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Parton structure of the photon beyond the leading order
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A consistent and technically eKcient treatment of the photon structure functions at higher orders of
perturbation theory is presented. A factorization scheme avoiding the common perturbative instability
problems encountered in the large-x region is introduced. The resulting implications for a perturbative
analysis of the photon structure in this recommended scheme are pointed out.
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I. INTRODUCTION

Our present knowledge about the parton content of the
photon is rather poor since Ff(x, g ), the only present
source of information, is quite insensitive to the gluon
distribution and involves only a linear combination of the
photonic parton distributions. Forthcoming jet or
direct-photon production experiments at high-energy
e+e or ep colliders will provide further independent in-
formation on qr(x, g ) and Gr(x, g ) in particular also
in the interesting low-x and/or high-Q region. The
theoretical analysis of these experiments will afford also
calculations beyond the leading logarithmic order (LO)
just as in the corresponding investigations of the nucleon
partonic structure. Prior to this one needs, however, the
tools for treating the parton Q evolution in the next-to-
leading logarithmic order [higher order (HO)]. Our pa-
per is devoted to this issue. In particular we shall present
the Mellin n-moment technique of solving the Q-
evolution equations which proves to be very efficient for
the nucleon in the low-x and/or high-Q region since it
avoids the many iterations involved in the more direct
Bjorken-x space technique whose application to the pho-
ton should be performed along the lines presented in
Refs. [1,2] or [3,4]. In addition, it is much easier to omit
all inconsistent 0 (a, ) contributions to the photonic par-
ton densities and to F( when using the analytic HO 2-

loop solutions in n-moment space than working with the
numerical solutions in Bjorken-x space obtained by itera-
tions [2—4]. Furthermore, we suggest and analyze a new
factorization scheme for HO calculations, where the
direct-photon contribution to F$ is absorbed into the
photonic quark distributions. This allows for perturba-
tive stability between LO and HO results and avoids the
notorious negative pointlike HO contribution to
F((x,g ) in the modified minimal subtraction (MS)
scheme for large values of x.

In Sec. II we present the appropriate evolution equa-
tions and their solutions in n-moment space while Sec. III
is devoted to the important issue of factorization schemes
and boundary conditions associated with these integra-
tions. The analytic expressions needed for performing
the Mellin inversions are finally presented in the Appen-
dix which also includes various analytic expressions for

HO splitting functions of the photon that are necessary if
one chooses to solve the evolution equations directly in x
space; transformations between different factorization
schemes are also discussed, which might be relevant for
future HO analyses of resolved photon contributions to
leptonic and semihadronic processes.

II. PHOTONIC PARTON DISTRIBUTIONS
AND THEIR EVOLUTIONS

Following as closely as possible the notation and
methods presented in Ref. [1], the parton distributions
qr(x, Q ) in the photon satisfy the well known inhomo-
geneous evolution equation

dq (x ) =k(x Q )+Peqr
d lng

(2.1)

where the e product denotes the conventional convolu-
tion in Bjorken-x space

Peq~—= P x y, q~y,
& dy

x y
(2.2)

a, (g ) P"'(x)+
277

a, ( ')
2'

where n= —„', and

a, (g')
4~

1 Pt lnlng /A

Polng /A P(') (lng /& )
(2.5)

with Po= 1 1 —2f /3, P, = 102—38f /3, and f being the
number of active flavors. The evolution is straightfor-

which reduces, in Mellin-n space, to a simple product
P "q ~'" with the nth moment being defined as

f"(Q )= J x" 'f(x, g )dx . (2.3)
0

The photon-parton splitting functions k(x, g~) and the
purely hadronic splitting functions P(x, g ) in Eq. (2.1)
receive the following 1- and 2-loop contributions:

aa, (g )
k = k'o'(x)+ ', k'"(x),

2m (2m. )

(2.4)
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ward for the fiavor-nonsinglet case qy=q]qs where
k"=kNs(x), i =0, 1, can be found in Ref. [1] and
P"=PN)s(x) are given in Ref. [5] and/or [6]. In the
fiavor-singlet case, however, Eq. (2.1) becomes a (coupled)
matrix equation with

—P((,g')=qP (,g')+( ')X (,g')

a, (g )+ B 4 [q3qs+(e2)Xy)
4~

ql

(i) (0 '

Xy Pqq Pqg
(i)

Gy ~ p(i) p(i)
w gg

(2.6)

+(e ) B eGya, ( )

4m.

