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Intermittency in high-energy collisions and a phase transition in the Feynman-Wilson fluid
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We study the intermittency effect in multihadron production processes as a critical phenomenon
rejecting a higher-order quark-hadron phase transition in the hadronization process. We show that the
production of a critical Feynman-Wilson Auid, representing the hadronized system at the critical tem-
perature, has a fractal structure in a wide range of scales in the rapidity space. The intermittency pat-
tern is specified by the critical exponent alone and, for each factorial moment, a minimal scale in rapidity
emerges below which the power-law behavior breaks down. The relevance of the model for quark-
gluon-plasma physics in present and future experiments is also discussed.
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I. INTRODUCTION

The existence of a nonconventional component of mul-
tiparticle processes, reflecting the development of collec-
tive phenomena in the strongly interacting system, is now
considered as a possibility. Such a component may lead
to a power-law behavior of the scaled factorial moments
[1] so that intermittency effects in rapidity are very
significant in high-energy collisions.

In this work we conjecture that a higher-order quark-
hadron phase transition, which takes place during the
hadronization process, gives rise to strong fluctuations in
a wide range of rapidity scales and leads to intermittency
patterns. More specifically, we attempt to study the
phenomenon of intermittency in the context of a critical
Feynman-Wilson (FW) Quid model, inspired by the fol-
lowing picture: In a high-energy collision there is a finite
probability of creating a thermal quark-gluon system in
the central region as a result of energy-density fluctua-
tions followed by vacuum excitation. The space-time
evolution of this parton fluid is assumed to follow the hy-
perbolas Z =~ sinhy, t =~coshy, where the proper time v,
a decreasing function of the temperature T, specifies the
time scale in the evolution process and y is the rapidity
along the collision axis Z (Fig. l). In this picture, the
longitudinal growth of the system is followed by a gradu-

al decrease of the average transverse momentum

(pT ) —T, and when the temperature reaches the critical
values T, =100—200 MeV, a quark-hadron phase transi-
tion takes place, producing strongly correlated hadrons
along the one-dimensional rapidity space. This hadroni-
zation process cannot be characterized by a single time
scale v, since the generated critical system of correlated
hadrons cannot be localized on a single hyperbola,
t Z=d, the space ti—m-e points of which can only ac-
commodate totally uncorrelated events. Therefore, the
time scale in the hadronization process r(y ) becomes, in
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FIG. 1. The space-time evolution of the hadronization pro-

cess.
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general, a random, rapidity-dependent quantity, directly
related to the rapidity density of hadrons p(y). In fact, a
hadronization process along the worldline,

Zi, =r(y ) sinhy, ti, = r(y ) coshy, generates hadronic drop-
lets with size (5 )h and density p(y } in rapidity, accord-
ing to the equations [2]

p(y ) =(5 )„'=(5Z)„'r(y ) coshy,

where (5Z)i, is the spatial extension of the droplet along
the Z axis. In the rest frame of the hadron we have
(5Z)„=2R„, R„being a typical hadronic radius and
therefore r(y)=2Rhp(y). This relation implies that a
variation of ~(y ) in a whole range of time scales,

r(y ) & r„as required by the underlying critical
phenomenon, if ra&(~&, may generate strong density
fluctuations in a wide range of rapidity scales, which
manifest themselves as intermittency patterns in high-
energy collisions. It is of interest to note that, in a stan-
dard inclusive measurement of the rapidity distribution,
after averaging over many events and smoothing out the
irregularities of the time scale r(y ), one is likely to obtain
a smooth inclusive density (p(y ) ) = ri, (2RI, ), where

~& = ( r(y ) ) is a global measure of the hadronization time
scale [3]. The above qualitative picture supports our pro-
posal that the existence of a higher-order quark-hadron
phase transition naturally leads to intermittency effects,
suggesting at the same time that self-similarity in rapidity
space may be the underlying simple and universal proper-
ty which unifies the characteristic features of these corn-
plex and collective phenomena. Therefore, in order to
formulate our proposal we consider the model of a FW
fluid defined along the one-dimensional rapidity space
and undergoing a higher-order phase transition. For this
purpose, we impose Kadanoff scaling near the critical
point and, in this context, the FW fluid becoming critical,
simulates a newly hadronized system in a state of thermal
equilibrium at the critical temperature T= T„produced
in a high-energy collision. The cross section of this pro-
cess is, in general, a very small fraction of the total cross
section but it may become appreciable especially in rela-
tivistic heavy-ion collisions, where a quark-gluon plasma
is expected to be easily produced. Phenomenologically,
this production mechanism competes with conventional
hadronie processes and, therefore, any new, cooperative
effects due to the above phase transition coexist with con-
ventional hadronic phenomena. This means that any at-
tempt to compare the nonconventional features of this
new mechanism with experimental measurements must
seriously take into account the non-negligible back-
ground of the conventiona1 hadronic physics at low trans-
verse momenta.

The plan of this paper is as follows. In Sec. II, the sta-
tistical mechanics of the critical FW fluid is discussed
and the properties of the corresponding critical hadronic
system are investigated. In Sec. III, the intermittent be-
havior of the scaled factorial moments is established, and
the existence and the origin of a minimal scale in inter-
rnittency patterns is discussed. In Sec. IV, the phenome-
nological implications of the model for present and future
experiments are considered, especially in connection with

the phenomenon of intermittency. In particular a two-
component mechanism for intermittency is adopted, tak-
ing into account the effect of conventional, finite-range
correlations. In this context, a qualitative study of recent
experimental patterns of factorial moments is attempted
and the connection of the intermittency phenomenon
with the critical FW fluid production in high-energy col-
lisions is discussed. Finally, in Sec. V, our results are
summarized and our concluding remarks are presented.

