
PHYSICAL REVIEW D VOLUME 45, NUMBER 11 1 JUNE 1992

Power spectrum of hadronic multiparticle rapidity distributions
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We discuss issues that arise in studying the power spectrum of rapidity histograms. These questions
exist because the correlation functions are typically nontranslation invariant and confined to a finite
kinematical interval. It is noted that the event density p referred and normalized to the average single-
particle density p&, leads to (normalized) factorial cumulant bin moments dependent only on the k pa-
rameter appearing in the special case of the negative-binomial distribution. An averaged two-particle
correlation function is proposed to implement the purpose of the usual Wiener-Khinchin theorem. We
then generalize the bin-averaged factorial-moment technique and strip-domain moment approaches to
encompass power-spectra methods. The latter connect naturally to the correlation dimensions of fractal
sets and evade the problems of nonstationarity at the price of increased computational complexity. Nu-
merical examples of chaotic time series are used to generate data. Their power spectra possess distinct
properties in Gaussian and intermittent dynamics. Event averaging smooths out the power spectrum of
the Gaussian dynamics, whereas the nontrivial dynamical fluctuations survive the same averaging. We
argue that statistically independent events can be generated by uniformly reshufHing the rapidity histo-
grams only if fluctuations themselves are dominantly statistical. In the presence of strongly intermittent
dynamical fluctuations, correlations may exist between different events when the event points are gen-
erated by a deterministic map. In the Appendix we give the recipe for generalizing the Wiener-Khinchin
theorem to calculate the power spectrum of higher-order correlations.

PACS number(s): 13.85.Hd, 05.45.+b, 12.40.Ee

I. INTRODUCTION

Event histograms of multiparticle spectra in momen-
tum space are highly irregular. In order to analyze the
hidden patterns in a large collection of events one usually
employs number density correlation functions and cumu-
lant correlations, the latter defined to remove background
correlations of lower order [1—3]. Given the hierarchy of
density correlations it is possible to give various descrip-
tions of the texture of a characteristic dynamics. Observ-
ables are defined in terms of the moments and cumulants
of particle number. These moments and cumulants are
integrated versions of the density correlations in proper
domains of the rapidity space. Integration over a tube, or
"strip, " leads to correlation integrals [4,5] and to factori-
al moments [6,7] that can lead for high resolution to a
scaling behavior corresponding to fractal structures
[8—10]. In fact these methods are closely related [11].

The classic analysis of the irregularities of a signal is
through the use of Fourier transform. The textbook case
involves a "stationary" (time-translation-invariant) signal
x (t) defined in a time interval much longer than the larg-
est correlation length present in x (t). Subtracting away
the background constant (x (t) ) we can inspect the
Fourier transform x(co} for peaks corresponding to, for
example, weak harmonic components buried in a noisy
background. More important for our purposes is the
Wiener-Khinchin theorem [12] which allows the con-
struction of the (auto)correlation function from the
"power spectrum" ~x(co) ~:

I (&)=(x(&)x(t+&)}=f 27T

Here the angular brackets indicate an ensemble average
over representative configurations or a suitably long (i.e.,
rather longer than the largest correlation time} time aver-
age.

In order to apply the power-spectrum approach to ha-
dronic data we must overcome two difficulties: not only
is the single-particle density kinematically confined to a
finite volume in phase space, but the density as well as the
two-particle correlation function violate translation in-
variance at most energies of current interest. Perhaps be-
cause of this, the only published work known to us apply-
ing power-spectrum methods to multihadron final states
is that of Takagi [13]. As is common in this field, we
suppress the transverse momentum of the final-state par-
ticles and describe the event by a collection of one-
dimensional rapidity variables [14]y&,y , .2. . ,y„.

Consider the single-particle spectrum p. For the ideal
resolution it is a sum of delta functions

p(y, s)= g 5(y —s, ) . (1.2)

p, (y) = (p&(y) }
n

—:gp, n f g ds. Q„(s&,sz, . . . , s„)p(y, s), (1.3)

where Q„ is the joint probability to find n particles at
s, , . . . , s„and p„ is the probability to find the system

For the finite resolution (1.2) is represented as a histo-
gram, to be compared with the ensemble average p, (y).
Using standard probability theory, p, (y) can be written in
the form [2]
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with n particles. Figure 1 illustrates the typical appear-
ance of an event histogram as compared with the
smoothed p, (y}. The first problem is to determine how to
compare the fluctuating histograms with the smooth
background. In Ref. [13] the power spectrum of p

—p,
was studied. However, in many cases we recommend us-
ing instead the normalized density

particle multiplicity fluctuations; thus the effects of fixed
multiplicity fiuctuations are sometimes negligible [2].