+3f(e ) By(x) (2.8)

k (0) k(1) '

(0)— (1)—
0 ~ ~ (&)k

where Xy =g/(q y+ q y }. The hadronic splitting func-

tions P,'„"(x}can be found in Refs. [7] and [6], the k "(x)
are specified in Ref. [1] and the photon-gluon splitting
function is given by

k"'(x)=3f(e )——16+8x + x2+
3 3x

—(6+ 10x)lnx —2(1+x)ln x (2.7)

with (e")=f 'g&eq and where the 5(1—x) contribu-
tion, incorrectly included in Refs. [8,1] and in all subse-
quent publications, has been omitted. Such a diagonal
term corresponds to the gluon self-energy contribution to
the C+Tz term of P~', from where kg"' has been origina1-
ly extracted, which obviously has to be dropped [9,10] for
the off-diagonal photon-gluon splitting function kg"'. We
shall see, however, that the results derived with the
correct expression (2.7) do not significantly deviate, ex-
cept for G~ in the large-x region, from the incorrect ones,
obtained thus far, where the —5(1—x) contribution to
(2.7) has been erroneously used.

Solving the evolution equations (2.1) straightforwardly
for q]qs(x, g ) and qy(x, g ) by iteration, one encounters
[1—4] higher-order terms in a, which, in the relevant 2-
loop order considered, amount to inconsistent contribu-
tions to the photon structure function E$ (x,Q ); for ex-
ample, when combined with the appropriate coefficient
functions according to

k(i)n 3f((e4) (e2)2)&n ki(n) 3f(e2)&n

n +n+2
n (n +1)(n +2) (2.9)

a( =— [S)(n) —S2(n)+ —,
' ]i('0 — S) (n)

L

+ 11n +26n + 15n +8n +4
n (n+1) (n+2)

with Si(n) =g". )j and

with qIqs
——QI(e2 —(e2) )(qy+q y) and the convolutions

are defined in (2.2), while the B;(x) can be found in Ref.
[1]. In order to avoid the spurious convention-dependent
higher-order O(a, ) terms which arise from these convo-
lutions [their complete inclusion affords a treatment of
Eq. (2.1) beyond the order considered here], various rath-
er cumbersome algorithms in x space have been suggest-
ed and employed [2—4] which allow one to separate the
one-loop and the two-loop contributions to ques(x, g )

and qy(x, Q ). This separation then allows one to omit
explicitly a11 spurious higher-order terms which appear in
(2.8). It is, however, much easier to work directly in n

moment space where the solutions of Eq. (2.1) can be
given analytically and thus the separation of the solutions
into various powers of a, is trivial. Furthermore this n-

moment technique for the Q evolution, together with its
Mellin inversion to x space, proves to be very efficient in
the low-x and/or high-Q region, since it avoids the
many numerical iterations involved in the more direct
Bjorken-x space calculation. This situation is similar to
the one encountered for nucleon structure functions
[11,12].