II.THE STATISTICAL MECHANICS
OF THE CRITICAL F% FLUID

We consider the system of hadrons generated by a
quark-hadron phase transition in a high-energy collision
and study the distribution in rapidity y, integrating over
the transverse-momentum spectrum corresponding to the
critical temperature T= T, . In the FW fluid picture, the
grand-canonical partition function near the critical point
( T= T„z—+1) is written as

Q, (z, h)= gz Z, (N, h), (2.1)

lnQ, (z, h) =p(z)h (b, —+ oo, z )1),

lnQ, (z, h) =f[A(z —1)'i" "'] (b,~ oo,z —+1),

(2.2)

(2.3)

where ri is a critical exponent (0& i) & 1) and p(z) is the
analogue pressure of the system. Equation (2.2) gives the
normal behavior of the FW fluid in the thermodynamic
limit, which is equivalent to the ordinary Regge behavior
of the hadronic system in the high-energy limit. Equa-
tion (2.3), on the other hand, expresses Kadanoff scaling
as a characteristic property of the newly hadronized sys-
tem ( T= T, ) in a process of quark-hadron phase transi-
tion. The critical exponent q specifies the relation of the
order parameter p (density in rapidity) with the ordering
field p (pressure) near the critical point p, =p, =0. From
Eqs. (2.2) and (2.3) we get

(2.4}

The power-law behavior (2.4} corresponds to a typical
liquid-gas phase transition and in the mean-field approxi-

where Z, (N, h) is the canonical partition function for N
particles, at the eritieal temperature, z is the analogue
fugacity, and 4 the total rapidity interval. Recent studies
in QCD on a lattice appear to support a weak first-order
confinement-deconfinement phase transition but, in order
to reach a firm conclusion on this important issue, fur-
ther investigation is needed [4]. In this work we assume
that the quark-hadron phase transition is suSciently
close to a higher-order critical phenomenon [5] and
therefore we impose Kadanoff scaling near the critical
point of the corresponding FW fluid. The statistical
mechanics of the system at T=T, is now specified by the
boundary conditions
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mation the value of the critical exponent is q= —,
' [6]. Al-

though this approximation is very crude for the critical
F% fluid, in which strong density fluctuations are expect-
ed, this estimate of the critical exponent may be a useful
guide in phenomenological studies.

In the limit b, ~ 0() we transform the series (2.1} to an
integral representation, as follows:

Q, (z, b)= I R, (x,b)exp(xw)dx (w)0),
(2.5)

R, (x,a)=&N)Z, (N, S) .

In Eq. (2.5) we have introduced the variables
x =N/(N), w=(N) lnz, where (N) is the average
multiplicity of hadrons at the critical point z =1, T= T, .
Combining now Eqs. (2.3) and (2.5) we find, in the limit
Q~ oo,

ZI(N, g) = exp[ b(—N —1)g' "], (2.13)

Q/(z, g)=z [ exp(bg' ")—z) (2.14)

Employing now the factorizability of the model, we ob-
tain, at the critical point, the following expressions for
the inclusive density (p, (y)) and the correlation func-
tion (p, (y()p, (y2)):

In the thermodynamic limit, however, the properties of
the system and especially its critical behavior are
specified by the exponential factor in Z, (N, g) alone, and
therefore we may consider the simplest solution, valid
also for low multiplicites (N=2, 3, ...), by iterating a fac-
torizable kernel I(.I(g) according to the equations [2]

i( /(g) = exp( b—g' "), (2.12)

(N )Z, (N, b, ) =h (x ),
(N) =cd' " (z=1),

1/( 1 —g)
1

p(z }= —lnz
b

(z &1),

(2.6)

(2.7)

(2.8)

&p, (y})=[Q (~}1 'Q y+ —Q

(p, (y()p, (y2)) =[QI(&)] 'Q/ y)+—

(2.15)

where h(x ) is a scaling function and b, c are constants.
Equation (2.6} indicates that Kadanoff scaling in the FW
field is equivalent to Koba-Nielsen-Olesen (KNO) scaling
in the hadronic system. Equation (2.7) suggests that the
critical FW fiuid is a fractal system [7] in rapidity space,
but, in order to establish this important property, one
must study the behavior of the correlation function
(p, (y, )p, (y2) ). Finally, Eq. (2.8) gives the ordering field

p(z ) in the noncritical region z ) 1, where the FW fiuid is
expected to behave like a conventional hadronic system
with short-range ordering in rapidity and a linear growth
of multiplicity with the size of the system ((N) -b, for
z &1). In what follows we elaborate on these issues by
studying the implications of Eqs. (2.6)—(2.8) for the sta-
tistical mechanics of the critical hadronic system. For
this purpose, using Eqs. (2.5)—(2.8) we write an integral
equation for the scaling function h (x ) as

f h(x ) exp(xw)dx = exp(yw'/" "') (w )0), (2.9)

where y=(bc)'/'" ". The solution of Eq. (2.9) in the
limit x))1, obtained by the steepest-descent method,
1eads to the following form for the canonical partition
function:

Z (N g)=g(|) ()/2gN(1 2q)/2g ( N 1/gg(q ()/g)
c

(N» ( N ) ), (2.10)

where g =g(1 rl)(' "'/"b '/"—. Taking the Laplace trans-
form Z, (N, g) of the partition function Z, (N, b, ), observe
that there is a saddle point A0-X, which for X~ oo lies
in the region of validity of Eq. (2.10) and gives the dom-
inant contribution to Z, (N, g). This contribution
represents the significant e8'ect of large multiplicity fluc-
tuations, expected at the critical point, and has the

asymptotic form

X QI(y2 —y, )Q/ ——
y2

where y, (y2 and, for any rapidity interval 5,

(2.16)

