. With in-
creasing energy we expect to generate more information;
consequently, entropy will also increase with energy.

For hadronic collisions the parameters {n ) and K of
the NBD are a smooth function of the c.m. energy. It is
then expected that the entropy will also be a smooth
function of the parameters {7 ) and K. In Figs. 3 and 4,
we show the calculated entropy as a function of {n ) and
K, respectively. It is observed that while entropy is a
smoothly increasing function of (n), it decreases
smoothly with K. The {n ) dependence of entropy can be
parametrized as

W=a(n)?, (18)

with @ =1.30+0.01 and b=0.03401+0.004. This behav-
ior of entropy with the average of the multiplicity is also
expected. Again, the information content of the system
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FIG. 3. Entropy as a function of the average of charged-
particle multiplicity distributions. The solid line is a fit with Eq.
(18).
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FIG. 4. Entropy as a function of the NBD parameter K. The
solid line is a fit with Eq. (19).

with a greater number of particles is expected to be more.
The dependence of the entropy on the parameter K can
also be parametrized as

W=AK? (19)

with 4 =5.89%0.22 and B=—0.297+0.016. In Figs. 3
and 4, we show the parametrizations (18) and (19) against
the experimental values. We observe that the simple
forms (18) and (19) agree very well with the calculated
values.

The relations (18) and (19) can be equated to obtain an
empirical relation between {n ) and K, which is given by

(n)=85.15/K°%6 (20)

Relation (20) is very similar to the relation between the
parameters {n ) and K (Eq. (15)] obtained from the con-
sideration that multiparticle production is a stationary
branching process. Thus, empirically also, a relation ex-
ists between the parameters {n) and K of the NBD for
charged-particle multiplicity distributions in pp /pp col-
lisions. Relations (15) and (20) give very much similar re-
sults, as can be seen from Fig. 5, where we show the ex-
perimental (n ) as a function of experimental K, along
with the prediction from (15) and (20). Both relations
gave a good description of the data. We rewrite Egs. (15)
and (20) as a single equation showing the relationship be-
tween the parameters {(n) and K of the NBD, for
charged-particle multiplicity:

(n)=a/K"?, 1)

with «=90.26x5.11 and B=0.905+0.029.

The entropy defined in Eq. (16) can be written in a
different fashion, introducing the Koba-Nielsen-Olesen
(KNO) function ¥(z)={n)P,, z=n/{n). The concept
of the KNO function is useful in the regime where the
KNO scaling law holds [18]. The KNO function then
does not change with energy. However, we now know
that the KNO scaling law does not hold; the approximate
scaling observed in low-energy pp /pp collisions were ac-

FIG. 5. Experimental average charged-particle multiplicity
(n) as a function of the NBD parameter K. The solid line is a
fit to it with Eq. (15); the dotted line is a fit with Eq. (20).

cidental [1]. Using the KNO function 1(z), the entropy
in Eq. (16) can be written as

W=In(n)— [ ¢(2)ing(2)dz , (22)
with
[¥@)dz= [ z(2)dz=1

as the normalizing conditions.

Equation (22) can be maximized to obtain the KNO
function for which entropy will be maximum. It can be
seen that for the exponential KNO function
Y(z)=exp(—2z), the entropy is maximized. Thus, as the
c.m. system (c.m.s.) energy for pp /pp collisions increases,
entropy increases, until the condition of maximum entro-
py is reached (exponential KNO function). A further in-
crease in energy will not increase entropy; i.e., it will sat-
urate. As evident from Fig. 2, presently available data
are not sufficient to confirm this prediction. However,
from general theoretical considerations, we can argue
that entropy should saturate with energy. With increas-
ing energy the system under consideration is probed with
higher and higher resolution. Consequently, the system
reveals more and more information as we probe it with
higher and higher energy. However, once the limit where
the system has revealed all its information content is
reached, probing with finer resolution does not produce
additional information. Then, from (22), under the con-
dition of maximum entropy (W™®*), we obtain for the
average charged-particle multiplicity an upper bound
given by

(n)m*=exp(W™*—1) . (23)

