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Experimental tests of the isotropy of the speed of light using one-way propagation are analyzed using
a test theory of special relativity. It is shown that, when properly expressed in terms of measurable
quantities, the results of such experiments are independent of the method of global synchronization of
clocks. Experiments analyzed include a Jet Propulsion Laboratory time-of-Qight measurement, a reso-
nant two-photon absorption experiment, the Smithsonian Astrophysical Observatory-NASA 1976 rock-
et gravitational redshift experiment, and Mossbauer rotor experiments. If the-characteristic anisotropy
is proportional to aw, where w is the velocity of the Earth relative to the cosmic background radiation,
the best bound on a from these experiments is
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PACS number(s): 03.30.+p, 04.80.+z

I. INTRODUCTION AND SUMMARY

Advances in technology have made possible two recent
experimental tests of a fundamental postulate of special
relativity theory (SRT), the constancy or isotropy of the
velocity of light in inertial reference frames. These mea-
surements differ from many of the classic tests of special
relativity, such as the Michelson-Morley experiment, in
that they test the isotropy of the one-way velocity of
light, without propagating the light on a closed path.
The experiment of Riis et al. [1]monitored the frequency
of light emitted by atoms excited resonantly via two-
photon absorption (TPA) in an atomic beam as a function
of the rotation of the Earth, thereby testing the isotropy
of the first-order Doppler shift (henceforth called the
TPA experiment}. The experiment of Krisher et al. [2]
monitored the time of flight of light signals along a fiber-
optic link between two hydrogen maser clocks at the
NASA —Jet Propulsion Laboratory (JPL) Deep Space
Network, again as a function of the rotation of the Earth
(henceforth called the JPL experiment). These experi-
ments established limits of b,c/c & 10 " and
hc/c &3.5X10, respectively on an anisotropy in the
one-way speed of light.

The TPA and JPL experiments supplement earlier tests
of the one-way isotropy of light: the Mossbauer-rotor ex-
periments of Turner and Hill [3] and of Champeney
et al. [4,5], which measured the isotropy of the Doppler
shift of an emitter mounted on the rim of a rotating disk,
as sensed by an absorber at the center, and the Smithsoni-
an Astrophysical Observatory — (SAO-)NASA Gravity
Probe A (GP-A) Rocket Redshift experiment of Vessot
et al. [6] which compared the rates of hydrogen maser
clocks on a Scout rocket and on the ground, as a function
of height and speed (gravitational redshift and time dila-
tion effects} and as a function of the direction of the
rocket's velocity (isotropy of speed of light).

In order to study the significance of a given experimen-
tal test of relativity, it is useful to employ a general

T=a '(t —s x),
X=d 'x —(d ' b')w x—w/w +wT,

(l.la)

(1.1b)

where a, b, and d are functions of w, and c is a vector
determined by the procedure adopted for the global
synchronization of clocks in S.

MS have emphasized the arbitrary nature of the vector
a [7] (see also Ref. [12]). If, for example, one adopts the
convention that clocks are to be synchronized in X, and
that each clock in S is to be adjusted to be synchronized
with the X clock momentarily at its location ("external
synchronization"), then a=0. If one adopts Einstein
synchronization by round-trip light signals in S, then
a= —wa/b(1 —w ), while if one synchronizes by slow
transport of clocks, then a=b V„a. In special relativi-

ty, the functions a, b, and d have the specific forms
a =b '=(1—w )'~, d =1, but e, can be arbitrary, de-
pending upon the procedure for synchronization; with ei-
ther Einstein or transport synchronization, e= —w. (For
a brief review of the history of discussions of synchroni-
zation, see Ref. [7].) Theories that violate SRT will pre-
dict different functional forms for a, b, and d from those
listed above.

On the other hand, the results of physical experiments
should not depend on the synchronization procedure, ex-
cept those which depend on a direct, one-time compar-
ison of separated clocks. Thus a measurement of the ab-
solute value of the speed of light in S by a time-of-fiight

framework which permits violations of special relativity.
A popular framework for this purpose is the "test
theory" of Mansouri and Sexi [7—11] (MS). This is a
kinematical approach to violations of special relativity.
It assumes: (1) there exists a preferred inertial reference
system X with coordinates (T,X), in which the speed of
light is isotropic, i.e., T —X =0 (units are chosen so
that the speed of light in X is unity), and (2) the transfor-
mation between X and a reference system S which moves
with velocity w relative to X is given by
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A =awcosO, (1.2)

where a is the coefBcient in the expansion of the function
a in powers of w (our conventions here differ from those
of MS; see Sec. II),

a (w) =1—
( —,

' —a)w'+ (1.3)

technique between two points will depend on the synch-
ronization of the two clocks (a particularly perverse
choice of synchronization can make the apparent speed
between those points infinite, for example). However, a
test of the isotropy of the speed between the same two
clocks as the orientation of the propagation path varies
relative to X should not depend on how they were syn-

chronized, as long as they were synchronized by some
procedure initially. Similarly, a measurement of the
Doppler shift of an atomic spectral line using a single
"clock" as a receiver of the signal should not depend on
synchronization, provided that the velocity of the atom is
expressed in terms of observables measured by a single

clock.
This point has sometimes been misunderstood [13].