Taking, according to Eq. (2.3), the nth moment of Eq.
(2.1), the various convolutions simply factorize and the
moments of the inhomogeneous LO and HO k terms in
(2.4) are given by

())fj3f(2)42n+4n+n —10n —5n —4n —4
(n —1)n (n +1) (n +2) (2.10)

where the latter expression corresponds to the nth mo-
ment of Eq. (2.7); i.e., there is no additional constant term—1 inside the square brackets of (2.10) as previously in-
correctly included [8] due to the absence of the —5(1—x)

term in Eq. (2.7). The moments of the 1- and 2-loop split-
ting functions are well known and can be found, for ex-

Eqs. (B14)—(B17), and P„'„',)"= —y(„„')"/8 with y(„„""given
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by Eqs. (B19)—(B22) of Ref. [6]; the same relations hold
of course also for the NS splitting functions with yN&
given by Eq. (B14) and [13]yNs"=yNs"(q=+1) given by
Eq. (B18) of Ref. [6]. It is now straightforward to find
the solution of Eq. (2.1) with the help of the evolution
operator [14]

q'"(Q') =qk" (Q')+q&.d(Q') (2.11)

with L (Q ) =—a, (Q )/a, (Q0) and where U accounts for
the 2-loop contributions. With this ansatz [14] one ob-
tains

as Q —(2/p0) p

2~
with the "pointlike" (inhomogeneous) HO solution given
by

a, (Q2} 277

1
k (0)n

2 p(0)n 2)rp0

—(2' V"'"
+[1 L'— ] „k"'"— k( '"—Uk' )" +O(a,—p'0'" 2m. 2@0

(2.12)

and the "hadronic" (homogeneous) HO solution can be explicitly calculated using

f(P' '")=f(A+ )P++f(A," )P (2.17)

(2' u("" a (O }--(2' )~")n

+O(a, ), (2.13)

where care is taken everywhere about the order of terms
since in the flavor-singlet case we have to deal with the
matrices and vectors in (2.6). The LO results are of
course entailed in these expressions by simply dropping
all the obvious higher-order terms (P„k"'",U) and there-
fore will not be written out separately.

In the flavor-singlet case the HO evolution matrix
U —= 0 satisfies [14]

q$L"= a "+b"+O(a, },4n

S

(2.18}

this yields, when inserted into the nth moment of Eq.
(2.8),

For the fiavor-nonsinglet case, the solutions (2.11)-(2.13)
for ques (Q ) do not involve any matrices and Eq. (2.14)
simply reduces to UNs = —(2/p0)R Ns.

With these explicit solutions at hand for the photonic
parton distributions ques, Xr'", and Gr" it is now
straightforward to find the correct consistent combina-
tion with the Wilson coefficients according to Eq. (2.8) of
the final expression for F$, for example, where spurious
0 (a„a, ) terms should be omitted from the "pointlike"
and hadronic contributions: Since q$L in (2.12) is of the
general form

[O'P"']= '0+X
2

0= — (P PP, +P PP )
Po

P RP
+

A, + —)(,
" —

—,'P0 A.
" —

A, + —
—,'P0

P kP,

with R =P"'"—(pi/—2p0)P ' '", which yields

(2. 14)

(2.15)

' n-i&f x" ' —Ffpi (x, Q )dx
0 X

[aNs+(e )az]+b4+(e )bz
a,

+&q a Ns+ (e') (&q~ y+&G~G )

+3f(e ) B",
with

) n ( ('p(0)n+ p(0)n++(p(0)n p(0)n)2+4p(0)np(0)n ]+ 2 I. qq gg
—

qq gg qg gq

p —+(p (0)n gn I )/(gn gn

P =P, P P =P P =0, P +P =1 .

(2.16}

with [8,6]

4gn 3 — S, (n)+2S, (n)n(n+1)

Since P' '"=A,+P++A,"P, the remaining matrix ex-
pressions in Eq. (2.12) for qjL" and in Eq. (2.13) for ql;,d

—2S2(n)+ —+ + —9
3 4 2
n n+1
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BG =2f ——+1 1 6
n n+1

6
n+2

n2+n +2
n (n + 1)(n +2) (2.20)

B"=(2/f)BG .

Again, the LO result for F$ pr is obtained from Eq. (2.19)
by omitting all b" and 8" terms. Although less impor-

tant than for the pointlike terms, the hadronic contribu-
tion to F$ may also be consistently constructed from (2.8)
utilizing the hadronic distributions as given in (2.13).