Thus, with increasing energy, the average number of
charged particles will increase until they reach a max-
imum value corresponding to the exponential KNO dis-
tribution. In other words, even by increasing the energy
indefinitely, the charged-particle multiplicity cannot be
increased indefinitely. As mentioned earlier, the present-



45 ENERGY DEPENDENCE OF PARAMETERS OF NEGATIVE-. ..

ly available data cannot confirm this prediction. We also
note that in view of the relation between {n ) and K [Eq.
(21)], if there is an upper bound on {n ), there will also be
a lower bound on K. Now the KNO function for the
NBD for {7 ) >>K is given by the gamma distribution

Y(z)=KXzX ~lexp(—Kz)/T(K) , (24)

which reduces to the exponential distribution for K =1.
Thus the desired lower bound for K corresponding to
maximum entropy is 1. We expect K to saturate at unity.
Then, in view of Eq. (21), the maximum value for
(n)=90.

IV. ENERGY DEPENDENCE OF {n ) AND K

We have seen in the previous sections that the parame-
ters {n ) and K of the NBD for pp /pp collisions are not
independent parameters; rather, they are connected by a
simple relation given by Eq. (21). Thus the energy depen-
dence of one of them automatically determines the energy
dependence of the other. We have also argued that the
parameter {n ) should have an upper bound and the pa-
rameter K should have a lower bound, as a function of
energy. We also expect that minimum value of K is uni-
ty.
The UAS5 Collaboration [1] has studied the energy
dependence of (n) and K. The following parametric
form for (n ) was given by them:

(n)=a+blns+cln’s , (25)

where a=2.7%£0.7, b=—0.03+0.21, and ¢=0.167
10.016. An alternate parametrization was also given for

(n)[1]:
(n)=a+Bs?, (26)

where a=—7.0%1.3, B=7.24+1.0, and y =0.127%0.009.

Both the parametrizations, [Eqs. (25) and (26)] are in
good agreement with the experimental data. The energy
dependence of K was parametrized as [1]

1/K=a+blnVs , 27)

with @ = —0.104+0.004 and b =0.058+0.001.

The parametrizations of {n ) or K as given by the UAS
Collaboration [1] do not include the constraint imposed
on {n) or K from entropy considerations that {n)
should have an upper bound and that K should have a
lower bound. Furthermore, the UAS parametrization for
K has a serious defect, that for energies below 10 GeV it
gives negative values for K, which is unphysical in any
model of multiparticle production. Thus the parametriz-
ation is unsuitable for extrapolation to energies below 10
GeV. In the following we shall consider two simple pa-
rametrizations of K and use them to find the energy
dependence of (n ).

First, we consider the following simple form to
represent the energy dependence of K:

1/K=AVs® for 0<V’s <V 'sp,, »
=1 for Vs >V s, (28)
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where we have assumed that the parameter K is bounded
between the two limiting values 1 and « corresponding
to the two limiting distributions of the NBD: namely,
the geometric or Bose-Einstein distribution (K =1) and
the Poisson distribution (K = «). The parameters 4 and
B were obtained by fitting experimental K values in the
energy range 10-900 GeV. The best fitted values are
A=0.02410.001 and B =0.385+0.015. Then, around
16 TeV, the asymptotic condition K =1 is reached. In
Fig. 6 we show the parametrization (28) labeled as a,
against the experimental points. Also shown are the pa-
rametrization of the UAS Collaboration [Eq. (27)] (la-
beled as c¢). Both of them give similar fit to data.

In parametric form (28), the minimum value K =1 was
imposed by hand. To see whether the available data give
any indication of the minimum value of K, we now con-
sider the form

K=a(14B/Vs?"), (29)

The form (29) gives a as the minimum of K as the ener-
gy tends to infinity. In Fig. 6 the parametrization (29) is
shown (labeled as b) for the best-fitted values
a=1.891+0.70, B=32.36+3.83, and y=0.565+0.115.
Parametrization (29) also describes the energy depen-
dence of K very well. We note that the parametrization
(27) of the UAS Collaboration [1] and the present param-
etrization (29) yield very similar results when extrapolat-
ed to higher energies. Parametrization (28), on the other
hand, yields a different result: 1/K increasing very fast.
For the parametrization (29), around 16 TeV again, K
starts to saturate. Thus both the parametrizations (28)
and (29) indicate that around energies of the CERN
Large Hadron Collider (LHC) (16 TeV) the asymptotic
condition will be reached. However, in contrast with the
parametrization (28), where unity was taken as the
minimum value for K, parametrization (29) gives
K. in=1.89 as the asymptotic value. Thus, in this pa-
rametrization, the entropy will never be maximum.
However, if we consider the fact that with increasing en-