Chang et al. [14] have suggested that there is a physical-
ly detectable difference between external synchronization
and Einstein synchronization, and that it would be possi-
ble to measure this by means of a Mossbauer rotor-type
experiment. Bay and White [15]argued that the TPA ex-
periment could not in principle test the isotropy of the
one-way speed of light once the arbitrariness of synchron-
ization was accounted for.

In this paper, we will show that these claims are not
correct. Provided that one deals with observable quanti-
ties, the outcome of physical experiments of this type is
unique in all cases and is independent of synchronization;
thus the TPA and other such one-way experiments do
provide valid tests of possible violations of SRT. It is im-

portant to emphasize that those violations are embodied
in functional forms of a, b and d that could differ from
those quoted above, not in the form of c, which is arbi-
trary and irrelevant.

To the lowest order in the velocity w of S relative to X,
the one-way experiments discussed above measure a vari-
ation or anisotropy controlled by the amplitude

TABLE I. Limits on a.

Experiment

JPL time of flight
Two-photon absorption
Rocket redshift
Mossbauer rotor

Limit on a

1.8X 10
1.4X 10

10-'
9X 10

II. LIGHT PROPAGATION IN A TEST THEORY
OF SPECIAL RELATIVITY

The experiments described in the preceding section all
involve propagation of light from a source to a receiver;
source and receiver may or may not be in motion in the
"laboratory" frame S. Thus it will first be useful to
derive a generic formula in the coordinates of S for the
time of flight for propagation of a signal between two
points.

Let a signal be emitted at time t, at x, and be received
at time t, at x„, these coordinates being defined in S. The
values of (T,X) in X corresponding to these events can
be obtained by substitution into Eqs. (1.1). Because light
is assumed to propagate isotropically in X with unit

speed, we have

the behavior of the atomic clocks used to measure the
time of flight as the Earth's rotation transports them
from one place to another in the moving frame. The
combination of these effects leads to a predicted anisotro-
py in the measured phase difference between the two
clocks at the ends of the light path that depends on a. If
a =0, as in special relativity, no anisotropy is predicted.

In this paper, we shall study these four experiments in
detail using the MS test theory, with particular attention
paid to the issue of synchronization (for discussion of
other experiments of this type, see Refs. [8,10]). We shall
also look at higher-order effects, to see what new tests of
relativity might be provided by improved accuracy. In
Sec. II, we derive some basic consequences and formulas
of the MS test theory, and in Secs. III-VI we apply them
to the JPL, TPA, GP-A, and Mossbauer-rotor experi-
ments. In Sec. VII we make concluding remarks.

and 8 is the angle between w and a direction relevant to
the experiment in question, such as the propagation
direction of light or the velocity vector of a moving
clock. In SRT, a =0, so that the anisotropy vanishes.

For the velocity w, it is natural to choose the velocity
of the Earth relative to the cosmic microwave back-
ground, as inferred from the observed dipole anisotropy
in the temperature [16]: w =350 km/s, right ascension
RA = 11.2 h, declination 5= —6. 1 . The resulting
bounds on the parameter a from these four experiments
are listed in Table I.

From the point of view of the MS formalism, the con-
nection between the experimental measurements and the
"isotropy of the speed of light" is not entirely clear-cut.
In the JPL time-of-flight experiment, for example, there
are two effects: the behavior of the speed of light ex-

pressed in the MS coordinates of the moving frame, and

where

x +(b —d }(w x

+2b 'w. x„,( T„—T, )+w ( T„—T, ), (2.1)

x„=—x„—x„w=w/w .

Solving for T„—T„we obtain

T„—T, =b 'y [f(x„,)+w.x„,],
where y =(1—w ) '~, and

(2.2)

(2.3)

f ( x„,}= (b /d y }~ x„, ~ [ 1 —[ 1—(d y /b ) ](w.n„—, ) ]
' ~

(2.4)

where n„, =—x„/x„,. In frame S, the time of reception is
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then given by

t„=t,+a(T, —T, )+e x„, . (2.5)

respective receiver and emitter frames to be v„=(ht„')
and v, = ( ht,' ) ', we obtain a formula relating the mea-

sured frequencies:

+O(fht /x„, ) . (2.6)

Substituting (1I„,—x„, ) =v„b,t„v,b t„w—e obtain a rela-

tionship between At, and ht, :