For most experiments of present interest, all expres-
sions above should correspond to the f=3 active light
flavors u, d, and s. The contribution of the heavier
quarks h =c, b, t to F$ should, in the threshold region
where W'R2mz with 8' —=Q (1/x —1), be calculated ac-
cording to the lowest-order (Bethe-Heitler) cross section
y'(Q )y —+hh, similar to the case of deep-inelastic
lepton-hadron scattering:

2
2 4&, 4mI,—Fft, (x, g )=3et, —P 8x(1 —x)—1 —x(1—x) + 4m), 2 8mi, 1+xz+(1 —x)2+x (1—3x) —x ln (2.21)g2 g4 1 P

with p =1—4m&x/(1 —x)Q . Far above the heavy-
quark threshold region, W »2m&, the heavy-quark
flavors are treated as the light (massless) u, d, s flavors:
The inclusion of these heavy quarks h in the massless
evolution equations is, as usual, assumed to follow the
same pattern as for the light quarks [15],which implies,
in the MS scheme, the continuity of all the parton distri-
butions as well as of a, (g ) across the "threshold"

Q =mh. This yields the boundary condition
hr(x, mh)=h r(x, mh)=0 and a somewhat complicated
expression [15] relating A' +" to A' '. Here f +1
denotes the number of the relevant active flavors at
Q )mz which should obviously be used in Po and P& as
well as in all Aavor factors appearing above. Note furth-
ermore that the singlet combination Xr in (2.6) now in-
cludes all the relevant active quarks with m ~g and
that the set of nonsinglet distributions

ques

(Q ) should be
completed by all the relevant combinations, i.e.,
(ur+u r)+(dr+d r)+(sr+s r) 3(cr+c "—), (ur+u r)
+(d +d )+(sr+s r)+(cr+c ) 4(br+b r—), etc.

All the above solutions in moment-n space may be con-
verted into the desired x-space expressions by utilizing
the Mellin inversion of Eq. (2.3): i.e.,

f(x, g )=—1 dz im[e'&x ' " f" '+" (Q )],
77 0

(2.22)

where the contour of integration, and thus the value of c,
has to lie to the right of all singularities off"(Q ) in the
complex n plane. For all practical purposes one may
choose [12] y=135' and c =0.8 for the nonsinglet and
c =1.8 for the singlet sector inversions. The upper limit
of integration in (2.22) may be taken to be 5+ 10/lnx
as can be estimated from (2.22) with a slowly varying f"
for n »1, which suffices to guarantee accurate and stable
numerical results for all nonsinglet and singlet inversions
considered. The Mellin inversion (2.22) affords the ana-
lytic continuation in n of the moments f". The only obs-
tacle lies in the higher-order yNs" and y'„„""which were
originally presented [6] only for integer values of n. The

prescriptions for the relevant analytic continuations [12]
are, for completeness, recapitulated in the Appendix.

III. FACTORIZATION SCHEMES
AND BOUNDARY CONDITIONS

FOR HO PHOTONIC PARTON DISTRIBUTIONS

The (regular) solutions in (2.11) of the evolution equa-
tions depend on the unspecified hadronic input distribu-
tions at Q =go which, as in the case of the nucleon, can
either be determined by a multitude of dedicated experi-
ments, i.e., phenomenologically, or via some reasonable
physical assumptions, e.g., the ones proposed in Refs.
[12,16,17]. Up to now the phenomenological investiga-
tions were restricted to F$(x, Q ), which does not suffice
for delineating the various parton distributions since it
depends only on their linear combination according to
Eq. (2.8) or (2.19). The first two terms in (2.8) represent
the LO contribution to F$ and the remaining HO terms
refer to the MS factorization scheme which, so far, has
been used to define and calculate HO parton distribu-
tions, splitting functions and coefficient functions
[8,6, 14]. In this MS scheme one notes that the last B
term in (2.8), which is negative and diverges in the large-x
region, Br(x)=4[in(1 —x)—1], could drive F((x,g2) to
physically unacceptable negative values [2] as x ~1 if in
HO one takes over "naively" the LO boundary condi-
tions for the photonic parton distributions at Q =go.
This is illustrated in Fig. 1 for the pointlike solution in
Eq. (2.12). Clearly the addition of the conventional ha-
dronic contribution in (2.13), where the input qf,d(x, Qo )