II. RAPIDITY POWER SPECTRUM
AND TWO-PARTICLE CORRELATIONS

The idealized two-particle correlation operator analo-
gous to Eq. (1.2) is

p(y) —pi(y)
&(y) =

p, (y)
(1.4) Pz(yi Vz s)= X 5(yi —~;}5(yz sj)

f+J
(2.1)

As explained in Sec. II, the fluctuations as measured by
normalized factorial cumulant moments of all orders be-
come independent of bin location using Eq. (1.4); there-
fore the central region relative fluctuations are the same
as for the ends, to the extent that the negative-binomial
parameter k is independent of the bin location. We later
define quasistationary distributions as the weak limit of
nonstationary distributions. Then the manifestation of
this limit of the quasistationary in terms of the hierarchy
of correlation lengths is discussed. If such conditions are
met, it is possible to replace the exact correlation func-
tions by the ones that are averaged over the c.m. variable.
In Sec. III we change the phase-space-integration domain
of correlation function to correspond to both bin averag-
ing (leading usually to factorial inoments) and strip
averaging (leading to pair counting). By injecting Fourier
generalizations in these formulations we obtain a new
probe of the correlation function structure. Since it has
turned out that the measured moments are not especially
sensitive to the details of the correlation function [4], this
approach may be of practical utility, expressing the
essence of the Wiener-Khinchin theorem in a form close-
ly related to current data analysis. In Sec. IV we simulate
"data" using chaotic maps, considering the associated
power spectra. Following a general discussion and sum-
mary in Sec. V, the extension of the Wiener-Khinchin
theorem to higher-order correlations is discussed in the
Appendix. It is also shown that correlations with fluc-
tuating multiplicity are mainly dominated by the single-

where the restriction i' is appropriate for a population
of identical particles. The density-density correlation
function pz(y„yz) is constructed exactly as in (1.3). We
also use the cumulant correlation function Cz(y„yz)
defined by

Cz(3 i 3 z ) =Pz(3 i 3 2 ) P\(V i )Pl(3 2 )

and its normalized counterpart

Pz(V 1 3 2 } P 1(3 1 )P l(3 2

p,(,),(

(2.2)

(2.3)

Clearly the nonvanishing of C2 implies the existence of
true correlations. The systematic procedure for carrying
this out to all orders of correlation is summarized in Ref.
[2]. We see directly from Eqs. (1.3), (1.4), and (2.3) the
identity

(:&(yi P(yz ):) =—&z(y i,yz ), (2.4)

, Jn dy i f„dyz ~z(yi Vz }

where the colon indicates exclusion of overlapping parti-
cle indices in the product; this operation has the same
effect as normal ordering for second-quantized number
operators.

We now integrate y, and y2 over identical bins 0, of
width 5y, the latter being sufficiently small that pi is con-
stant over the bin. Then from (2.1) and (2.3) we find

30 & i i i
I

t i r i

I

i » i

I

i i i r

(n;(n; —1))—(n; )
(2.5)

For Poissonian bin statistics (2.5) vanishes (no correla-
tion); for negative binomials (NB s), the right-hand side is
1/k(5y), where k is the parameter entering the NB's

20—
P„= (n +k —1)! (n /k)"

n'(k —1)' (1+n/k)"+" (2.6)

10—

It

FIG. 1. A typical event histogram p(y ).
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The 5y and c.m. energy &s dependence of k is by now
well known [15,16]. The point here is that at collider en-
ergies it is independent of the chosen bin I,. In pth order
the analogous result is f n dy i, . . . , dy~&~ /
(5y)i'=(p —I)!/ki' ', also independent of i Therefo. re,
the reduced cumulants, of which (2.3) is the simplest non-
trivial example, treat all bin fluctuations on an equal basis
for Poissonian statistics (trivial) and negative binomials
(nontrivial}.

Now expand p(y) in a Fourier series for the full rapidi-
ty interval —Y&y ~ Y:
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p(y, s) = g pq(s)e''~,1

q

p~(s) =f dy p(y)e '~~= g e—Y
J

(2.7)

p, (y) ~ exp( —y'/o'), (2.12)

al invariance in the full rapidity range. However, in most
cases the one-particle rapidity distribution can be fitted to
a Gaussian,

In the case of translation invariance and Y sufficiently
large, one passes to coordinates rl = (y, +y2 ) /2 and
g=yz —y„obtaining the inverse of Eq. (1.1).

Although R2 is in general not translation invariant it is
useful to consider its dependence on q and g (Fig. 2).
Lines of fixed g and g are rotated 45' with respect to y,
and y2. In order to illustrate this point we replace p2 by
the uncorrelated form p, (y & )p, (yz ), defining

Y Yh(g)= f dy, f dy, p, (y, )p, (y, )

3'
&
+3'2x5 q—
2

(2.10)

Essentially b, (q) is the density of points y, and yz for a
fixed c.m. value g. For the simplest case of constant den-
sity, p&(y) =1/2Y,

(2.11)

describing the most desirable case of manifest translation-

Except for normalizations and a factor of —1, the same
relations hold for r. We can imagine P(y) to be periodic
with period 2 Y; the allowed q values are ~n /Y, n ranging
over —oo & n & ~. Now define the power spectrum
P q, Y) averaged over the full rapidity interval:

f'(q, Y)=(:~rq(s)~':) (2

1 Y Y iq(yl —
y&)I (q, Y) = dy, f dy2 R2(y„y2)e2Y

(2.9)

in which case h(r) ) becomes

b, (rI)~ f deaf dR exp( g /—2o. 2R—/o )