1.00

0.75+
4
N\ 0.50+4

0.25+

0.00 t
1 10

1C=)O 10=OO 1E4
Vs (GeV)

FIG. 6. Experimental NBD parameter K as a function of
c.m. energy. The curves labeled as a, b, and ¢ correspond to the
parametric from Egs. (28), (29), and (27), respectively.



4062

100

75+

50 1

(n)

25+

0 } } } }
1 10 100 1000 1E4

Vs (GeV)

FIG. 7. Experimental NBD parameter {(n ) as a function of
c.m. energy. The curves labeled as a, b, and ¢ are obtained from
Eq. (21) with the parametric form of K given by Egs. (28), (29),
and (27), respectively.

ergy leading particles produce more and more particles,
then the minimum value K ; ~1.89 has the added
significance of representing two particle-producing
sources. Indeed, with increasing energy, the large-xp
quarks will fly through the other hadron, carrying a
significant fraction of momenta [19]. The small relative
momenta among these quarks enable them to cocoon
themselves with gluons to form the two leading systems
(possibly) with quantum numbers the same as the in-
cident hadron. The leading systems will be excited also
(transverse momentum transfer increasing with energy)
and can radiate pions sequentially. Then, in a simple
model, the multiplicity distribution of produced particles
from the two leading systems will be the NBD with the
parameter K =2, corresponding to two sources. The
value of K =1.89 obtained from fitting is very close to 2
[indeed the available data can be fitted well with Eq. (29)
with a=2].

Relation (21) between the parameters (n ) and K can
now be used to obtain the energy dependence of {n ). In
Fig. 7 we show the average number (n) as calculated
from Eq. (21) using the parametric form of K as given by
Egs. (28), (29), and (27), labeled as a, b, and c, respective-
ly. The energy dependence of {n) is correctly repro-
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duced by all the three forms of K (except for the UAS pa-
rametrization, the (n ) value at 900 GeV is underestimat-
ed by few percent). While the parametric forms (28) and
(29) indicate saturation at {n ) ~90 and 45, respectively,
around LHC energies form (27) shows no such indication.

V. SUMMARY AND CONCLUSION

We have obtained a relation between the two parame-
ters {(n ) and K of the negative-binomial distribution as-
suming that the multiparticle production process is a sto-
chastic stationary branching process. The full phase-
space multiplicity data for pp /pp collisions in the energy
range 10-900 GeV confirm the relation. Unlike the ear-
lier relation (which we have shown to have no theoretical
basis), it is consistent with the energy dependence of {n )
and K as observed by the UAS Collaboration [1]. It was
seen that empirically also a similar relation can be de-
rived from the information-theoretic entropy considera-
tions. The relation between (n) and K enables one to
consider the energy dependence of either one of the two
parameters, the energy dependence of the other being au-
tomatically fixed from the relation. It was shown that
from maximum-entropy considerations one can obtain an
upper bound on the average of the charged-particle mul-
tiplicity or, conversely, a lower bound on K. It thus
seems that the number of particles cannot be increased
indefinitely with energy. It will be interesting to see in fu-
ture experiments at LHC energy whether or not data
show such saturation, as it will indicate the limitation of
the NBD model and its entropy interpretation. We have
also given two simple parametrizations for the parameter
K incorporating a lower bound on it. One is with the as-
sumption that K should be bounded between the two lim-
its 1 and o, the two limiting distributions, Bose-Einstein
and Poisson, of the NBD and should be a decreasing
function of the c.m.s. energy. In the other parametric
form, we tried to obtain the minimum value of K from
existing data. Both forms give a good description of the
data and indicate that around 16 TeV (LHC energies) the
asymptotic condition will be reached. An extrapolation
of the different parametric forms for K at higher energies
indicates that around LHC energies we shall be able to
distinguish between different kinds of parametrizations.
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