is usually related to the pionic distributions via vector-
meson dominance (VMD) [18,2], will slightly improve the
situation; but even with a fine-tuning of the hadronic in-
put parameters, the VMD input alone, which vanishes as
x ~1, is not sufficient to avoid negative values of
F((x,g2) throughout the whole x region and for all
Q~~Q02 [2,4]. Furthermore, one notes from Fig. 1 that
the pointlike HO MS„„„,predictions, given in (2.12),
differ drastically from the LO ones. This requires the ha-
dronic HO input in (2.13) to be appropriately adjusted
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gk(1)n 3f((e4) (e2)2gP(o)ngn
NS w r '

'5k(1)n ' .p(0)nB n
.

w

gk(&~ f ~ ) p(o~ g. gq r.

(3.1)

We shall call this factorization scheme DISr since only
the purely photonic higher order Br term has been, by
definition, transformed into the photonic quark distribu-
tions in contrast with the full DIS (deep-inelastic scatter-
ing) scheme [11,19] where all the HO contributions to F2,
i.e., also the B and B terms, are absorbed into the quark
distributions. The advantage of the DISr scheme is that
we can use the same boundary conditions for the point-
like LO and HO distributions,

and substantially different from the LO one, in order to
partly avoid sizeable perturbative instabilities for the full
LO and HO solution (2.11), in particular for Fj(x,Q ).

In order to circumvent such inconsistencies in HO
(MS) calculations, which are mainly caused by the Br
term in Eq. (2.8) or (2.19), it seems to be more appropri-
ate to change the pointlike HO boundary conditions at
Q =Qo in order to compensate the troublesome B con-
tribution or, equivalently, to search for a different factori-
zation scheme which does not have the problems of the
MS scheme naively implemented as discussed above and
allows for the same pointlike input as in LO. Such a fac-
torization scheme can be easily found by removing the
Er term in (2.8) from F( and absorbing it into the quark
distributions. This redefinition of the photonic distribu-
tions implies, of course, also a transformation of the pho-
tonic HO splitting functions k"' in (2.4) which can be
most easily derived from the nonsinglet and singlet evolu-
tion equations for F$ in the moment n space: The trans-
formation B&~B"+5B"=0, i.e., 5B"= —8" implies
for the k'"" in Eqs. (2.9) and (2.10) the transformations
k'""—+k'""+5k'""with
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FIG. 1. The pointlike LO and HO solutions for F$ in the

MS„„„,and DIS~ schemes resulting from Eq. (2.12) which corre-
sponds to the vanishing input (3.2), using Qo = 1 GeV~,

ALQ AHQ 0.2 GeV, and f=3. The results for the DIS~
scheme are obtained from Eq. (2.19) with B~:—0 using the solu-
tions in Eq. (2.12) with k"' transformed according to (3.1).

ously refers to the physically inferior straightforward
solutions (2.12) in the MS scheme used thus far, in con-
trast to the DISr solutions where the k"'" in (2.9) and
(2.10) are replaced according to (3.1). Comparing the HO
results for the DIS and the MS„„„,scheme with the LO
solutions, it becomes obvious that perturbative stability

qk(x Qo)=qk(x Qo)=GAL(x Qo)=0 (3.2)
I I I

I
I I I

I
I I I

I
I I I

I
I I I

„XZp~ 1

without violating the usual positivity requirements. It
should be noted that the evolution of qI,',d(Q ) in (2.13) is
unaffected by the transformation (3.1) and, most impor-
tantly, that in DIS the experimental inputs qI,',d(x, Qo)
in LO and HO differ just by the usual small amounts en-
countered, e.g. , in the study of the nucleon or pion struc-
ture.