4o
(1—e r" )exp( —2rl'/o')

4 Y2

~ —exp( —2g /o ) for o ))Y2

Y
(2.13)

I (g, Y) =f dgR ( Y, g)e (2. 15)

(2.16)

R2 has a g dependence through the finite integration
domain as well as the intrinsic g dependence of R z. Only
if the correlation length g is substantially less than Y does
this really improve the situation. For example, we need,
for overall translational invariance, 0. « Y and for the
factorization of variables in Eq. (2.16) Y«g, g«o.
These conditions give g« Y«o which yields, in Eq.
(2.14),

which is a very small variation since g Y. A simple fit
to data is a double Gaussian, uncorrelated in ri and g:

R~(y„y2) =exp[ —(y, +y2) /o —(y, —y2)2/g j . (2.14)

Empirically R2 is small when g) ~g~, although r) depen-
dence remains. Schematic contours of this function ap-
pear in Fig. 3. Consulting Fig. 2 we write

FIG. 2. The integration domain in the c.m. and relative vari-
ables is shown. FIG. 3. Contour map of the R, (y l,y2) in Eq. (2.10).



45 POWER SPECTRUM OF HADRONIC MULTIPARTICLE. . .

R~( Y, g) =f R2(ri, g),
(2.17)

I (q, Y')= f dgR2(Y, ()e
In the example of (2.14} the effect of nonstationary only
shows up as a multiplicative constant. The contour plot
of Fig. 3 now becomes a narrow mountain of small width
2g.

Most experimental data are presented not as contour
plots such as Fig. 3, but as plots of y2 for fixed y&. This
corresponds to a vertical cut in Fig. 3, thereby inducing
asymmetries not present when g and g are used. The ex-
ample (2.14} shows that Rz may simply factor when ex-
pressed in these variables, i.e., the dependence on g is
multiplied by an envelope function depending on g. In
many cases of interest. we do not need strict inequalities
(such as g(( Y) nor can we expect them. The best pro-
cedure is to inspect the correlation data numerically to
see whether Eq. (2.13) is a decent approximation. To be
sure, Eq. (2.9) is exact, but its physical interpretation is a
bit obscure. We also note that since I (q, Y) depends only
on one variable q, we cannot express Rz(y„y2) in terms

I

of it by an inverse Fourier transform, thereby losing the
essence of the Wiener-Khinchin theorem. It is not clear
that there is any merit in considering such objects as
('P~"r q. & whose precise knowledge would allow a double-
Fourier inversion in principle, but probably not in prac-
tice.

The following argument is frequently used to motivate
the equivalence of ensemble and time averages for corre-
lation functions. From a long time signal one cuts pieces
of length 2T such that there are many samples of this
length, which comprise the members of the equivalent en-
semble. We could imagine constructing a long pseudo-
stationary rapidity signal by adjoining independent t(y)
measurements of length 2Y (see Fig. 4). Clearly this will
not allow correlations between Y —e and Y+e, for ex-
ample, . In fact the ability to ignore correlations between
adjacent time intervals 2T is necessary for the validity of
the argument of the equivalence of ensemble and time
series (e.g., ergodic limit). However, using the pseudosta-
tionary signal 9, of Fig. 4 alleviates integration domain
problems as shown in Fig. 2. For this process the
modified power spectrum is

I (q)= lim
p~ 00

&:Ir,.(q, s) I': & . l,r, r=lim y& dy2 .1p, y& $
p y2$:

2pY p ~ oo 2p Y —p Y —p Y
(2.18)

In Fig. 2 the point marked A describes y& =5y+e in the
second bin, close to the point y2=5y —e in the funda-
mental bin. We expect such correlations to be small in a
large ensemble. In this way a quasistationary rapidity
signal is constructed. By choosing random assignments
of separate event traces in sequential intervals one can
test the validity of this hypothesis.

As is clear from (2.17), the class of quasistationary
correlations shares the simplicity of truly stationary pro-
cesses. In particular we can compute the correlation
function R2(g) from the experimentally determined I (q),
i.e., from Eq. (2.8).

Prototypical examples are given in Table I (p ~~ ).

III. GENERALIZATION TO SUBSPACES:
FOURIER INTERMITTENCY ANALYSIS

choice are possible and even desirable. For instance, one
can choose 2Y to be a smaller interval over which rapidi-
ty density is essentially stationary. For this to be useful
2g must be less than 2 Y, if we are to attempt a calculation
of the correlation function from the power spectrum.
From the discussion at the end of the Appendix, we ob-
serve that for broad mixed-multiplicity distributions, all
the effects under discussion may be dominated by single-
particle density "fluctuations" [see Eqs. (A7) and (A8)]
and possibly be of little intrinsic interest.