In calculating the change in frequency of a signal
transmitted between two points, it will be useful to deter-
mine from Eq. (2.4} the interval b, t„between two signals
(or between two crests of a continuous wave) received
compared to the interval ht, between the signals emitted.
We assume that the emitter and receiver have velocities
in S, given by v, and v„at the times of emission and re-
ception respectively. If we denote by (t„X,} and (t„,X„)
the respective events of emission and reception of the
second signals, then, assuming that ht, =t, —t, (&t„—t,
we can approximate

f(1I„,)=f(x„,)+(1I„,—x„,) [Bf(x„,)/Bx„, ]

a(U, ) 1 —R(v„)/(1 —e v„)
a(U„) 1 —R(v, )/(1 —e v, }

(2.12)

The relationship between the velocities v, U, and w can
be obtained by noting that the origin of S', x'=0, moves
relative to S according to x =v t. Substituting these rela-
tions into Eqs. (1.1) and (2.9) and eliminating T and X,
we obtain the "addition of velocities" formula of the MS
framework:

U=w+(a/d)[v —(1 dlb—)w(v w)](1—e v) ' . (2.13)

Equations (2.3)—(2.5), (2.7), (2.8), (2.11)—(2.13), are the
basic ingredients for analyzing light speed isotropy exper-
iments.

In SRT with standard (Einstein or clock transport)
synchronization, these formulas take the form

1 —e v, —R(v, )
ht, =At,'

1 —e v„—R(v„)
where

(2.7)
f (x„,)=x„, ,

R(v)=v n„, +v w,

U=w+y '[v —(1—y ')w. vw]/(1+w. v),
a(U)=(1 —w )' (1—v )'i (1+w.v)

(2.14a)

(2.14b}

(2.14c)

(2.14d)

nre

+V'W

$2+ 1 —
z

(v.w)(w n„)d'y' .

(2.8)

Ve

1 —v .n„
1 —v ne re

' 1/2
Ve

1 —
U

2
(2.14e)

In the low-velocity limit, it will be useful to expand the
functions a, b, d, and e in powers of velocity using arbi-
trary parameters. We write

T =(a') '(t' —e' x'), (2.9a)

X=(d') 'x' —[(d') ' (b') ']U.x'U—/U +UT, (2.9b)

where a'=a(U), b'=b(U), d'=d(U), and e'=e(U).
Since the clock is assumed to be at rest at the origin x' =0
of its frame S', we have, for infinitesimal time intervals,

The time intervals connected in Eq. (2.7) are coordi-
nate times, in reference frame S. It will be necessary to
relate these intervals to intervals of time measured by an
atomic clock moving through S with a given velocity v.
Consider an inertial reference frame S':(t',x') which
moves at the same velocity as the moving clock. Relative
to X, let this velocity be U. The transformation from X
to the frame of the clock is given by

a(w)=1+(a —
—,')w +(a~—

—,')w +

b (w) =1+(P+ ,' )w + (P2+ ,'—)w +-
d(w)=1+5w +52w +
e=(e —1)w(1+e2w + ) .

(2.15a}

(2.15b)

(2.15c)

(2.15d)

In SRT, a, a2, p, p2, 5, and 5z all vanish, and with stan-
dard synchronization, so do s and s2. Our convention for
these parameters de'ers from that of MS; the translation
between the two conventions is given in Table II.

Throughout this paper we will deal with low velocities;
to keep track of the order of approximation, we will treat
w" and v" as O(n) (although in many cases, v «w).
With this assumption, for example, we have

dT=dt'/a', f (x„,)= [x„,) {1+(P—5)[w —(w.n„, ) ]}+O(4),
(2.10)

dt'=(a'la)(1 —e.v)dt . (2.11)

and thus, since

dT =a '(dt —e dx) =a '(1 ev)dt, —

we can relate proper time of a moving atomic clock to
coordinate time of Sby

R(v)=v. n„,[1+(a 5)w +(P 5)(w.—n„) ]—(2.16a)

—2(P—5)v.ww-n„, +v.w[1+(a—P)w ]+O(5),
(2.16b)

U=w+v+(a 5 ,')w v+(5—P——,')w vw— ——.
Applying Eq. (2.11) to ht„and ht, in Eq. (2.7), and
defining the frequencies measured by atomic clocks in the

+(e—1)w vv+0(5)
%'e now turn to analysis of specific experiments.

(2.16c)
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This paper Mansouri-Sexi

2+9
1+p
5

a+1

TABLE II. Comparison of conventions for low-velocity ex-
pansions in Mansouri-Sexi framework.

t, =ts —a(T„—T, )
—e xs,

where

(3.2)

phase with that of the received signal, the latter being
given by 2+vX the time of emission, where v is the in-
trinsic oscillator frequency [19]. Consider the event of re-
ception at B: (ts, xs). Let the phase of the traveling
clock at this event be Po. The phase of the received signal
is 2mvt„where t, is the time of emission of the signal.
From Eq. (2.5) this is given by