Q/(5)= . J [ exp(bg' ")—1] 'e& dg .
277l C —i (x)

(2.17)

Equation (2.17) reveals, for the critical hadronic sys-

tern, a natural scale 50 in the rapidity space, related to the
parameter b In fact, .Eq. (2.17) leads to the scaling prop-
erty

Q/(5) =5() G/
5

0

where 50= b ' " "' and

G/(co) = J [ exp(A, ' ")—1] 'e d A, .
2Wl c —i oo

(2.18)

(2.19)

The contribution of the leading branch-point singularity
at }1,=0, to G/(co), leads to the following power-law be-
havior of Q/(5) for 5))50:

Q/(5) = [5()I (1—2})]
5()

(5»5, ) . (2.20}

valid in the region 5()«~y) —
y2~ &&b,. On the other

hand, if ~y+b, /2~ &)50, the density in the central region

(~y ~

&&b, /2) takes the form

From Eqs. (2.16) and (2.20), assuming ~y1 ~

&& b, /2,
~y2 ~

&& b, /2, in order to avoid the end effects, and 50 &&6,
we obtain a power-law behavior for the correlation func-
tion

& p, (y(}p,(y2 })
7l

=[50 "1(1—~}l ' — (y2 —yl} '

Z, (N, ()=g "exp( bNg' ") (N»—1) . (2.11) (2.22)
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Integrating Eqs. (2.21) and (2.22) in a rapidity interval
5 «6, around the central point y =0, we obtain the fol-

lowing behavior for the second-order factorial moment,
normalized according to the Bialas and Peschanski pro-
posal [1]:

(p, (yi)p, (y, ) p, (y~)) =QI '(&)Q/ —+y,

XQI ——y

(N(N 1)—)s 2 45F~(5;6)= (N)' (1—q)(2 —q)

(5,«5«b, ) . (2.23}

Equations (2.21) and (2.23) indicted that the critical ha-
dronic system described by Eqs. (2.12)—(2.14) for z=1
has a random fractal structure in rapidity, for a wide
range of scale 5 (50«5«h). The two parameters of
the model (ri, b ) are connected with the characteristic ele-
ments of the corresponding fractal geometry. The criti-
cal exponent g determines the fractal dimension
dF=1 —rl, and the parameter 5 introduces a minimal
scale 5 in rapidity (5 -5'~" "') below which fractali-
ty breaks down. We also notice that, if 50~0, intermit-
tency effects become important [Eq. (2.23}]whereas, for a
sufficiently extended system (5~00), the fractal struc-
ture persists even at large scales [8].

In Sec. III, we study in detail the structure of the inter-
mittency patterns resulting from our model by generaliz-
ing the power-law behavior (2.23) for the higher-order
moments. For this purpose, one needs the inclusive den-
sities (p, (yi )p, (y2) p, (y~ )) for p &2 which, owing to
the factorization property of the model [Eqs.
(2.12)—(2.14)],are written as

P
X g Qf (y, —

y, , ), (2.24)
l =2

where —6/2 &y, &yz &y~ & 5/2. In the region
6/2+y, »50, b, /2 —y »50, and y,

—
y, , )&50, the

densities (2.24) take the form

[
'-

( )]

X +y)

X ——y

P
X g (y; —y;, ) " . (2.25)

l =2

It is now straightforward to show that the factorizable
model defined by Eqs. (2.12)—(2.14) also satisfies asymp-
totic KNO scaling, the corresponding scaling function
g(x ) being the unique solution of a well-defined moment
problem. In fact, integrating Eqs. (2.22) and (2.25) in the
domain of the rapidity space specified by the size 6 of the
system, we obtain

(N(N 1) (N —p+1) ) =—p!
[5,'-~r(1 —q) ]~

3'2

Xf (y~
—

yi i) dye i
' f yi+— yi ) "dyi (2.26)

( )
Q'i a/2 bz

5,'-vr(1 —&) -ai2 4
dy . (2.27)

Performing the integrations in Eqs. (2.26) and (2.27) we
find, in the limit h~ 00,

(Ni') p![I (1—ri}]' i'[I (2—2ri)]~
(N)& I [(p+1)(1—g)]

(p =2, 3, . . . ) . (2.28)

Equation (2.28) shows the validity of asymptotic KNO
scaling in the factorizable model, whereas the large-p be-
havior of the multiplicity moments, lnC —gp lnp,
guarantees the uniqueness of the scaling function f(x } as
a solution of the corresponding moment problem [9]:

f x~f(x)dx=C (p=2, 3, . . . ) . (2.29)
0

In particular, the solution of Eq. (2.29) for x )) 1 is ob-
tained by the steepest-descent method, using the asymp-
totic expression C~ [Eq. (2.28)] in the limit p~~. We
find [10]

)
I (1—g)
&2n.g

1/2g
I (2—

) x' "exp( —ax' ")
I (2—2g}

(x»1), (2.30}

where a=r)(1 —rj)" "'~"[I (1—g)/I (2 —2')]' ".
We close this section by studying the analytic proper-

ties of the grand-partition function Q/(z, g') in the g plane
[Eq. (2.14)] in order to reveal the nature of the phase
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transition in the FW Quid when we approach the critical
value z=1. In the thermodynamic limit, h~ao, the
grand-partition function QI(z, b, ) is dominated by the
leading singularities in the f plane which, for z & 1, are
located at the points g, (z)=(b 'lnz)' ' " and (0=0.
The dominant singularity at g= g, (z } is a moving pole, as
a function of z, whereas the secondary singularity is a
fixed branch point at /=0. At the critical value z =1
these leading singularities collide, and for 0(z (1 the
fixed branch point at /=0 becomes dominant, whereas
the moving pole disappears in the unphysical sheet. This
mechanism in the g plane represents, formally, a critical
phenomenon in the FW Quid, since the trajectory of the
rightmost singularity, which dominates the thermo-
dynamic behavior of the system, is not analytic at z = 1.