The advantage of the DISr factorization scheme is not
restricted to F( alone but extends also to other physical
processes plagued by an identical HO negative, ln(1 —x),
unresolved photon contribution. For example,
do. (yp ~VX)/dxF with V =@*,W;Z is dominated by a
HO negative ln(1 —x ) contribution induced by the un-
resolved photon subprocess yq~ Vq' which is of HO in

a, as compared to the LO resolved photon subprocess
q'rq ~V.

In Figs. 1 —3 we present the pointlike solutions (2.12)
for F$ pt, Xjt, and G$„, obtained for Qo =1 GeV,
ALo=AHo=200 MeV and for f =3 flavors using the
same boundary conditions (3.2) in LO and HO (MS„„„,
and DISr ). It should be clear by now that MS„„„,obvi-
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Q =SGeV

2.0 Q = SOGeV
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0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The pointlike LO and HO flavor-singlet solutions
X~(x,g') resulting from Eq. (2.12). The notations and parame-
ters are as in Fig. 1.
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cr XGFL

0.07

O. OS

residue is due to the fact that k~" +ks"' )0 according
to Eqs. (2.9) and (2.10), whereas ks'" +k'" =0 for the
incorrect k'"" of Ref. [8]. Thus the notorious negative
spike [21] of the HO asymptotic solution in the small-x
region,

0.03
—Ff„„(xQ )-aRx

0.01

0.3

0.2

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. The pointlike LO and HO solutions for the photonic
gluon distribution G~(x, g2) resulting from Eq. (2.12). The no-
tation and parameters are as in Fig. 1.

1 2 „RF$„„=(e)b—z„„=a +b"
n —2

(3.3}

with b "being regular at n =2 and

dA,
R = (e') ——4 (P ),"

7T dn n =2

X — ' k""+k""+k~'~'
2p 0 s s

which, for f =4, yields R = —0.00772 as compared to
R = —0.0220 for the incorrect k"'" of Ref. [8], as dis-
cussed after Eq. (2.10). This drastic change of the n =2

for F$(x,Q ) throughout the entire x region can only be
achieved in DIS~ where, moreover, the distributions are
manifestly positive [20] for all Q + Qo, in contrast with
the MS„„„,scheme. As illustrated in Fig. 3, G$„(x,Q )

turns negative in the larger x region in the MS„„„,
scheme for Q not much larger than Qo, in contrast with

DIS&. It should furthermore be noted that our MS„„„,
results for xX/L(x, Q ) and xG/L(x, Q ) in Figs. 2 and 3
for Q2=50 GeV differ from those of Ref. [10], in partic-
ular for G/L where our result is up to a factor of 2.5
smaller for x ~ 0.5.

The x ~0 behavior of the "asymptotic" solution
[8,1 —3] F$,",„(Q2), to be derived from Eqs. (2.11)—(2.13)
for L~0, i.e., a, (Q )~0, can be given analytically in
the following way: Inserting these asymptotic solutions
into Eq. (2.19) one notes that, for x~O, the dominant
contribution derives from b& due to its well-known pole
at n =2.

'n

is diminished drastically and affects only the very small x
region. This obviously modi6es the regularization terms
proposed in Ref. [22]. The full pointlike solution in (2.12)
is, on the other hand, of course regular [1,2] and (small-x)
singularities such as the one in (3.3) as well as their rela-
tive size become immaterial [20].