III. THE JPL EXPERIMENT T„—T, =b 'y [f(xs)+w xs] . (3.3)

In the experiment performed at the NASA Deep Space
Network [2], the phase of two hydrogen maser oscillators
separated by a base line of 21 km were compared by
propagating a laser carrier signal along a fiberoptic link
connecting them. The phase comparisons could be per-
formed simultaneously at each end using signals pro-
pagated in both directions along the fiber. The phase
differences were monitored over a five-day period as the
base line rotated relative to the Earth's velocity w relative
to the cosmic microwave background. With an intrinsic
clock stability of parts in 10', the expected accuracy in
measuring a diurnal variation in phase difference can be
estimated to be

a'=a(w)[1+(2a —y )(a/b)w v+O(U )],

where

(3.5)

The measured phase difference at 8 is thus $0 2mvt-, .
The proper time elapsed on the moving clock in travel-

ing from 8 to the event of arrival at C: (tc,xc) is ob-
tained from Eq. (2.11):

C
b, t'= f (a'/a )(1 s—v)dt . (3.4)

B

Assuming that v ((w, we expand a' to first order in v, us-

ing the addition of velocities formula Eq. (2.13). The re-
sult is

speed of light X( 1o k t b'1't )
base line

nw = —,'(a 'Ba /Bw+ y w) . (3.6)

X (averaging time) = 10 (3.1)
Substituting Eq. (3.5) into Eq. (3.4) and integrating, we
obtain

Before analyzing this experiment using the MS frame-
work, it is useful to estimate the effects which could
occur in order to establish the terms to be kept in an ap-
proximation. There are two relevant velocities in the
problem, the velocity of the Earth itself, w =10, and
the rotational velocity of the apparatus around the
Earth's axis, v =10 . If n denotes a unit vector parallel
to the base line joining the clocks, then the fractional
phase difference could vary by terms of order n w= 10
and (n w) =10, which could be detectable. Terms of
order n v = 10 would be large enough, but are constant
because of the rigid rotation of the Earth, and thus can-
not be distinguished from constant phase offsets of instru-
mental and environmental origin. Other terms, such as
v w, (n v)(n w), and so on, are too small to be detected
in the current version of the experiment, but might be
detectable in future improved versions. Therefore, we
shall consider only effects of order n w and (n w) . Be-
cause the actual rotational velocity of the Earth does not
play a measurable role, we can ignore it, and can study
the variation in phase difference by comparing phase
differences at two different but fixed orientations of the
base line [17].

We therefore consider the following idealized picture
of the experiment. In a moving frame S, clock A is locat-
ed at the origin x=0; a traveling clock T moves slowly
through S, passing points B and C, which are equidistant
from the origin. In the JPL experiment, this motion is
effected by the rotation of the Earth [18]. As the travel-
ing clock passes each of these two points, it receives a
light signal from the clock A, and compares its own

b, t ' =At + [(2n —
y )(a /b)w —e] (xc —xs ), (3.7)

where At is the coordinate time of travel from B to C.
The coordinate time of arrival at C is thus tc = t~+ ht,
and the phase of the traveling clock on arriving at C is
thus

(()c =$0+2mvb, r' . (3.8)

When the clock reaches C, a second signal is received
from A. The phase of this signal is 2~vt,' ', where t,' ' is

given from Eq. (2.5}by

t,' '=t +At —a(T„' ' T,' ') —s x—
where

r "'—rI"=b -'y'[I (x,}+w x, ] .

(3.9}

(3.10)

b, / =Pc 2~vr,"'=P, +2~v—hr' 2~vr,"'—
=2nv(t, r,"'+Dr'} . —

Substituting Eqs. (3.2), (3.7), and (3.9), we obtain

(3.1 1)

Thus the phase difference at C is Pc 2n.vt,' '. Howev—er,
the initial phase of the traveling clock at B was complete-
ly unknown; therefore, we must choose an initial phase
arbitrarily, then measure subsequent phase differences
relative to that initial choice. The most convenient
choice is $0=2mvt„so that the initial phase difference is

zero. Since this is a constant phase, it wi11 not affect a
possible variation of phase with orientation. Consequent-

ly, at C, the measured phase difFerence is
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bg=2m v[a(T„' ' —T,' ') —a(T„—T, )

+(2a —y )(a/b)w (.xc —xs)] . (3.12)

L=—r„„„d„;p=(ay Ib)f(x) .1
rOun trIP (3.16)

Then substituting Eqs. (3.3) and (3.10), we obtain
Thus, if B and C are equidistant from the origin accord-
ing to this definition of length, then f (xs }=f(xc },and

b,P =2n v( a y Ib ) [ [f ( xc ) —f( xs ) ] b,g/$=2f (xs) ay 'w. (xc —xs) . (3.17)

+2ay 'w (xc x—a)] . (3.13)

EPIP =2aw(cos8 —cos8o)

+ (5—P)w (cos 8—cos 80)+O(w ), (3.14)

where we have defined $=2nvL, and where cos8=w nc
and cos8o —=w. ~a.