Physically, the nature of this phase transition becomes
transparent if one considers the behavior of the correla-
tion function C(y],y2', z) near the critical value z =1 and
for large rapidity differences y2

—y&. The factorizability
of the model enables us to determine C(y„yz, z ) for z & 1

in terms of the leading singularities at (=),(z ) and (=0
as follows. We have

C(»»') =
& p(» z)p(y2 z) &

(2.35)

[k,(z)P z[k, (z)]"
(p(y],'z)p(y, ;z) ) = ' +

[b(1—g)] (1—z) I(g)
exp( —g', ~y]

—y, ~
)

(2.36)

(z», ~y]
—

y2I »50) . (2 37)

At the critical value z=1, the previous analysis breaks
down since the two leading singularities collide at the
point )=0. In this case the correlation function is deter-
mined by the critical densities [Eqs. (2.15), (2.16), (2.21),
and (2.22)] and in the limit ~y] ~

—5, ~y2 ~

—5,
~y]

—y2~-b, (6~00 ), which is suitable for studying the
critical behavior of the correlation function at large dis-
tances, we Gnd

which, when combined with Eq. (2.31), lead to the follow-
ing behavior of the correlation function [10]:

exp( —4, lyl
—

y2 ~ }C(y„y„z)-

—(p(y; ))(p(y„' )&, (2.31) «y], y2', z=l)-ly] —
y2I

'"

where (p(y;z)) and (p(y„z)p(y2, z)) are inclusive den-
sities for z ) 1. The contribution of the leading singulari-
ties to the grand partition function Q/(z, 5) leads to the
following approximation for large rapidity differences
(5»5, ) and z & 1:

(ly]l-~, ly2 -~, ly] —y21-~) . (2.3g)

We observe that the grand-partition function (2.14} for
z ) 1 describes a conventional hadronic system with low
transverse momenta and short-range ordering in rapidity.
The correlation length 5, =$, '(z) is finite [Eq. (2.37)]
and the rapidity density is constant [Eq. (2.35)], leading
to an average multiplicity which grows linearly with the
size of the system. When we approach the critical point
(z =1), however, the system undergoes a higher-order
phase transition. The correlation length becomes
infinitely large, 5, -(z —1)' " ', and asymptotic KNO
scaling is established as a critical property, equivalent to
Kadanoff scaling. Moreover, the critical system develops
a fractal structure in rapidity, in a wide range of scales
(5O «5 «b, ) and, as we shall discuss in the next section,
an intermittency pattern for the scaled factorial moments
is fully developed in the limit 50—+0.

z[g, (z )]"
exp[@',(z ) )b 1 —g

+ 5" (z &1, 5»50) . (2.32)
z b(1 —q)

(1—z) 1(g)

QI(z, 5)=

On the other hand, the factorization property, which is
also valid for z ) 1, leads to the inclusive densities

(2.33)

&p(y]', z)p(yp', z) &

, QI(z, y+b, /2)QI(z, b, /2 y)—
p(y;z ) =z

Qf (z,y, +5 /2 )QI(z,y, —y, )Q/(z, 5 /2 —y, )=z
QI(z, b )

(2.34)

Using now Eqs. (2.32)—(2.34), we obtain the leading terms
for h~oo,

III. INTERMITTENCY IN THE CRITICAL FW FLUID

Using Eqs. (2.22) and (2.25) for the critical inclusive
densities and integrating in a rapidity interval ~y ~

5/2,
we obtain, for 5O &(5, the forms

(N(N 1) . . (N —p+1)—)s

p!Q~ 6/2
ys[5,' ~l(1 —q)]'

( )
b'] 5/2 b2

']I (2—~) sn 4—~ ~ ~

dy, -](y, —y, -]} " dy»]+
2—5/2 —5/2

Changing the integration variables in Eq. (3.1}and performing the integration in (3.2), we obtain

(3.2)
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(gg5p —g(p+ 1)

(N(N 1—). . . (N p—+1})s=, I —;p,q[5,' "-r(1 —n)]p

gl —q
[~(4+5)/2a( 1 1 9) +(6—s)/2a( ) 9)]

5,'-~r(1 —z)

where 8„(a,b ) is the incomplete beta function and

(3.3)

(3.4)

PI —;p,g =p! d rp(D+ rp )—" drp, (rp rp—, ) " dr)(D +r) ) "(rz r)—)
0 0 0

(3.5)

where D+ =(6+5)/25. In Eq. (3.5), a correction of order (50/5) ", due to the integration along the forbidden inter-
vals ~y;

—y;, ~

& 5O in Eq. (3.1), has been neglected. In the limit 5o~0, however, where strong intermittency effects are
expected to be present, the integral representation (3.1) is exact. On the other hand, the effect of the scale 50 on the in-

termittency patterns is discussed in detail at the end of this section [Eqs. (3.17)—(3.21)]. Using now the Laplace convo-
lution theorem in Eq. (3.5), we obtain the following expression for I(5/b„'p, r)):

I —;p,g = '
du(D —u) " du(D +U) "(u —v)'5 I![r(1—~)]p-'

I [(1—rl)(p —1)] o
+

o

Introducing now appropriate integral representations, we have

(3.6)

1I —;p,g =L(p, r)) J du(D+ —u) "(D +u) "u"
0

XF rl, (1—rl)(p —1);(1—g)(p —1)+1;'D +u (3.7)

where L(p, rl)=p![r(1—rl)]P '/I [1+(1—rj)(p —1)] and, finally,

5 p.[r(1—~)]p-' 1 1I —;p,rj = ' D: "F3 g, },r1, 1, 1+ )+rtp(1 —rl), — (3.8)

where F is the hypergeometric series and F3 a hypergeometric function of two variables [11].
The scaled factoria1 moments for p 2, in the rapidity interval 5,

