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By means of an effective-Hamiltonian method we reconsider the derivation of the effective interaction
in a fermion-antifermion system. Furthermore, we point out some errors of Gara and co-workers in
their treatment of fermion-antifermion bound states by solving the reduced Salpeter equation in
configuration space.
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In two recent papers [1,2] Gara and co-workers investi-
gated the relativistic description of bound states of
quark-antiquark pairs. Their analysis was based on the
reduced Salpeter equation. The Salpeter equation [3] is
derived from the Bethe-Salpeter equation [4] upon elim-
inating any dependence on timelike variables in a suitable
manner. Some standard and plausible approximations,
such as the restriction to positive-energy solutions, then
lead to the reduced Salpeter equation.

In this Comment we would like to present an alterna-
tive way of treating fermion-antifermion bound states re-
lativistically, namely, by construction of an effective
Hamiltonian for the two-particle system under considera-
tion. The procedure advocated for consists of two main
steps [5,6].

(1) Compute the effective interaction potential between
the bound-state constituents (at least to the extent you
trust in perturbation theory) from the elastic scattering of
the involved particles, more precisely, from the Fourier
transform of the corresponding transition amplitude
[7,8].

(2) Use this potential in a multiparticle Schrodinger
equation with relativistically correct kinetic Hamiltonian
in order to determine the energy eigenvalues and corre-
sponding eigenstate vectors of the bound state under con-
sideration.

Obviously, this effective-Hamiltonian method might be
regarded as the relativistic generalization of the descrip-
tion of fermion-antifermion bound states in terms of non-
relativistic potential models. As far as the incorporation
of relativistic kinematics is concerned, it provides a
description of bound states which is of equal quality as
the reduced Salpeter equation adopted in Refs. [1,2]. The
obvious advantage of our approach is its physical
transparency.

The basic idea of the proposed effective-Hamiltonian
method [5,6] is to approximate by a potential the (pertur-
batively accessible part of the) interaction between parti-
cles which in fact are described by some quantum field
theory. To this end consider the elastic scattering

f (p„r, )+f (p2, r2)~f(q„r3)+f(q2, r4)

of the involved fermion f and antifermion f (with masses
m& and m2, respectively). Expressed in terms of Dirac
spinors u(p, r) and v(p, r), the general form of the corre-
sponding transition amplitude T is

1 701m2T-
(2n. ) QE, E2E3E4

Xu(q„r3)l, u(p„r, ) v(p2, r2)I 2v(q2, r4)E, (2)

where I, , i =1,2, represent some Dirac matrices. The
(unspecified) interaction kernel, which depends on the dy-
namics of the theory responsible for the interaction of the
particles under consideration, is denoted by E. It is usu-
ally assumed to be a function of the (modulus of the)
momentum transfer k=p, —

q& only. The Fourier trans-
form of just this kernel yields the static interaction poten-
tial in the Salpeter equation, but with the fermion and an-
tifermion restricted from the very beginning to have posi-
tive energies, that is, with the "small-small" term in the
Salpeter equation dropped as in Refs. [1,2].

There are many indications that the dominant spin
structure for the quark-antiquark interaction, originating
from quantum chrornodynamics, is a vector, i.e.,
I,I 2=y„y", plus scalar, i.e., I &12=11. (For a
very recent review on the phenomenological aspects of
the forces acting within bound states of quarks, see, e.g.,
Ref. [8].) Accordingly, in the following we shall focus
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our interest to precisely this spin structure of the
fermion-antifermion interaction.

Explicitly, in the Dirac representation the Dirac spi-
nors are given by

E, =—Qp, +m, , E2=+p~+m2

E3 =V qi+m i, E4 =—Qq2+m 2

(4)

u(p;, r;)= S;
2m;

' 1/2

S;
(3)

and

S, —=E, +m, , S2=—E2+m2,

S3 —E3+m1, S4 =—E4+m2 .

U(p;, r;)=
S;

2mi

0"Pi
1/2 S.