In the JPL experiment, light signals were propagated
simultaneously in both directions and phase comparisons
were made at both ends of the fiberoptic link, yielding
both 5$(8) and b,g(8+m ). Thus by summing and
differencing the phase differences at both ends, it was pos-
sible to separate the w term in Eq. (3.14) from the w
term and from effects that do not change sign when the
propagation direction is reversed, such as diurnal temper-
ature effects in the fiberoptic link. The resulting limits
are [2]

I~l &1.8X10 I~ Pl &2x10— (3.15)

where the projection of the propagation base line on the
direction of w has been taken into account.

However, there is an alternative assumption about the
definition of physical length. Since the MS formalism
specifies only the propagation of light, then we could
define length only in those terms, specifically as one half
the round-trip propagation time along each base hne.
From Eqs. (3.2) and (3.3), it is straightforward to show
that this gives

Notice that the result is independent of the synchroniza-
tion procedure embodied in the vector a. This is because
the initial relative phase of the two oscillators must be
chosen arbitrarily; this is tantamount to choosing a con-
vention for synchronization. In SRT, a =0, and
f(x}=lxl, and thus b,P—=0 if B and C are equidistant
from the origin, as they were in the JPL experiment (the
base line was fixed in length).

Now, in the MS test theory, we must be careful about
the interpretation of the term "equidistant. " Since
Lorentz invariance is assumed to be violated, we do not
have the same concept of invariant length as in SRT. In
SRT, the relation between the physically measured length
and the coordinates in a given frame is L =

I
x I. Since the

change of the baseline from AB to AC is caused by the
rigid rotation of the Earth, so that the physical distance
is the same (the atoms along the base line are unchanged),
we would conclude that Ixsl = lxcl. But in the MS test
theory, we do not know a priori the relationship between
physical length and lxl. Thus we must make an assump-
tion.

One assumption is that L = lxl as in SRT. The result is
that xc =Lac and xz =Ln~, where nc and nz are unit
vectors. In the limit m &(1, using the expressions of
Eqs. (2.15) and (2.16), the result is

In the limit w «1, using the expansions of Eqs. (2.15)
and (2.16}we have

bglg =2aw(cos8 —cos80)+0 (w ), (3.18)

with no w dependence, and thus no bound on 5—P.

IV. THE TPA EXPERIMENT

In this experiment [1], a fast beam of Ne atoms was
excited from an initial state l to an excited state n by
two-photon absorption via an intermediate state m. The
two photons were provided by counterpropagating laser
beams of identical frequencies. The energy differences
between the l and m and the m and n states are not equal,
however, so the velocity of the atomic beam parallel to
the laser beams was chosen so that, as seen in the atom's
rest frame, the blueshifted photons from the forward
direction are resonant with the transition with the larger
energy difference, while the redshifted photons from the
backward direction are resonant with the transition with
the smaller energy difference. The laser frequency must
be chosen and controlled so that the two photons can
generate the required double transition, while the velocity
of the beam is controlled so that the intermediate transi-
tion occurs. An analysis within SRT (see below) shows
that this will occur if the velocity V of the atom and the
laser frequency vL are related to the intrinsic transition
frequencies v& and v2 by

V2 V)V=
V2+ V)

VL, V)V2

(4.1a)

(4.1b)

V V+V=
V +V+

VL = V+V

(4.2a)

(4.2b)

In the experiment, the velocity and laser frequency were
controlled using feedback loops which adjust them to
maintain maximum resonant absorption. In practice, the
measured quantities V and vL may differ from these exact
values because of such systematic effects as ac Stark
shifts, and deviations from SRT.

From the point of view of the atom, the important
quantities are the forward and backward frequencies of
laser photons as measured in the atom's rest frame, since
those frequencies will determine the strength of any TPA
resonance. If we define the frequency of the photon from
the backward direction (i.e., moving in the same direction
as the atom) as v+ and that of the photon from the for-
ward direction as v, then the actual measured quantities
are
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We consider the following idealized model for this ex-
periment. A laboratory moves with velocity w relative to
the preferred frame X. A laser signal is emitted continu-
ously from one end of a cavity and reflected from the oth-
er hand. The frequency of the laser is VL =1/tp, where tp

is the interval between wave crests emitted, measured in
the laboratory frame S. From stationarity or from direct
calculation, the frequency of the reflected beam is also
VL. An atom moves with coordinate velocity v=vn,
where n is a unit vector parallel to the axis of the cavity,
pointing in the same direction as the emitted laser signal.
The atom receives adjacent wave crests from the emitted
laser beam and from the reflected laser beam. The time
interval between reception of adjacent crests At„can be
obtained from Eq. (2.7) by setting v, =0, and by noting
that I„,=+x„,n, where the positive sign corresponds to
the direct laser beam. But, since v„=v=vn, we find

from Eq. (2.8) that

R (v)=+u(ay /b)[f (n)+n. w]

and, thus, from Eq. (2.12) we have [19]

1+a (w) uay f (n)+n. w

a(U) b 1 —Ev
(4.3)

In SRT, using a =b '=y ', d =1, c.= —w, along
with Eqs. (2. 14a) and (2. 14d), we find

1+V 1+U
V+ —VL =

VL+1—u 1+u
(4.4)

which is the standard special-relativistic Doppler-shift
formula. Notice that (v+v )'i =vI, independently of u,
and (v —v+)/(v +v+)=v.