( N( N 1) (N p—+ 1) )s-
Fp(5; 6)=

N $
(3.9)

introduced by Bialas and Peschanski [1) in order to study intermittency effects, take, by virtue of Eqs. (3.3), (3.4), and
(3.8), the form

q+(1 —q)p
(.)F"(5;b,)= [~(h+s)/2h( 1 '7, 1 'g) 8(a—s)/2h( 1 —'9, 1 —'9) ]

p![r(1—~} -'
I [1+g+p(1—g)]

25 25
F3 rl, rl, 1, 1, 1+71+( 1 —rl )p, (3.10)

which corresponds to the critical densities (2.5} and is
valid for 50 «5 & h. Equation (3.10) shows that the pat-
tern of factorial moments is invariant under scale trans-
formations in the rapidity space, owing to the Kadanoff
or the KNO scaling property, provided that 5 &&50. The
fractal structure of the system is revealed by studying the
behavior of Fp"(5;5) in the appropriate range of scales,
50«5«h, as discussed in the previous section. In
fact, in this limit, Eq. (3.10) leads to the power-law behav-
ior [2]

p![r(1—&)]p-' 45
I [1+r)+(1—r))p]

—g(p —&)

(p ~2, 5,«5«h) . (3.11)

Equation (3.11) generalizes, at the level of higher-order
moments (p )2), our previous result [Eq. (2.23)] on the
second moment F2(5;b, ) and establishes the fractality of
the production process in the range of scales 50 «5 « 6,
with a single fractal dimension d+=1 —g. In the limit



N. G. ANTONIOU et al. 45

60~0, a clear intermittent behavior emerges with a
linear spectrum of intermittency indices in accord with
other studies on the connection of a higher-order phase
transition with the phenomenon of intermittency [12].

Another important aspect of this model is the emer-
gence of a minimal rapidity interval 5 (p) —50, below

I

which the power-law behavior (3.11) breaks down. In or-
der to study this intermittency-breaking effect and get an
accurate estimate of 5 (p), we consider the range of
scales 0 & 5 &&5 which contains the nonfractality region
0&5&50 and write for the moments F~"(5;b,) the gen-
eral form

F"(5'5)= '
dy ——

y
Qf(&)(N)$ -s/2 ' 2

V2
X dye )Qf(-yp yp

—)) -s/2dyl Qf(y2 —y l)gf 2
+yl

J

where

(3.12)

(3.13)

(3.14)

where X ' denotes the inverse Laplace transform. From Eq. (2.12) we have

srzI Q —+yg
Qf(b ) —s/2 2 2

In the integration region ~y; ~
5/2, we use the approximation Qf(b, /2+y, . ) = Qf(5/2) and Eq. (3.12) is written as

f(&)F( )(5;~)=p! 5-»-'[[0 (~)r-(r-2;5],
P '

Q2(g/2) f

N 1!—
(3.15)

so that Eq. (3.14) becomes

f(&) (+—$ lf
F(c)(5 ~) p, f 5

—P g ' ' X '[g ex ( bN)' ");—5
Q'(b, /2) )v=/ l (p 2)'{N p+1)' (3.16)

Finally, using the Laplace convolution theorem, the saddle-point method, and the integral representation of the in-
complete gamma function I (a, u ), we get, for 0 & 5 « b„

Qf {b,)

Qf (b, /2) &2m.(1—g)

where

00

X g g (N) I —,', u —uy"'-"r ' '",u„
N=p —1 . 2-2n' "

( 1 —q)/g
5

(p 2)!(N p+ 1)l

(3.17)

(3.18)

In the limit 5~0, Eq. (3.17) becomes

Qf(&)F'"(5 b, )=p(
Qf (&/2)

g1 —p 00

g (N)uN exp( —u)v) .
2~(1 —g)

(3.19)

The dominant term (N=p —1) in the series (3.19) gives
the nonfractal behavior of F"(5;b, ) in the region 5 « 5(),

comes of order unity, u, =1. Using the definition of
u)v [Eq. (3.18)],we find

F"{5;f).) 5' u, ex-p( —u, ) (5«5()), (3.20) (p )
g/(( —g)( 1 )(p 1 )

l /( l —q)5 (3.21)

characterized by an exponential drop in the limit 5~0.
An estimate of 5 (p ), the minimal scale below which in-

termittency breaks down, is obtained by the value of 5 for
which the argument of the exponential in Eq. (3.20) be-

It is of interest to note that the existence of a minimal in-

termittency scale in this model reAects the very-short-
distance behavior in rapidity space of the effective poten-
tial V(y; —

y ) corresponding to the kernel Kf ((). In fact,
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using the steepest-descent method one finds [13]

1+ii y( yj
Vy; —y. = ln

2q 5,
(g —1 )/g

( 1 )(I—q)/g'9 '9
50

(3.22)

tion of hadrons for ~y,
—y.

~
&&5o [2].

For completeness, one may show that the moments
E"(5,b, ) given by Eq. (3.17) have, in the region
5 (p) «5«b, , a fractal behavior of the form (3.11), as

expected. For this purpose, we transform the series in
Eq. (3.17) to an integral and, keeping the dominant term
in the liinit 5 (p ) «5, we find the power law

The exponential behavior (3.20} in the nonfractality re-
gion 5 «5o, leading to the estimate (3.21) of the minimal
scale, is directly related to the presence of the second
term in the potential (3.22), which dominates the correla-

I

E'"(5'b )=G(p ri)
45

where

[5 (p) «5«h], (3.23)

x ~(p-"-' 1-
0

2, Q Q, Q
7l

Performing the integration in Eq. (3.24), we finally obtain

dQ

v'2m
' (3.24}

G(p, ri) =
'p —1

r(1 —q)
rj"(1—g)

pr( —+qp —q)
1

2

(1 ri) ' "'i—' "[1+(p —1)( 1 ri) ]v'2n—
(3.25)

Comparing now Eqs. (3.11) and (3.23), which correspond
to difFerent approximations, we realize that the prefactors
in the power law are identica1 for g= —, since, in this case,
the model is soluble and the steepest-descend method
gives the exact results [13]. For rid —,', however, there is a
difference, due to our approximations, but a numerical
check has shown that this discrepancy is not significant.