In the bin-averaging technique of Bialas and Peschan-
ski [6], one subdivides the interval 2Y into M equal bins
of width 5y =2 Y/M. Integration of the two-particle den-
sity correlations over bin i gives (p; is the average density
in bin i)

For clarity the analysis of Sec. II was done for the full
rapidity interval —Y&y & Y. Clearly variants of this

y
P2(3 1 P2 )4 14 2

(5y )' " (p;)'
(n;(n; —1) &

(n, &'
(3.1)

3'ff 2p 2'fg 3p 4y

FIG. 4. Construction of a event ensemble from a long time series.
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TABLE I. Various time signals and their power spectra.

2.
3.
4.
5.

Time signal

White noise
Periodic
Exponential
Scaling
Chaotic

r(q)

Constant
5q, q I +6q, —q,

( 2+ (2)—1

q', 0(d &1
Special analysis

(3.2)

In Fig. 2 the hatched squares correspond to the integra-
tion domains of individual bins. In practice one increases
M as much as possible in order to test the 5y dependence
of F . It is also useful to define bin-averaged factorial cu-
mulants E in terms of the cumulant correlation func-
tions, as discussed in Ref. [18], since the new correlation
information expressed in successive order is contained in
the highest cumulant.

We can now write a "bin-averaged" power spectrum as

where Q; denotes an integration domain where y „y2 run
over the same interval of length 5y. [Equation (3.1) can
be compared with Eq. (2.5), which gives the correspond-
ing result for the second-order cumulant. ] Bin averaging
now gives, in pth order,

N ( )1 ~ 1 I y
pp yi yp

but as a different construction of equal merit. Note that
since pz just counts points, the strip integral gives [see Eq.
(2.1)]

dye dy2 p2(y 1 y 2', s) =g @5y /2 —ls; —s, I )
strip i' (3.5)

where 0 is unity for positive arguments and zero other-
wise. The strip integration has the same area as the unro-
tated rectangular counterpart. Note that (3.5) simply
counts the number of pairs of points in the strip whose
separation is less than 5y. Note further that we did not
use an ensemble average, or say anything about transla-
tional invariance. This formula has been much used to
study fractals generated by time series of maps in chaotic
domains [20,21].

Before analyzing (3.5) further we give a simple exam-
ple, averaging uniformly over the g direction for the c.m.
variables (s;+sj)/2. Dividing the integrand in (3.5) by
M5y p f we define the analogies of F2 given in Eq. (3.2)
and F2(q, 5y ) similar to Eq. (3.4):

F~(5y )
—= J d g

pq( )

5y —5y/2 p &

( )e

5y —5y/2 p &

(3.6)

In order to illustrate the effect of introducing the Fourier
transform generalization we carry out an analytic evalua-
tion using a standard exponential fit to the cumulant R 2.

M(5 )2 0 Q.
(
—)2)

X
&e[yXe

F( 5)= d d
M (, )

M(5 )

p2(g) —l=yexp( —lglg) .
pi

(3 3) Equations (3.6) now give

F (x)=1+ (1—e "),
x

(3.7)

q[y, —y, ]Xe (3.4)
~ 1 —e '(cosxy —y sinxy)]

7 (3.8)

for the reduced cumulant Rz=C2/(pz) and reduced
density r2 =p2(y„y2) l(p, ) . (The advantages of the local
normalization to p& for the bin analysis was explained in
Ref. [18].)

If M becomes large the fraction of the joint phase space
—Y&y„y2 & Y used in the integrations (3.2)—(3.4) is
1 lM. If q5y « 1, Eqs. (3.3) and (3.4) reduce to the usual
moments [see Eq. (3.2)]. Hence we need Fourier
coefficients of wave vector q having harmonic number n

satisfying n ~M/~ to see an effect. For example, if
M =20, the first six harmonics do not cause the genera1-
ized moments to deviate from F(0,5y). One then has to
look at higher-frequency componets as 5y ~0 for Auctua-
tions. Hence the practical utility of (3.3) and (3.4) may be
doubted.

For large M, the bin integration domain is well approx-
imated by the strip (see Fig. 2). For translation-invariant
correlations this greatly simplifies back-of-the-envelope
calculations. Alternatively we can define a different type
of moment which is exact in the strip domain. This is not
to be regarded as an approximation to the bin moments,

5yx=, y =qg.2g'

By fitting F2(5y) to existing NA22 data we found y =0.4,
g= l. 35 to give a good description of experimental results
[4]

It is easy to confirm that as x ~0 both expressions in

Eq. (3.8) tend to limit

F2(x)-F, (x,y)-y+1, x~0.
For large x, we find

(3.9)

F2(x,y) 1—
1 x~00

1+y
(3.10)

Clearly the most interesting feature of the Fourier gen-
eralization is the modification —with possible
oscillations —of the usual moment. The decisive scale
here is the correlation "length" g, in terms of which

5y( ~x) and q ( ~y) are measured. Figure 5 shows the
behavior of IC2(x,y) (defined to be [Fz(x,y) —1]/y as in

(3.10)) for various values of y =qg. The oscillations in-
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0.8—

F {x,y}-1

Fa (x,O)-1

0.6—

0.4—

0.2

0
0 0.5 1.0 1.5 2.0 2.5

FIG. 5. The ratio [F2(xy) —I]/[Fz(x, O) —1]of cumulant type moments is shown as a function ofx for y =q, (=1,2, and 3. The
oscillations increases with increasing y and decreasing x but are damped by the combination g, the exponential, and the (1+y )

demoninator of Eq. (3.8).

duced into the factorial moments by the Fourier probe
clearly provide much greater detail about the correlation
function than can be obtained from the usual moments.
Although the principal recent interest has been for small
bin width, this method is most accessible for larger bin
width, since it is easier to assess real data for the larger 5y
values. We notice that, in principle, it is possible to con-
struct the correlation function p2(g) from F2(q, 5y) by in-
verse Fourier transform, an act not possible in the usual
bin-averaged factorial moment approach.