Now substituting the low-velocity expansions, Eqs.
(2.15) and (2.16), and assuming that u =w, we obtain

(v+v )'i vL '=1—av —2auw cos8+(a —
—,'a —a2)v +(4a —2aE —4a2)u w cos8+(2a5 —a —2az)u w

+[2a(P—5—e)+4a +a —4az]v w cos 8+(2aP —4az)vw cos8+O(6),

V=u[l+avwcos8+(a —5)w —(P—5)w cos 8]+O(4),

(4.5a)

(4.5b)

where cos8=w n. Notice that the expression for vI in Eq. (4.5a} depends on the arbitrary synchronization parameter
c. This dependence is only apparent, however, because the coordinate velocity U is not directly measurab1e. Instead, V

is the measured quantity through the accelerating voltage on the beam required to maintain resonant absorption. Using
Eq. (4.5b) to express v in terms of V and substituting into Eq. (4.5a), and noting that in the atom s rest frame the reso-
nance condition corresponds to v+v = v&V2, we obtain, finally

vI =(v, vz)'i [1+aV +2aVw cos8+( —,'a+a2) V +4a2V w cos8 —(a —2a2)V w

—(a —4a2)V w cos 8—2[a(a+P —5) —2az]Vw cos8+2a(P —5)Vw cos 8+O(6)] . (4.6)

Thus, in accord with the argument of Bay and White
[15], there is no dependence on s, but contrary to their
argument, there is residual dependence on the SRT-
violating parameters a, P, and so on. In SRT, all the V-

and w-dependent terms vanish, as expected.
The TPA experiment used a beam of neon atoms with

kinetic energy per atom of about 120 keV, corresponding
to a velocity of 3.5 X 10 of the speed of light. The laser
frequency and the beam voltage (which was related to the
velocity V) were monitored to look for a diurnal variation
generated by the cosO term as the Earth rotated. A limit
of 10 " was put on such a variation, leading to the
bound

ia+2a~V —[a(a+@—5)—2az]w i & 1.4X 10 . (4.7}

However, since V =w =10 the only useful bound is

V. THE ROCKET REDSHIFT EXPERIMENT
(GRAVITY PROBE A)

The 1976 GP-A experiment [6] was intended primarily
to be a test of the gravitational redshift, but it also was
sensitive to special-relativistic effects. A Scout-D rocket
carrying a hydrogen maser clock was launched to an alti-
tude of 10000 km; an identical hydrogen maser was lo-
cated on the ground. A round-trip signal was sent from
ground to rocket and back for the purpose of tracking the
payload; at the same time, the rocket clock generated a
signal which was sent to the ground. If vp is the intrinsic
frequency of a hydrogen maser in its own frame, and if v'

and v" are the received frequencies of the one-way and
two-way signals, respectively, then the experiment was
designed to measure two fractional frequency shift sig-
nals: the two-way Doppler signal D, defined by

t'ai &1.4X 10-' (4.8) D —= ( v" —vo ) /vo (5.1)

An improved experiment, or one using higher beam ve-

locities V could begin to constrain the parameter a2.
Such improvements could also lead to a bound on the
semidiurnal term proportional to V w cos 0, which also
depends on 0.'z.

R —= (v' —vo)/vo — D2/= ' v/—vo —,
'v" /vo —

—,
' (5.2)

and the "redshift signal" R, defined by combining the
one-way frequency shift with half the Doppler signa1:
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The Doppler signal D contains twice the first-order
Doppler shift of the emitted frequency caused by the
rocket's motion relative to the ground, but it does not
contain the gravitational redshift, because the Earth-
bound emitter and receiver are at the same gravitational
potential. The first term in the redshift signal (v' —vo)/vo
contains the gravitational redshift of the signal produced
by the potential difference between rocket and ground,
and the first-order Doppler shift, once. The second term
in R thus cancels the first-order Doppler shift, so that R
contains only the gravitational redshift effect, plus
second-order SRT effects. This "Doppler cancellation"
scheme was built into the data-acquisition system. The
gravitational redshift effects have been analyzed else-
where [6]. For the purpose of this paper, we shall focus
on the special-relativistic effects.

We consider the following idealization of the experi-
ment. In an inertial frame S, which moves at velocity w
with respect to X, a clock is at rest at the origin, and a
second identical clock moves with velocity v. A signal of
frequency vp is sent from the rest clock to the moving
clock and back, and a signal of the same frequency (as
measured in the clock's rest frame) is emitted by the mov-
ing clock and received by the rest clock.