In Fig. 2, the pattern of the factorial moments is shown
for difFerent values of the critical exponent g and the
effect of the minimal scale 5 (p) is illustrated. The
nonuniformity of the fractality region with respect to the

order p of the moment [5 (p)-(p —1)'~" "'] is a
characteristic property of the model which can be tested
experimentally. Present experiments do not indicate any
strong violation of the power-law behavior of F (5;6) for
0. 1 & 5 & 1, suggesting a very small value for the parame-
ter 5o. Therefore, systematic measurements of the higher
moments (p &5) in very small domains of the rapidity
space (5«0. 1) are needed [14] in order to reveal the
characteristics of this important effect and probe the
scale 5o which, together with the critical exponent ri,
completely specifies, within our model, the dynamics of
the intermittency phenomenon and its breaking.
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FIG. 2. The pattern of the moments F~" for p =2,3,4, 5 and
for different values of the critical exponent g. Two upper
figures: Eq (3.10). T.wo lower figures: Eq (3.17) wi.th

=b1/{1—q)
0

IV. INTERMITTENCY IN PRESENT EXPERIMENTS

Summarizing the main features of our model, which
may be relevant for present and future experiments on
multiparticle production, one may distinguish between
the large-scale properties of the critical system in rapidity
space, including the validity of KNO scaling and the
fractal growth of the average multiplicity ((N }-b, ' "),
and the intermittent behavior at very small rapidity
scales 6, indicating the onset of a nonconventional com-
ponent in the production process, characterized by large
density fluctuations. In the present experiments, howev-
er, it is very difBcult to verify the critical behavior of the
system at large scales since the production processes are
dominated by conventional events, which violate KNO
scaling and give rise to rapidly increasing average multi-
plicites in the liinit h~oo ((n }/h~oo for h~oo).
On the contrary, the very-small-scale aspects (5~0) of
the quark-hadron phase-transition process, discussed in
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this work, may be tested experimentally, even in the pres-
ence of a strong conventional component, by studying in
detail the intermittency effects, especially at the level of
higher moments [15]. Recently, a good deal of moment
measurements with increasing precision have become
available in nucleus-nucleus, hadron-nucleus, hadron-
hadron, as well as e+e collisions [16—23]. In this work
we adopt the point of view that the pattern of moments,
observed experimentally, is due to the incoherent super-
position of the inclusive densities corresponding (a) to a
critical FW fiuid [Eq. (2.24)] and (b) to a conventional ha-
dronic system with finite-range correlations in rapidity
[15]. This two-component model is further specified by
introducing a mixing parameter A,„which gives the prob-
ability for producing a critical system at a given energy,
A,, =0, /0, o, being the corresponding cross section and
a the total cross section of the collision (0&A,, &1).
Hence, the inclusive densities in the production process
are written as [15]

(p(y&)p(y2) p(y„))=&,(p, (yi)p, (y, ) . p, (y, ))

+(1—
A,, )

F"(5'b)=1+ (1—e *), (4.3)

where g, is the correlation length in rapidity and y the
strength of the two-particle correlation. For the higher
moments (p & 2) we use the recursion formula

(p, (0}) » (p(0) ), and, therefore, the critical component
may contribute significantly in Eq. (4.2} for large p, even
if the cross section cr, is very small (A,, «1). On the
contrary, the lowest moments (p =2, 3) are dominated, in
the same limit A,, ((1, by the conventional component
Fp Therefore, independently of the detailed structure
of the components F" and F",a genuine intermittency
effect in the present experiments is expected to appear at
the level of higher moments, whereas in the lowest mo-
ments (p & 3) this new phenomenon is likely to be masked
by the conventional correlation mechanism.

In order to be able to compare the two-component
model [Eq. (4.2)] with experiments and previous studies
of the conventional component alone, we adopt, for the
second conventional moment F2'(5; 6), the form used in
Refs. [24,25]; namely,

x(p, (y, }p,(y, ) . P, (y~)), F'(5 b, )=F"i(5 b, )[1+(p—1)(F~q' —1)], (4.4)

(p (0)&
'

„,+(1—X, )
'

&

F„"(5;S),p0
(4.2)

where F"and F"are the two components of the scaled
factorial moment F, corresponding to the densities

(pc(y'i }pc(V2 } ' ' '
pc(yp ) & and (p (Vi }ps(V2 } ps(yp ) &,

respectively. In the present experiments, we expect that
l

(4.1)

where (p, (y, )p, (y2) . .P, (y~)) is given by Eq. (2.24)
and (p, (y, )p, (yz) p, (yz)) corresponds to a conven-
tional hadronic system. Integrating Eq. (4.1) in the rapi-
dity interval 5, in the central region ~y ~

& 5l2, we find

(p, (0)) ',
,Fp(5;b. ) =A. . . F"(5;b,)sp0 &

which is based on the negative-binomial distribution [26].
It is of interest to note that, in the limit (F~z' —1) && 1, a
simplified expression of F"(p & 2) in terms of F~z' is val-
id:

F"(5'b)=1+ [F"56) 1](p &—2), (4.5)

where terms of order (F2"—1) have been neglected.
In comparing the two-component model with experi-

ments, we have used the detailed forms (3.10},(3.17), and
(4.4), but in order to clarify the complementary effects ofF"and F" in Eq. (4.2) one may write, using Eqs. (3.11)
and (4.5), a simplified expression for F (5;b) which
remains a good approximation in a wide range of 5, as
follows:

—g(p —1)

F (5;h)=A, ,

2

p![r(1—~)]~-' 45
I [1+g+ (1 r))p]-

P

+(1—X )'-~ 1 —X
C C (4.6)

where p, —=(p, (0)), p=p(0)), and G, (z)=z '(1 —e '}.
In the limit 50~0, an intermittency pattern emerges for
5 « 1 and from Eq. (4.6) it is clear that the intermittency
effect may become very strong for sufficiently high mo-

I

ments, even in the limit A,, (& l.
In Fig. 3 we compare the two-component model with

the NA22 measurements of the factorial moments in
hadron-hadron collisions [18]. It is of interest to note

TABLE I. Values of parameters used in our calculations.

NA22, m.+p, X+p (250 GeV)
EMC, pp (280 GeV)
EMU01, S+Au (200 GeV/nucleon)

1.8
1

2

0.40
0.70
0.10

10-'
10-4
10

0.30
0.20
0.20

2.5X10 '
4.6X 10
6.2X10 '
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FIG. 3. Comparison of our two-component model [Eq. (4.2)]
with the NA22 data (from Ref. [18]). Solid lines: In the critical
component, the effect of the scale 5O is ignored [Eq. (3.10)].
Dashed-dotted lines: In the critical component, the effect of 50
is included [Eq. (3.17)]. The conventional component is given

by the dashed lines.

6
I

I

that, in this experiment, at least one unusual event has
been observed corresponding to a production cross sec-
tion 0.2 pb and characterized by local density of 100 par-
ticles per unit of rapidity [17]. If we associate these ex-
ceptional events with the production of a critical hadron-
ic system in a quark-hadron phase transition process, we
may get, for this experiment, a phenomenological, order-
of-magnitude estimate of the mixing parameter A,, in our
two-component model: A,, & 10 . For the rest of the pa-
rameters, we fix p, /p=5 and restrict the critical ex-
ponent g in the region 0.2-0.4, close to its mean-field ap-
proximation value, g =

—,'. In the conventional com-
ponent, the parameters y, g, are fixed close to the values
used in Refs. [25,26]. In the same figure, employing the

20

KMUOI

200A GeV

10-
9-
8-
7
6-

P=

expression (3.17) for the moments Fp "(5;b ), the effect of
the scale 5o is also shown. One observes that, for the
rather low value of the critical density p, =10, corre-
sponding to a scale 5D=2. 5 X 10 (see Table I),
intermittency-breaking effects become important for

p ~ 5, but in order to study quantitatively this
phenomenon, accurate measurements of the factorial mo-
ments are needed, especially for 6 0. 1.

In Fig. 4, our two-component model is compared with
European Muon Collaboration (EMC) measurements in
muon-proton collisions at 280 GeV/c [19]. Again, for a
very small value of the mixing parameter A,, (see Table I)
and neglecting the effect of the scale 5O, it is seen that the
intermittency effect is non-negligible for p &5, which is
consistent with the trend of data. If is of interest to note
that, given the statistics of the experiment and the order
of magnitude of the mixing parameter ()(,, =10 ), sug-
gested by our preliminary study, a small number of ex-
ceptional events, with characteristic fluctuations in rapi-
dity, is expected in an event-by-event analysis of the data.
These events, according to the interpretation proposed in
our model, belong to the critical component and are re-
sponsible for the intermittency effects of this process.

Finally, in Fig. 5, a comparison of the model with the
EMU01 measurements of the factorial moments in
nucleus-nucleus collisions is presented. In relativistic
heavy-ion collisions the density p is suSciently high so
that the choice p, /p= 1 is a suitable assumption. In this
experiment a strong intermittency-breaking effect is ob-
served for 5 ~ 0. 1, at the level of higher moments (p =6).
This phenomenon can be easily accommodated within
our two-component model [Eqs. (4.2) and (3.17)] suggest-

5
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FIG 4 Comparison of our two-component model [Eq. (4.2)]
with the EMC data on pp collisions (from Ref. [19]). Iu the crit-
ical component the effect of the scale 50 is ignored [F . (3.10)).
The conventional component is given by the dashed lines.

FIG. 5. Comparison of the two-component model [Eq. (4.2)]
with the EMU01 data (from Ref. [14]). In the critical com-
ponent, the effect of the scale 50 is included [Eq. (3.17)]. The
conventional component is given by the dashed lines.
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ing a very small value for the scale parameter 60~ 10
The rest of the parameters are given in Table I. With this
choice, the prediction of our model for the moment of or-
der p =8 is also shown in the same figure, illustrating the
effects (a) of the conventional mechanism, (b) of the frac-
tal component, and (c) of the minimal scale 50.

V. CONCLUSIONS AND REMARKS

We have put forward a model for a critical FW fiuid,
involving a higher-order phase transition, and have
shown that, in this model, at the critical point, the scaled
factorial moments of the rapidity distribution exhibit a
clear intermittency pattern. As has been stressed [5],
such a phase transition provides one of the two natural
scenarios leading to intermittency (the other scenario be-
ing a self-similar cascade).

In our model, the critical hadronic system is specified
by two basic parameters: the critical exponent q (a
universal index connected with the fractal dimension
d~ = 1 —g of the production process) and a characteristic
length 50 in rapidity space which is related to the maxi-
mal time scale in the hadronization process [2]. The scale
50 leads to an intermittency-breaking effect in the limit
5~0, and an important feature of the model is the ex-
istence, for each factorial moment F",of a minimal rapi-
dity interval 5 (p)-5c [Eq. (3.21)] below which the
power-law behavior of F"breaks down (Fig. 2).