We now turn to Eq. (3.5). The simplest way to prove
the result is to change variables y,y2~rl, g and analo-
gously for the pairs s;,si. Equation (2.1) can be written as

i'
s;+$J

5(g—(si —s;)) . (3.11)

The strip integration gives unity for each pair whose sep-
aration is less than 5y and whose c.m. lies in the length
(2D of the strip. This is also the content of Eq. (2.5).
Note that if we assume factorization of the pair probabili-
ties

SI. +SJ
P(s;,si) =P P(s; —si ), (3.12)

the ensemble average reduces to

f p2(g, g)drldg= g (8(5y/2 —
~si

—s,. ~)).
strip l~J

(3.13)

Equation (3.12) is more general than translation invari-
ance. Actually for narrow strips 5y ((Y is automatically
satisfied; hence, (3.12) becomes unnecessary.

Slipping a factor exp( iqg) in th—e integral (3.13) we
find

&(p,'(s)pq(s» —(n ), (3.15)

where the double angular brackets enforce the restriction
~s;

—s
~
&5y and i' Note t.hat (3.15) is a familiar object

appearing in the interaction energy of a many-particle
system with potential energy g; &iv;i.

( V}=
—,
' f dx& dx2 p2(x»x2)v(x& —x2)

strip

= gv(q)[((p,'p» —( )] .
q

(3.16)

The absence of translational invariance, if any, survives
purely in the distribution of points s;, whose relative dis-
tance is all that matters in Eqs. (3.13) and (3.14).

We note that Eq. (3.5) is ordinarily used for the n ~~
limit of a time series inhabiting a finite time interval. In
this way a dense distribution of points is built up in a way
conceptually different from, but not necessarily in
disagreement with, the viewpoint of Eq. (1.3).

Equation (3.13) allows the computation of p2'"'(g) once
the right-hand side is known. But note that, in contrast
with expressions such as Eqs. (2.8)—(2.13), much more
computation is required. For the latter we simply square

(or p~, determined by summing over n coordinates
(and then perhaps averaging over n. ) But for the compu-
tation of (p~(s)p (s) ) we must assure that the n (n —1)
conditions ~s;

—
si~ &e are met. Hence the cost of the

generalization of the Wiener-Khinchin theorem to
nontranslation-invariant cases by this method is accom-

pye —qCy
strip

= g(e ' ' 8(5y/2 —
~s

—s, ~)) . (3.14)i'
Recalling the definition of p [see Eq. (2.7)], the right-
hand side of (3.14) can be written as
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F,Y=

fdYF(q Y)=(~pq~ )
(3.18)

Another technique recently developed to study the local
texture of distributions is the "wavelet" transform [23].
We shall not pursue this technique here.

plished at the cost of increased computational complexi-
ty.

By construction, Eqs. (3.12)—(3.14) are insensitive to
the "local" structure of the set as measured by (s;+s~ )/2.
This situation is complementary to the technique of the
Wigner transform [22]

F(q, Y)= Idge '~~(p( Y —
—,'g)p( Y+ —,'g)) . (3.17)

This function satisfies the identities

10000 —,

1000 ~(
h

100

10 =

O. i
0

I I I I I I I I I I I I I

1 2

1

I

l

~ f

I t l

I
l, i

r&'

)I

I I I I

IV. CHAOTIC EXAMPLE OF THE POWER SPECTRUM

C (q) = lp, I' —
I & p, &

I' (4.1)

In this section we use one-dimensional discrete maps to
generate power spectra in different dynamical regimes.
Recently such structures have been studied [17] in the
context of factorial moments and cumulants in order to
make comparisons with the experimental observations of
hadronic rapidity correlations. The characterization of
dynamically different regimes in those models is essential
in distinguishing the contributions from chaotic and
deterministic components. For this characterization, the
factorial-moment method is complemented by the study
of multifractal structures and the power spectrum of the
rapidity distribution. In fact the importance of the
power-spectrum analysis was emphasized much earlier
[13] than the factorial-moment approach. We are not
aware of any published power-spectrum analysis of the
available data on hadron collisions since then. In Ref.
[13]a stnooth rapidity distribution generated from an ex-
perimental rapidity histogram by a Monte Carlo simula-
tion averaged over an experimentally reasonable number
of events was produced to yield a structureless event-
averaged power spectrum. A systematic accumulation of
peaks at low frequencies was observed when each indivi-
dual event was superimposed on the numerically simulat-
ed smooth event-averaged power spectrum: this was sug-
gested as an indication of nonstatistical fluctuations in
the rapidity distributions. We suggest here that this
method may not be sufficiently accurate to see the ex-
istence of a nontrivial dynamics. This can be checked
directly in one-dimensional maps by tuning the strength
of the nonlinearity. In Fig. 6 we present a simulated
power spectrum for 1000 events with 200 particles per
event using the tent map in the fully chaotic (Gaussian)
regime. Each event is generated by iterating the map to
produce particles at rapidity points y where