I

X». ~ X» =«. zY». ~

Inserting this into (2), we immediately obtain, in the
center-of-momentum system,

P =P1= P2 q =—q1= —
q2

where y, is the two-component spinor corresponding to
spin projection ~, and we defined

for the scattering amplitude of vectorial spin structure
[&]

T„=N,N2N3N4 5, , 5, , + 5, , (p.q5, , ip—Xq o, )+ 5, , (p q5, , ipXq cr2—}
1

1 3 2 4

+
~ ~ [p 5», »i5», », p iri'o'2+(p o'l)(p o'2)]

+
Z Z [q 5...,5...,—q oi ~2+(q ~i)(q o2)]

1+ [p q5, , 5, , —ipXq n ++(p q)(o i n&) —(q oi){p o2)]

1
[p q5, , 5, , ipX—q o++(p q)(o, o2) —(p cr, )(q oz)]

1
[(p q) 5, , 5, , —i(p q)(pXq o+)—(pXq oi)(PXq o'2)] Ev1234 1'3 24

and, for the scattering amplitude of scalar spin structure [5],

1 . 1s= N, NzN3N4 —5, , 5, , — 5, , (p q5, , ipXq. —
o)
— 5, , (p q5, , —ipXq oz)

+ [(p q) 5, , 5, , i (p q)(p—Xq a+) —(pXq o, )(pXq o2)] Ks .1

S1S2S3S4 '&'3 '2'4

Here we introduced the shorthand notation

CT1 =+~ 0'g~

~2 =X,0'X,

O. + =Cr,5, +Cr25, ,2 4 1 3

The normalization factors N; are given by
1/2

S,
N;:—(2~)'" 2E,

(10)

From this, the interaction Hamiltonian may be found
from the Fourier transform with respect to the momen-
tum transfer k=p —q. In the nonrelativistic expansion
up to next-to-lowest order one recovers in this way, of
course, the well-known Breit-Fermi Hamiltonian.

We observe, however, the following discrepancies be-
tween our result and the one given in Eqs. (6a) and (6b) of

I

Ref. [2]: (1) an overall sign in the third line of Eq. (6b);
(2) the last term in the fourth line of Eq. (6b) does not ex-
hibit the symmetry under interchange of p and q one
would expect for this term; (3) an overall sign on the
right-hand side of Eq. (6a). (The authors of Refs. [1,2]
concur with the results obtained here; see Ref. [9].)

Furthermore, we feel obliged to make some additional
remarks to the two papers by Gara and co-workers [1,2].

First of all, an eventually confusing point might be the
somewhat asymmetric behavior of the interaction func-
tions as defined in Refs. [1,2], Fv and Fs, under inter-

change of the relative momenta of initial and final state.
In contrast with that, the approach to relativistic bound
states via the effective-Hamiltonian method introduces
these momenta in a symmetric way, as can immediately
be seen from the transition amplitudes (7} and (8}. For
the case of equal fermion masses, m, =m 2

=m, the
relevant T-matrix elements read explicitly, for vectorial
spin structure,
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1 1
(E,™E,™+2pq(2+a& o&) —3ipXq o+ —(q ~&)(p o&)—(p.o&)(q.o2}

(2qr)6 4EpE

E+m E+m
+ [p (1—o, .o )+(p.o, )(p o )]+ [q (1—o, o )+(q o, )(q o )]E +m

+ [(p.q) —i (p q)(p Xq.o ) —(p X q o, )(p X q.o ) ] K1 2

(E +m)(E +m)

and, for scalar spin structure,

1 1Ts= — (E +m)(E +m ) —2p.q+ipXq. o+
(2qr)' 4E„E,

+ [(p q} —i(p q)(pXq o+)—(pXq oi)(pXq o2)] Ks (12)

where now

E~—:}/p +m, Eq
= '}/q —+rn, cr+ =o&+o—2', '(13)

1
Tv =—Tr, Tr2TvSI—

4

1 1
(E~+m )(Eq+m)+4p. q(2n'}6 4EpEq

E +m Ep+m
E+m E+m

(p q)'
(E +m)(E +m)

and

1
Ts =—Tr, Tr2TsSI—

4

1 1 (E +m)(E +rn) —2p q
(2qr)' 4E,E,

2

+ 'P q' K, . (1S)
(E +m)(E +m)

and any reference to the spin degrees of freedom has been
suppressed, so that now the Pauli matrices cr, have to be
understood simply to act on particle i, I, =1,2, respec-
tively.

