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Structure of the ground state of the electroweak gauge theory in a strong magnetic field
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The structure of the ground state of the Weinberg-Salam model in the presence of an external magnet-

ic field is investigated. As the magnetic induction reaches a critical value B„Wpairs can be produced
with zero energy. The equations for B,Z, W, and the Higgs field 4 are handled, near the transition

point, by a perturbative method and solved exactly to first order in the parameter e (B—B, ). Solutions

with two types of boundary conditions are considered: (i) B is produced in the interior of a large cylindri-

cal solenoid by electric currents on the surface; (ii) a uniform background magnetic field exists

throughout space, above B, a new phase with 8'condensates emerges. The latter case admits solutions

with lattice symmetry and an integer number of quanta of magnetic flux through each lattice cell. The
W wave function is expressed in terms of the Jacobi function 8&(z~r} where r is the lattice parameter.
The average energy density % as a function of w is shown to be modular invariant. For MH & Mz, W is

minimal for a hexagonal lattice with a simple zero of W at each center. Coherent quantum states are
constructed for the W pairs. The relation to type-II superconductivity is discussed.

PACS number(s): 11.15.Kc, 05.70.Fh, 11.15.Ex, 74.60.—w

I. INTRODUCTION

In the presence of a constant uniform magnetic field,
the electroweak vacuum of the Weinberg-Salam theory
develops an instability [1,2] for a value of the magnetic
induction B,=M /ae (8,=10 G), where M~ is the
mass of the charged vector boson W. This is readily un-
derstood in terms of the Landau spectrum of a charged
particle of mass M, charge e, and spin s in a constant
magnetic field B, which we take to be along the direction
of the z axis e3. It is given by

E =M +p3 2eBs3+—(2n+1)~e~B,

where E is the energy, p3 and s3 the components of the
momentum and of the spin along e3, and n ~ 0 is an in-
teger. Each level with quantum number n has an infinite
degree of degeneracy corresponding to eigenstates of the
orbital angular momentum along eB with eigenvalues
m ~ —n. For s & —,', the magnetic-moment interaction
—2eB s may overcome the zero-point energy of the har-
monic motion (n =0, p3 =0) so that, for sufficiently large
8, E becomes negative. For s =1 and es3=~e~, E van-
ishes for 8 =8, =M /~e~. This is the source of the quan-
tum instability. In the one-loop approximation, the
quantum correction to the effective energy density devel-
ops a logarithmic branch point at this value of the mag-
netic field (with M =M~) due to &loops [2].

It has been suggested that, beyond this value, the vacu-
urn state may undergo a phase transition from the normal
broken phase with 4=Co to the symmetric phase [3]
with 4=0. Ambje(rn and Olesen [4] have proposed a
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solution of the field equations which would interpolate
between the broken and symmetric phases. Their solu-
tion contains condensates of W pairs and satisfies period-
ic boundary conditions on a lattice. Their treatment is,
however, valid only for a particular value of the Higgs
coupling constant A, =g /(8 cos Ha ) (MH =Mz).

In the general case of unconstrained A, , we use a pertur-
bative approach, described in Sec. III, to obtain solutions
of the field equations in the neighborhood of the transi-
tion value 8, of the magnetic induction, taking e (8 —8, )

as the perturbation parameter. This phase transition has
a close resemblance to the phase transition at 8,2 in
type-II superconductors; the perturbation method used
here is similar to that used to solve the Ginzburg-Landau
equations near H, 2 [5] and was introduced in the present
context by Skalozub [6].

Two differences should be pointed out. The first is
that, in the model discussed here, the local ~%~ interac-
tion of the Ginzburg-Landau theory is replaced by an
effective nonlocal quartic interaction mediated by Z and
4 fields. The second difference is that, in this model, the
magnetization is positive, in contrast with a negative
magnetization in type-II superconductivity. As a conse-
quence, the ordered phase is above and the normal phase
below B„which is the reverse of what happens in super-
conductivity.