(j= 1, . . . , 200) starting from a uniformly random initial
value. Instead of studying the power spectrum of the ra-
pidity density p(y) we investigate the fluctuations from
the event-averaged rapidity density (p1(y) ) as follows:

FIG. 6. Power spectrum of the Gaussian white noise generat-
ed by the tent map [x„+,=2k(0. 5 —~x„~); 0& (x( &0.5] in the
fully chaotic regime. Solid line is the event average and the dot-
ted line is a particular event.

where the power spectrum p of the one-dimensional map
is calculated using Eqs. (2.7) and (2.8). Equation (4.1)
refers to the deviation in the power spectrum of a partic-
ular event from the average. The event-averaged fluctua-
tion ( C2(q) ) is given by averaging (4.1) over all events.

As was shown in Ref. [17], the fully chaotic tent map
provides a good representative of the Gaussian white
noise. This is also confirmed by the smoothness of the
power spectrum on a logarithmic scale as shown in Fig.
6. We have superimposed the power spectrum of a par-
ticular event on the event-averaged power spectrum of
this Gaussian model. Large deviations from the event
seem to indicate the presence of nonrandom structures;
however, these fluctuations do not show any coherence
from one event to the other. Therefore, deviations from
the average power spectrum are totally statistical in ori-
gin. In order to show that, if they exist, dynamical (non-
statistical) fluctuations should survive the event average
of the power spectrum, we have studied the logistic map
[17] in the non-Gaussian intermittent regime.

The fluctuations in this non-Gaussian model as shown
in Fig. 7 survive the event averaging, implying that the
fluctuations are dynamical in origin. The power spec-
trum Cz(q) of an arbitrary event follows an identical pat-
tern to the event-averaged (Cz(q) ) in all frequency
domains.

A close look at both figures indicates that in Fig. 7,
event-to-event dynamical fluctuations of the power spec-
trum interfere coherently; as a result of this, the event
average is indistinguishable from an arbitrary event.

Factorial-moment analysis in the rapidity space often
encounters the problem of minimum biasing which is
essentially nothing but aligning the central rapidity of
each event histogram such that minimum statistical fluc-
tuations are observed in the average process. Power-
spectrum analysis, on the other hand, is canonical to the
factorial-moment technique since it is performed in the
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(y (t)(f (t)) }~ G(t,f (t))&0 . (4.6)

Namely, in the presence of fully intermittent dynamical
correlations, different events may look correlated which

is also confirmed in the numerical example of Fig. 7.
In short a simple power-spectrum analysis of the rapi-

dity density reveals the qualitative features of the Quctua-

tions. We suggest that the event-averaged power spec-

trum itself should retain the properties of nontrivial dy-

namics as opposed to fluctuations of a particular event
from the average as studied in Ref. [13].

V. DISCUSSION AND SUMMARY

10
0 1 2 3 4 5

FIG. 7. Power spectrum of the non-Gaussian logistic map

[x„+,=Le„(1—x„)]in the intermittent regime (A, =3.83}. The

solid line is the event average and the dotted line is a particular

event.

boost space. In this respect the latter technique avoids
the problems of centralization.

I.et us consider an observable y (t) that is generated by
a dynamical law:

y (t + 1)=F [y (t)] . (4.2)

(y(t)y(t') }"&(t—t') . (4.3)

We notice that (4.3) also means that no correlations exist
between different events:

(y (t)y (f (t) ) }~ &(t —f (t) }=o (4.4)

since f (t), by it's chaotic construction, is not allowed to
have fixed points.

On the other hand, if y (t) has nontrivial internal corre-
lations,

(y(t)y(t')}~G(t, t ). (4.5)

In general G(t, t'} is not translationally invariant or in a
broader perspective, factorization of pair probabilities as
in Eq. (3.12) may not be true. As a result of this, correla-
tions between different events generated by the chaotic
uniform reshuNing are nonvanishing:

We can generate diff'erent events from y (t} by uniformly
reshuNing the rapidity histograms. For instance a map-

ping f (t) can be defined which has a chaotic distribution
such that y(f (t)) is considered as a different event. The
mapping f(t) is chosen such that it is uniform and
preserves the phase-space volume. With these condi-
tions, the dynamical fluctuations present in (4.2) remain
intact. This last statement is identical to saying that the
hierarchy of correlation functions C~(t I, t2, . . . , t~ )

describing the underlying dynamics are unchanged by
t;~f (t;) (i =I, . . . ,P ). If y (t) itself is a Gaussian white

noise,

0= J8Ixid x, P, = J8'd x,
E,= t J8"d 'x +Jz 8~ d 'x .