Consider first the round trip signal. Since v, =0, the
frequency received at the rocket is given, from Eq. (2.12),
by

in the rocket frame}. Thus the frequency v" received on
the ground is given by

v" /v„= [a (U) Ia][1—R'(v)/(1 —a.v)] (5.4)

where R ' is given by Eq. (2.8) with x„=—x„,n. Combin-
ing Eqs. (5.3) and (5.4) we obtain

1 —a.v —R (v)
1 —a v —R'(v) (5.5)

Q =
2

v.n+
2

—1 (v w)(w n), (5.7)
ab dy

d f(n) b

then R(v)=Q+(ay /b)v w and R'(v)= —Q+(ay I
b)v w. The Doppler and redshift signals are then given
by

D=
1 —e. v+Q (ay Ib—)v w

R= [a(U)/a —1](1 a v)+—(ay. Ib)v w

1 —a v+Q (ay Ib—)v w

(5.8a)

(5.8b)

From Eq. (2.12), we find that the received frequency of
the one-way signal from rocket to ground is given by

v'=vs[a(U)/a](1 —a.v)[1 a.v —R'(v—)] ' . (5.6)

If we now define

v„/vu= [a Ia (U)][1—R (v)/(1 —a.v)],
D = —2v n/(1+v n),
R =[(1—v )'~ —1]/(1+v.n) .

(5.9)where v and U denote the velocity of the receiving rocket
clock (as measured in S and X, respectively), and where R
is given by Eq. (2.8) with x„,=x„,n. This signal is re-
turned with the same frequency as received (as measured

Expanding Eqs. (5.8) for low velocities as in the preceding
section, we obtain

In SRT, Q =v.n, and we recover the exact expressions
(5.3)

D = —2v n(1+v n) '[1+(a—5)w +(P—5}(w n) +aw v]+4(P—5)(v w)(w n)+O(4),

R =[(—
—,'+a)u +( —

—,'+a2)v +2av w](1+v n) ' —(2Pa —4a2)w v w —[(2a—1)5—a +a —2a2]w u

(5.10a)

+[(2a—1)(5—P)+2as —a+4az](v w) +[(2a—1)a—a+4az]u v w+O(5) . (5.10b)

Again, we see the presence of s-dependent terms in the
higher-order corrections in R and D. As before, these
effects are illusory, since the coordinate velocity v is not
directly measured; instead it is inferred from the Doppler
signal. By tracking the rocket from several tracking sta-
tions, thereby using different propagation directions n,
one can determine the vector velocity. If we define the
inferred velocity component in a given direction n by
D„:—V n/(1+V n), then we have

~~
=u~~[ +(a—p)w'+av. w],

Vj =v~[1+(a—5)w'+av w] .

Thus

V.w=v w[1+(a—p)w2+av. w],
V = V()+ V~=v [1+2(a—5}w +2aw. v]

—2(P—5)(w v)' .

(5.12a)

(5.12b)

(5.13a)

(5.13b)
V n=D„/(1 D„)—(5.11)

where D„ is given by Eq. (5.10a) with a chosen n. Sup-
pose that D has been measured using a propagation direc-
tion para11el to vr, and using two orthogonal directions
perpendicular to w. Combining Eqs. (5.11) and (5.10a),
with n w=~w~ and n.w=0, respectively, we find the
components of V parallel and perpendicular to w to be

Rewriting v in terms of Vin Eq. (5.10b), we get

R =[( —,'+a)V +( —
—,'+a2)V +2aw V][1+V n]

+(2a2 —a )w ( V +2w. V)

+(4a2 —a)w V(V +w-V)+O(5) . (5.14)
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When written in terms of the observable velocity V, the
result is independent of c.

Focusing on the O(2) terms in Eq. (5.14), we see the
analogue of the second-order Doppler shift and a term
dependent on the angle between w and the rocket's veloc-
ity. The absence of such an effect in the data from the
1976 experiment [6] led to a rough limit

[a/ &10-' (5.15)

VI. THE MOSSBAUER ROTOR EXPERIMENT

In this experiment [3—5], a y-ray emitter was placed
on the rim of a rotating disk and an absorber was placed
at the center. A detector was placed just behind the ab-
sorber. The disk was rotated, and the detector monitored
changes in the transition of y rays through the absorber
as a function of the direction of propagation of the rays.
Changes in transmission would occur if the frequency of
y rays, v„received at the absorber differed from the in-
trinsic frequency corresponding to the peak of the y-ray
absorption cross section, v, . The combination of slight

I

vr a(U, ) R (v, )1—
a (1—av, )

(6.1)

In SRT, using Eqs. (2.14), we get the usual time dilation

—(1 u2)l/2 (6.2)

Substituting the slow-motion expansions Eqs. (2.15) and
(2.16) we find

intrinsic differences between absorber and emitter and the
ordinary time dilation of the emitter's frequency resulted
in a small offset between v, and v, whose consequence
was that any periodic changes in v„resulting from an an-
isotropy in the speed of light would lead to large changes
in absorption because the incident frequencies would lie
on the "wings" of the resonant absorption curve.