Our results suggest that it is recommendable to work
with photonic parton distributions in the DIS„scheme,
obtained via the transformation (3.1), if one attempts to
study the importance of the resolved photon components
beyond the I.O in leptonic or semihadronic hard process-
es. Since most of the required HO partonic subprocesses
have been calculated in the MS scheme [23,24], one has
of course to transform some of these subprocesses into
the DIS& scheme in order to perform a consistent
theoretical analysis. Alternatively one could, of course,
transform just the DIS& distributions into their MS coun-
terparts compatible with the published HO (MS) subpro-
cess cross sections. Since, furthermore, no full HO
analysis has been performed so far using the HO photon-
ic quark and gluon distributions, we discuss in the Ap-
pendix the transformations between different factoriza-
tion schemes for the typical example of deep-inelastic ep
scattering where details of the resolved photon structure
can be studied most directly.

IV. SUMMARY AND CONCLUSIONS

We have presented in detail all expressions pertaining
to a technically eScient and theoretically consistent
treatment of the photon structure functions in higher-
order (HO) perturbative QCD. The special DISr factori-
zation scheme, introduced in Sec. III, was shown to
evade the appearance of undesired instabilities, in partic-
ular in the large-x region, usually encountered in HO cal-
culations performed within the framework of the MS
scheme as caused by the "naively" chosen boundary con-
ditions for the pointlike solution (i.e., vanishing HO input
at Q2=Q2o as in the LO case} of the renormalization-
group evolution equations. This choice, motivated by the
desire to keep the hadronlike solution of the Q evolution
equations as stable as possible, was shown to be realizable
only within the framework of the aforementioend DIS&
scheme.

The advantage of the DISz factorization scheme is real
in the sense that only within this framework do the ha-
dronic input distributions retain their physically expected
x shapes also in higher orders of perturbative QCD.
Thus the extraction of these, a priori unknown, input dis-
tributions from the experimental data is assured to be as
straightforward as in the corresponding nucleon or pion
case when working in higher orders of perturbative QCD,
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provided one operates within the framework of the
recommended DIS& factorization scheme.
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butions. Since the integral in (A5), involving the diloga-
rithm Liz, cannot be reduced to a known analytic func-
tion anymore, we have parametrized the integrand by the
simple, sufBciently accurate expression

Li2(x) = 1.010x —0.846x +1.155x1+x

APPENDIX
—1.074x +0.550x (A6)

Inverting anomalous dimensions and Wilson coefBcients

The appropriate n moments of 1- and 2-loop anoma-
lous dimensions in Eq. (2.6) are summarized in Eqs.
(B.14)—(B.22) in Appendix B of Ref. [6]. The color fac-
tors are Cz =3 and Cz= —', . According to our approach,
explained in Sec II. , one should use in Tz =f /2 the ap-
propriate number of active flavors in the Q range con-
sidered. The analytic continuations in n, required by the
Mellin inversion (2.22), are straightforward, except for
the following nontrivial sums which are to be continued
in the following way [25]:

1 1 1 1
g(z) =lnz — — +

2z 12z 120z 252z

1 1 1
Q'(z) =—+ + — +

2z 6z 30z 42z 30z

(A7)

(A8)

1 1 1 1 1 3 5s+
z z 2z 6z 6z 10z ' 6z '

which allows for an elementary calculation of the re-
quired moment integral in (A5). The various P functions
and their derivatives appearing in the above expressions
were calculated, for Rez & 10, with the help of the asymp-
totic expansions [25]

7l

S&(n):—g —=yE+g(n +1), yE ——0.577216,
=1J

(A 1)

(A9)

For Rez & 10 we have repeatedly used the recursion rela-
tion

n

S (n)= g ——=g(2) —f'(n+1), g(2)=~ /6,
g

——1J
(A2)

t// ~(z + 1)=g~ ~(z)+( ) k1z (A10)

where g'"'(z)=d'"+"1nl (z)/dz"+' can be sufficiently
accurately expressed by asymptotic sums to be given
below; furthermore

S(, ) 2I I~ +( )

)=1 J

=-,'(1+q)S, — +-,'(1 —q)S,
n —1

2
(A4)

( —)'S(n)—:g, S)(j)
J

5 S, (n) g(2)= ——g(3}+g G(n)
8 n 2

n

S&(n)=—g —=g(3}+,'g"(n+—1), g(3}=1.202057,
j=1J

(A3)

in order to reach lt'"'(z) with Rez ~ 10. The derivation of
Eq. (A5) can be found in Ref. [12].