(5.1)

The spectrum of Y, and the Lorentz-boost operator E,
are continuous and range from —00 to + ao. Rapidity is
canonical to boosts as shown by

[Y, ,K, ]=i . (5.2}

Hence the Fourier-transform variable q used throughout
this paper is to be identified with the boost eigenvalue. In
this way the noncompact nature of kinematical proper-
ties of group representations of the S matrix may be of
use.

Next we review the main results of this paper. In Sec.
II we analyzed modifications of the usual power-spectrum
analysis required by the finite rapidity interval and the
nonstationary character of the rapidity density and the
correlation function. We noted that the cumulant corre-
lations, normalized to the appropriate single-particle ra-
pidity densities, gave rise to bin-independent relative fluc-
tuations when the empirically successful negative-
binomial distribution is used. We then expressed the
power spectrum in terms of an integral over a two-
dimensional rapidity phase space. Although it is impossi-
ble to recover the full correlation function from this gen-
eral expression, we defined an average [over the c.m. vari-

Idealistically the probabilities p„and
Q„(s„sz, . . . , s„), although used classically (as is ap-

propriate), are properly derived from the S matrix for the
n-particle reaction. The sequence of correlation func-

tions under investigation, and the probability counts for
various parts of phase space, provide constraints on the
statistical-dynamical properties of the underlying theory.
For example, negative-binomial counts, together with the
linked-pair structure of higher-cumulant correlation
functions, represent a fascinating regularity in multiplici-

ty distributions induced by hadron-hadron collisions as
well as in galaxy distributions.

In Ref. [14] we reviewed the natural kinematical origin
of the rapidity variable. It is of great interest that this
variable has an operator form naturally connected to the
algebra of the Poincare group [24]. Denoting the
energy-momentum tensor by O„we have

H+P,
OP 2 ~ p
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able (y, +y2)/2] correlation function R2(g) that seems
appropriate to the actual quasistationary situation. In
Sec. III the ideas inherent in the Wiener-Khinchin
theorem were used to generalize the bin-averaged factori-
al and factorial moment and cumulant methods. Still
more interesting is the discovery that the corresponding
generalization of the "strip" integral of the two-particle
correlation function yields an expression which depends
on the relative coordinates even when the underlying dis-
tribution is not stationary. In the limit q ~0 the
Grassberger-Procaccia method [20] for computing the
correlation dimension is recovered. In Sec. IV we studied
the power spectra and correlation functions of "data"
generated by finite samples of a chaotic time series. We
numerically verified distinct properties of the power spec-
trum in two cases of statistically and dynamically gen-
erated fluctuations. In the Appendix we give the recipe
for the evaluation of generalized power spectra for
higher-order correlations from two points of view: (1) the
linked-pair approximation and (2) the simple form of cu-
mulants of single-particle density fluctuations.

ACKNOWLEDGMENTS

This research was supported in part by the U.S.
Department of Energy Divisions of High Energy and Nu-
clear Physics. One of the authors (P.C.) is indebted to the
Alexander v on Humboldt Foundation, and to the
Gesellschaft fiir Schwerionenforschung (Darmstadt) and
Professor W. Greiner of the J. W. von Goethe University,
Frankfurt am Main, Institute for Theoretical Physics for
hospitality during the completion of this work.

APPENDIX: POWER SPECTRA
OF HIGHER-ORDER CORRELATIONS

Consider the reduced third- and fourth-order cumulant
correlations functions

= (r(y, )r(y, F(y, )r(y ) )

perms

(r(yl Yr'(y2)) (r(y3 Pp(V4))

It is understood that overlapping arguments are to be ex-
cluded for systems composed of one species of particles.
This counting convention is equivalent to normal order-
ing of creation and destruction operators for the corre-
sponding number densities.

Previously we proposed a numerically successful [4,18]
composition formula for the reduced cumulants [the
linked-pair approximation (LPA)]:

C3 (y l,y2, V3 )

k3(yl V2 V3 ) = = (r(yl F(y2)r(y3) )
Pl(yl )Pl V2 Pl V3

(Al)

C4(yl, y2 V3 V4)
k4(yl V2 V3 V4)—=

P 1(y 1 )Pl(V2 )P 1(V3 )P 1 (y 4 )

+k2(q3)k2(q 1 ) ] (A3)

where q, +q2+q3 =0 as a consequence of translation in-
variance. Clearly this structure extends to higher orders:

,q =0 and the p-dimensional Fourier transform of
k is the symmetrized product of p —1 distinct two-
particle power spectra k2(q). Hence in the LPA the gen-
eralized power spectrum of the pth cumulant correlation
function is expressible in terms of products of power
spectra of the two-particle correlation function.

Since the linked-pair (hierarchical) formulas are ap-
parently valid for coarse-grained galaxy distributions [19]
which are approximately translation invariant, they may
be of greater utility for astronomy than particle physics.
In any case it is hard to get detailed information about
the correlation functions of order three and higher, even
though the factorial moments (the averaged correlation
functions) can be measured.