Furthermore, we carried out a qualitative study of re-
cent experimental data by adopting a two-component
model; in this, the inclusive densities arise as the (in-
coherent} superposition of one part due to FW fiuid in a
critical condition, and of another part due to convention-
al finite-range correlations. From our study, the main
characteristics of the intermittency phenomenology may
be summarized as follows:

(a) The scaled factorial moments of lowest order

(p =2, 3) are dominated by the conventional component.
(b) The intermittency pattern becomes visible at the

level of higher factorial moments (p ~ 5).
(c) The intermittency effect due to a quark-hadron

phase transition may be significant even if the production
cross section for the critical system is very small

(cr, /cr (10 ).
(d) The intermittency indices are likely to be much

larger (g ~ 0.2) than the effective ones extracted from the
data without taking into account the conventional com-
ponent [16].

(e) In the presence of the conventional component, a
linear spectrum of the intermittency indices, indicating a
single fractal dimension in the nonconventional process,
may well be consistent with the experimental measure-
ments.

(f) The intermittency effect in a multiparticle produc-
tion process may be consistently associated with the pres-
ence of exceptional events in the sample, characterized by
a strongly fluctuating rapidity density. One may conjec-
ture that these events belong to a critical hadronic system
which can be interpreted as a ne~ly hadronized quark-
gluon plasma.

(g) The breakdown of intermittency for 5~0, at the

level of higher moments, may be associated with the pres-
ence of a characteristic scale 5O «0. 1 in the critical sys-
tern, which introduces a lower limit 5 (p ) in the fractali-
ty region, increasing with the order p of the factorial mo-
ment.

Finally, our study of intermittency effects within a
two-component model suggests that, in order to establish
a firm connection between the intermittency phenomenon
and the quark-hadron phase-transition process [5], one
needs precision measurements of the factorial moments,
in experiments with high statistics, and a very good
knowledge of the conventional background. On the other
hand, in future experiments, especially with relativistic
heavy ions [at the BNL Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC)]
we expect that the probability for producing a quark-
gluon plasma will increase significantly and the role of
the conventional component will become less important.
In the extreme case of a collision with A,,=1, our model
predicts a genuine intermittency pattern with a linear
spectrum of intermittency indices [Eq. (3.11)] as a conse-
quence of a higher-order quark-hadron phase transition
in a nuclear process of quark-gluon-plasma formation.

Having completed, in connection with the
phenomenon of intermittency, a detailed study of the
critical FW fluid and its fractal structure, a clarification
regarding a number of conceptual questions is now in or-
der.

(a) Despite the fact that the FW system is one dimen-

sional, a phase transition of the nature discussed in this
work is feasible because the two-particle (hadron-hadron)
effective potential at the critical temperature [Eq. (3.22}]
found in this model has a long-range tail of logarithmic
behavior at large distances in rapidity space. This prop-
erty makes our critical solution consistent with the well-

known restriction according to which there is no phase
transition in one-dimensional systems with short-range
forces.

(b) In our S-matrix approach towards intermittency dy-

namics in multihadron production, the connection of the
critical phenomenon in the FW fiuid with the
confinement-deconfinement transition cannot be easily es-

tablished since the quark-gluon degrees of freedom are
missing in the treatment of the correlation functions in

rapidity space [Eq. (2.24)]. However, the fractality of the
hadronic system in the central region (y =0) of the rapi-

dity space induces a similar structure in ordinary space
(Z=cry), where the QCD correlation functions operate
(Fig. 1), and this remark may provide us with a link be-

tween the underlying quark-hadron phase transition and
the phase transition of the FW fluid, at a geometrical lev-

el. In fact, our investigation suggests that, near the criti-
cal temperature ( T=T, ), the configurations of the ha-

dronic currents in a finite region of the three-dimensional

space have a fractal structure with anomalous dimension
8+=3—3g, where g is the critical exponent in the FW
fluid. It is now plausible to assume that this geometrical
property remains valid also for the quark-gluon field

configurations near the critical temperature of the
confinement-deconfinment transition. This remarkable
geometrical constraint connects our effective theory with
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the underlying quark-hadron phase-transition mechanism
and, furthermore, using the phenomenological values of
the critical exponent q=0.2—0.3 found in our study, one
may estimate the fractal dimension of the quark-gluon
system near the critical temperature, DF =2. 1 —2.4, as a
consequence of a second-order phase transition in the
FW Quid. In connection with this estimate, it is of in-
terest to note that recent studies in lattice gauge theory
have shown that the statistical mechanics of the SU(2) in-
teraction, near the critical temperature builds in the
deconfinement region a fractal structure with 2&D+(3
[27].

(c) The above remarks indicate that the intermittency
phenomenon in rapidity space, as was first suggested by
Bialas and Peschanski, has a particular significance due
to the fact that rapidity may be viewed, either as a
phase-space degree of freedom,

E+PIy= —,
' ln

I.

or as a space-time coordinate,

Z+ct
y =—' ln

Z —ct

for the hadronized systetn (Fig. I). We have also seen
that, because of this characteristic property, any inter-
mittency pattern of the hadronic distribution in rapidity
space necessitates a similar fractal structure in the ordi-
nary space of the related hadronic current distribution
and the underlying QCD configurations. This link of ra-
pidity space with ordinary space time is expected to
differentiate its fractality from the corresponding struc-
ture in the remaining dimensions of the phase space. Re-
cent phenomenological studies extending intermittency
effects in transverse momentum pT and azimuthal angle y
[28] may lead through further investigation to a
quantification and clarification of this expectation.
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