The spin-independent parts of the above scattering am-
plitudes, Tv' and Ts', may be extracted by taking the
trace over the spin degrees of freedom of the fermions,
with the result

These expressions have to be compared to (the equal-
mass case of} Eqs. (15a) and (15b) of Ref. [1]. (In doing
this, we detected a further sign error in Eq. (A7) of Ref.
[1].} The interaction functions in the effective-
Hamiltonian approach, T~'/K~ and Ts'/Ks, differ from
those entering in the reduced Salpeter equation, Fv' and

Fs, by an overall factor (Ep+m)(Eq+m) EqE&
The reason for this discrepancy may be traced back to

the choice of normalization of the employed wave func-
tions. Our momentum-space wave function, denoted by
P(p), differs from the (unnormalized) one adopted in
Refs. [1,2], P(p), by a factor 2E (E +m) ' [10]:

2E
f(p) = P(p) . (16)E+m

Of course, any change of normalization, like the above
one, has no influence on the resulting spectrum of eigen-
values. In the coordinate-space representation of the
equation of motion, however, the free energy E has to be
regarded as the nonlocal differential operator
E=V —b, +m 2. As a consequence of this, any rescaling
in the definition of the wave function by an energy-
dependent factor entails a change in the ordering of the
various factors which involve this free-energy expression.

Second, one angular-momentum-dependent term is
missing in one of the identities used by the authors of
Refs. [1,2] in order to obtain from the configuration-
space representation of the reduced Salpeter equation, by
pushing the spherical harmonics 5'I (8,$) through all
the differential operators, a differential equation for the
radial part R (r) of the bound-state wave function
g(r) =R (r)5 I (8,$). In general, the identity in question
is given by the relation

dVr
V;VJ V(r)V;VJ.R (r)5'( (8,$)=&I (8,$)

dl'

2 d R(r)
dr

1 dR(r) 1+—b,R (r)
dr 3

3 r dr dr

+— r.VAR (r)5'( (8,$)+ V(r)hbR (r)5 I (B,P) .2 dV(r)
dl'

(17}
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(18)

If R (r) is regular, i.e., nonsingular, the action of the Laplacian on the wave function g(r) may be written in the form

bR (r)PI (8,$)=Y( (8,$)AIR (r},
where, in the notation of Gara and co-workers,

Gj 2
r dr

I (I + 1)
2

(19)

Similarly, under the assumption that R (r), EIR (r), as well as the potential V(r) are regular functions of the radial
coordinate r, the above identity reduces to

V;VJV(r)V, VJR .(r)P& (8,$)='P& (8,$) + b&+b& + +V(r)hrb& R(r) . (20)d V(r) d dV(r) d d l(1+1)
r dr «««r

Comparing this result to the relations given in Refs. [1,2], we find that the term

dV(r} 1(l+1)
dI' p3

in the square brackets on the right-hand side of (20) is missing in the fourth of Eqs. (22) in Ref. [1] (which is identical to
Eq. (A2d} of Ref. [2]}, and consequently also in the relativistic wave equation which provides the basis for the whole
analysis of Gara and co-workers (Eq. (24) of Ref. [1]). (The authors of Refs. [1,2] agree with the form (20) of the identi-

ty in question [10].)
Taking into account the above remarks, that is, the rearrangement of the energy-dependent factors brought about by

the difference in the overall normalization of the interaction functions as well as the inclusion of the missing term in the
expressions involving the fourth derivative (20), the spin-independent equation of motion for the radial part R (r) of the
wave function becomes

1 dVv(r)
(M 2E&)R (r—)= (EI+rn)[VV(r)+ Vs(r)](EI+m) —2 2

I

bI
(E&+m ) V—i (r) — Vz(r)(Et +m )

EI+m EI+m

d V&(r) —2[2Vi (r) —Vs(r)]b, (dr dr

d Vv(r) d Vs(r)+ + +
EI+m dr dr dr

dVV(r) dV&(r)+
dr dr

d ~ ~ d 1(l+1)

1 1+[Vi.(r)+Vs(r)]brh( R(r) .
EI+m E

(21)

Here M denotes the mass of the bound state, E& labels the
free-energy differential operator given by

EI =—Q —b,I+m (22)

and Vv(r) and Vs(r) are the static potentials obtained by
Fourier transformation from the interaction kernels E~
and Kz, respectively, which are usually assumed to de-

pend only on the modulus of the momentum transfer
k—=p

—q. Similar modifications apply, of course, also to
the spin-dependent discussion in Ref. [2].

In their rather comprehensive and detailed investiga-

I

tion of quark-antiquark bound states Gara and co-
workers arrive at the somewhat surprising conclusion
that, contrary to one s physical intuition, a relativistic
treatment yields no improvement in the description of the
meson mass spectra compared to the corresponding non-
relativistic one. In view of the importance of these
findings, a reanalysis of the significance of the (spin-

dependent counterpart of the) wave equation (21) for the
description of relativistic bound states has been per-
formed [11]. We find, in accordance with [10], that the
effects of the 1(1+1)lr term on quarkonia spectra are
quite small [11].
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