Consider a disk with its origin at rest in S. Light is
emitted at (x„t, ) on the rim and received at (x„=O,t„).
Here v, =0 and v, I, =0, since the disk is assumed to ro-
tate rigidly in S (we assume here that physical length is
defined by ~x~). Thus from Eq. (2.12),

v„/v, =1—( —,
' —a)u, +2aw v, —2(P—5)w v, w n„—( —,

' —a2)u, + [2aa+(2a —1)(5—P) —a+4a2](w. v, )

+[2a(a —P) —2a +4a2]tu w v, +[a —a+2a2 —(2a —l)5]tu u, +[(2a—l)a —a+4a2]u, w v, +O(5) . (6.3)

v„/v, = 1 —( —,
' —a) V +2aw V —2(P—5)w Vw n

—
( —,

' —a2)V +(2a2 —a )w ( V +2w V)

+(4a —a)w V( V +w V)+O(5) . (6.4)

Again, the final result is independent of synchronization
parameter a. The most recent experiment, reported by
Isaak [5], put a limit of 2X10 ' on variations of v„/v,
with phase of the rotor, using emitter speeds of around
360 ms '. Since V&(w, only the terms linear in V in
Eq. (6.4) are relevant. Taking into account the projection
of V onto w, we obtain the bound

ia —(a —2a2)w i
&9X10 (6.5)

Barring fortuitous cancellations between terms, we can
read off the separate bounds ~a~ &9X10 and
~a2~ & 3 X 10 . The absence of a signal at twice the rotor

As in Sec. V, we must express the coordinate velocity v,
in terms of an appropriate physically measured velocity
V. In practice, V was presumably determined from the
angular velocity, dimensions, and orientation of the disk.
However, in the absence of a detailed accounting of how
such measurements might have been made, and because
of the diSculty of analyzing such details in a non-
Lorentz-invariant framework, we shall adopt the
Doppler-measured results of Sec. V, since in principle the
velocity of the emitter could have been measured this
way, using absorbers stationed at various locations
around the laboratory. On substituting Eqs. (5.13), we
find

frequency can also be used to limit the 0 (3) term in Eq.
(6.4) proportional to w Vw. n. The result is
iP —

(2i &10-'.

VII. DISCUSSION

We have used a test theory of special relativity to ana-
lyze experiments in which the propagation of light along
a one-way path was a central physical phenomenon.
These experiments searched for an anisotropy associated
with that one-way propagation, with null results. We
found that the synchronization of clocks played no role
in the interpretation of these experiments provided that
one is careful to express the results in terms of physically
measurable quantities.

In the JPL time-of-flight experiment, the measurable
quantities were oscillator phase differences measured rel-
ative to an arbitrarily chosen initial clock phase. Here,
the initial choice of phase difference amounted to a
choice of synchronization, but once that choice was
made, it was fixed once and for all, so that a resulting an-
isotropy in phase differences as the orientation of the
propagation path changed became physically meaningful.
In the three frequency-shift experiments, the TPA, GP-
A, and Mossbauer rotor experiments, the measurable
quantities were the frequency shifts and the velocities of
the emitters. When the latter were properly interpreted
in terms of Doppler-shift measurements, synchronization
again dropped out of the problem.

One major limitation of the MS test theory is that it is
purely kinematical: it deals only with relations between
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coordinates in different reference frames. The only physi-
cal assumption inherent in the formalism is the isotropy
of the propagation of light in the preferred frame X. We
have had to make additional dynamical assumptions that
may or may not be justified. For example, we assumed
that the proper time of a clock moving in the laboratory
frame S was related to the coordinate time of S by Eq.
(2.11). However, as Haugan and Will [20] have em-

phasized, violations of Lorentz invariance inevitably lead
to altered dynamics for the rods and clocks on which the
transformations between inertial frames are based. For
example, two different clocks moving through S may
measure different proper times. In other words, time di-
lation need no longer be universal. Because we focus on
measurements made by a single clock (hydrogen maser,
neon atom, Mossbauer absorber) in each experiment, and
deal only with effects resulting from changing orienta-
tion, such dynamical effects on clocks should not play an
important role.

On the other hand, we had to make an assumption

about physical length in interpreting the JPL experiment
and the Mossbauer rotor experiments. Again, if Lorentz
invariance is violated, the behavior of moving rods may
depend on their internal structure, so that a universal re-
lation between coordinate length ~x~ and physical length
I. may not exist, or may not satisfy I. = ~x~. Consequent-
ly there was an ambiguity in our interpretation of the
JPL experiment at O(w ). The lowest-order effects were
not affected by this problem.

Whether or not these ambiguities in the MS framework
can be resolved remains to be seen. We are currently
studying whether the dynamical framework for Lorentz
noninvariance developed by Haugan and collaborators
[20,21] could be combined with the MS approach to yield
a formalism that avoids such ambiguities.
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