Mellin inversions of photonic HO splitting functions

%ith the analytic continuations in n discussed above in
the first part of this appendix, the (numerical) Mellin in-
versions of the additional contributions to the HO split-
ting functions of the photon in Eq. (3.1), needed for ob-
taining the photonic parton distributions in the DIS
scheme, are straightforward. If one chooses, however, to
solve the evolution equations (2.1) by (numerical) itera-
tion in x space for the DIS photonic parton distribu-
tions, the Mellin inverse of 5k ""in Eq. (3.1) is explicitly
needed. The two products of moments in (3.1) between

P~'~"=C, —+—— —2S, (n)
3 1 1

2 n n+1

, Li2(x)
+I dx x"-',

0 1+x (A5) p(0)n 2 2 1——+
n —1 n n+1

with G(n)—=P{(n+1)/2)—f(n/2}, Li2(x)
= —fOz 'ln(1 —z)dz, and where [5] g = {—)"~+ 1

for our photonic nonsinglet [13] as well as singlet distri-

and B" in Eq. (2.20) can be analytically inverted using
standard Mellin-moment integrals [26]. For v& Pzq'"B&-—
we obtain
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lr (x)=2C~ 7—10x — (6—12x+16x )+(1—16x+32x )lnx

+(1—2x +4x )ln x —(5—36x +32x )ln(1 —x}

+(4—8x +8x )[ln (1—x) —lnx ln(1 —x)]+(2—4x+8x )Li2(x) '
(A 1 1)

and the inverse of a"=P' '"B"turns out to be ~ri =gyes rf+ y yIraIag frf
f f

(A13)

2
lr (x)=4CF

3x
20 2 16
3+3 +3

—(1+Sx——', x )lnx —(1+x)ln x
't

+ + 1 —x ——x ln(1 —x)4 4
3x 3

with f and fr denoting the partons within the proton
and the photon, respectively. The direct photon-parton
subprocesses are denoted by & and the purely hadronic
subprocesses by 8' which we assume to have been cal-
culated in HO in the MS scheme as is commonly the case
[23]. Therefore, fr in (A13} has to refer to the MS
scheme as well, to be obtained from the transformation

—2(1+x)[Li2(x)—n2l6) ' . (A12) fMs =fks„+5f' (A14)

A helpful nonstandard formula required for obtaining
(Al 1) is given by

1

0
dx x" 'x'[ln (1—x)—lnxln(1 —x)—Li (x)]2

with

5q"=5qr= —3e B, 5Gr=0
~8~ ~' (A15)

[S,(n+a)]1

n+a
These results agree with a previous calculation involving
the gluonic coefficient function [27].

Transformations between different factorization schemes

In order to elucidate the transformation between
different factorization schemes let us, for definiteness,
consider the realistic example of deep-inelastic ep scatter-
ing which so far has been studied only in LO as a test of
photonic parton distributions at the DESY ep collider
HERA [28]. Generically the (virtual) photon-proton
cross section is of the form

o gf =y rf+ y5yray frf
"r

fr
(A16)

with 5f r given by (A15). Note that the purely hadronic
quantities (f,& ) remain unchanged.

which simply follows from the requirement than in DIS&
the Br term in Eq. (2.8) or (2.19) has, by definition, to be
absorbed into the photonic quark distributions. Note
that the transformed MS quark and antiquark distribu-
tions in Eq. (A14) differ [29] from the conventional
MS„„„,ones discussed in Sec. III due to their nonuanish-

ing boundary conditions at Q =Qii.
Alternatively, if one continues to work directly with

fg, s one has to use, in order to keep ori' invariant, in
r

(A13) the transformation
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