Although the expressions (A2) seem to work, there is
as yet no dynamical explanation for their origin, either in
strong interactions or in cosmology. Therefore, another
set of relations, of greater use for broad count distribu-
tions, is of interest. As mentioned before, measured
correlation functions involve mixtures of differing multi-
plicities [see Eq. (2.3)]. If we define general and fixed n

second-order cumulants by

C2(y 1 V2) P2(V1 V2 Pl(V1)pl(V2)

C2")(yl,y2) =p(2" 1(yl,y2) —pl" l(yl )p(1"1(y2),
(A4)

one finds the connection

A3
k3(1,2, 3)= [k2(1,2)k2(2, 3)+k2(2, 3)k2(3, 1)

3

+k3(3, 1)k2(1,2)],
(A2)

A4
k4(1, 2, 3,4)= g k2(1,2)k2(2, 3)k2(3,4) .12.... ''

In the case of translation invariance the integration over
all dy; in a strip —fiy/2 & (," & fiy/2, —Y/2&2) & Y/2
gives A k ~+' for a negative-binomial distribution with
1/k given by the integral of Eq. (2.5). In pth order the
natural variables are Y =(y, +y2+ +y )/p and

p —1 of the relative coordinates g;. =y~ —y;. (For com-
parison of the strip and bin integrations domains see Ref.
[11].) The values A =(p —1)!, which lead to negative-
binomial counting distributions, are suggested by empiri-
cal fits to the hadronic data [3,18].

Unlike the exposition of Eqs. (2.1)—(2.13), it is not sim-

ple to integrate out the c.m. variable. For quasistationary
examples of Sec. II the overall c.m. dependence can be
shown here also to factor out; hence, the I.PA coefficients
A become Y dependent. Here we only state the results
for transition invariance:

f dyl dy2dy3 exp iraq;y; k3(yl, y2, y3)

A36Y
[k2(q, )k2(q2)+k2(q2)k2(q, )
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~p. (v) =pP~' pt—(» (A6)

is the single-particle density fluctuation due to the fluc-
tuating multiplicity. This decomposition can be extended
to higher orders [2], for example,

3 Vl V2 V3 & 3 Vl V2 V3))

+ g (hC'2"'(V„V2)EP„(V3)
perms

+ & &p„(y t )&p„(V2)&p„(V3)) (A7)

with EC2'"'=C2'"' —C2. Since the integrals of the corre-
lation functions obey sum rules (connecting them to the
ordinary moments}, one can estimate the numerical im-

portance of the various contributions to (AS}-(A7}. In
particular the pure Ap terms give rise to ordinary cumu-

lant moments, while the left-hand side Cp gives factorial
cumulant moments. The integral versions of (AS) and
(A7) are

f3
&n)'

where

2
(n)'

3
&„)y2+ys

(AS)

y, = &(n &n &)—')/&n &', . . . ,

y, = &(n &n ) )'—) /& n &', . . . .

For broad distributions such as the negative binomial,
ye=0((n ) ) and the last term dominates. Therefore,
we can conclude that the dominant contribution to the
factorial-cumulant correlation function C comes from
the single-particle density fluctuation term. The detailed
dynamics contained in fixed n correlation functions is

I

C,(y„y )=(C',"'(y,y ))+(&p„(y, )&p„(y )), (AS)

where the angular brackets are an average over p„[see
Eq. (1.3)] and hp„:

C~ —( b p„(1)hp„(2)),
C —(hp„(1)hp„(2)hp„(3)),
C4- ( b p, (1)&p„(2)&p„(3)&p„(4))

—g ( ~p„( I )&p„(2)) ( &p„(3)&p„(4)&,
perms

(A9)

i.e., the single-particle density cumulants. Corresponding
to Eq. (A9) we write

k, = —( r„(1)r„(2)),C2

k3=
C3 —(r„(1)r„(2)r„(3)),

p)(i)pt(2)pt 3

C4
k4=

p~(1)p~(2)pt(3)p~(4)

—(r„(1)r„(2)r„(3)r„(4))
—y (r„(1)r„(2))(r„(3)r„(4)),

perms

with r„define as [compare with Eq. (1.4)]

r„(y)= (p„(y)—p(y) ) /p(y) .

We can imitate (2.14) as follows:

& Ir. (q) I'&
I'2(q)= lim

p ~ 2pY
=g p„I'z"'(q)

(A 10)

(Al 1)

f dyt f

dydee

' '
kz(y&, yz} .

phoo 2pY —Y —Y

(A12)

For higher orders we obtain, for example,

therefore negligible with regard to mixed N for such situ-
ations.

In this case we have

(r„(q& )r„(q2)r„(q3))I 3(q„q2, q3 )= lim 5e +e ~e pphoo 2p Y

1 '& I& I +q2&2+ &3&3= lim dy, dy2dy, e k3(yl V2 V3 }
p~ oo 2p

(A13)

In Eq. (A12) we see that the Fourier transform of k2 is given in terms of the single-particle density fluctuation r„(q)
averaged over the probability distribution p„.
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