We consider two distinct choices of boundary condi-
tions: one corresponds to the production of a uniform
field inside a large cylindrical solenoid of radius R by
electric currents on the surface, and the other assumes a
uniform background magnetic induction B throughout
space.

The first case is discussed qualitatively in Sec. IV,
where we propose a solution with cylindrical symmetry in
which negatively charged W's are produced on the
solenoid's surface as a result of the decay of electrons into
neutrino and W . This process will be allowed when the
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strength of the magnetic field reaches a value (below B, )

such that the W's could be created with an energy small-

er than the electron mass. It prevents the current from
increasing, thus keeping the magnetic induction inside

the solenoid below the critical value.
For the second case, dealt with in Sec. V, we investi-

gate general lattice solutions. In lowest order of pertur-
bation theory, the W wave function is an arbitrary super-
position W+ of degenerate modes with zero energy

(s3 =+1). The other fields and the energy density are
obtained in terms W+. For B & B, and MH )Mz,
creation of W pairs lowers the energy density. Thus, a
phase transition occurs with the production of W conden-
sates. The density of W pairs is determined by the quan-
tity

~ W+ ~

whose space average is the order parameter
and is proportional to e (B B, ). —For MH ~ Mz, lowest-
order perturbation theory is inadequate, as the energy
density in this order becomes unbounded from below.

In order to find the ground state within our perturba-
tive framework, we investigate which lattice solution
minimizes the average energy density. The motivation
for considering only lattice solutions is that on a macro-
scopic scale ~W+~ should be translational invariant.
Lattice solutions were first constructed by Abrikosov [5],
subject to the flux quantization condition BA =2m.kle,
where A is the area of a unit cell and k is an integer equal
to the number of zeros of W+ in a cell. We show that,
under certain conditions, the solutions are unique. They
are expressed in terms of the Jacobi function 8,. Con-
sidered as a function of a complex parameter ~, which
specifies the lattice geometry, it is shown in Sec. VI that
the energy density, averaged over a lattice cell, is modu-
lar invariant. This result is known to hold in the theory
of type-II superconductivity [7].

The classical treatment described so far is justified in
Sec. VII where the W field is quantized. The order pa-
rameter is then the average over a lattice cell of the ex-
pectation value ( W+W+ ), where W+ is a quantum
operator. Coherent quantum states of W pairs are con-
structed corresponding to the classical solutions.

A numerical calculation in Sec. VIII, including all lat-
tice symmetries of regular polygons and parallelograms,
reveals that the lowest-energy solution has the symmetry
of a hexagonal lattice with a simple zero of the W+ wave
function at the center of each cell or, equivalently, one
magnetic Aux quantum per cell. Recalling that the hex-
agonal lattice is dual to a triangular lattice, this solution
has simple zeros at the vertices of triangles. ' Our results
show that the nonlocal effects of the quartic interaction
are not negligible.

The average energy density for the regular triangular
lattice with a simple zero at the center turns out to coin-
cide with that for a hexagonal lattice with a double zero.

This is due to a remarkable identity, Eq. (83), for certain
convolutions of 8 functions.

II. THE FIELD EQUATIONS

We consider the Weinberg-Salam model in the unitary
gauge. Let V'„and V'„be the vector potentials for the
SU(2) and U(l) gauge groups, respectively. The elec-
tromagnetic potential A„and the neutral vector boson
Z„are related to V „and V'„by

V „=Z„cos8+A„sin8, (2)

V'p= —Zp sln8+ A p cos8 (3)

The vector potential for the positively charged vector bo-
son Wis defined by

W„= —(V'„—iV „) .1

P (4)

where 8 is the Weinberg angle and

F„'„=a„V'„—a,V'„—ig ( W„'W, —W', W„),

F„„=2)„w„2)„W„—
with

n„=a„+ig v'„.

(7)

From here on we take g and e =g sin8 to be positive.
The field equations are as follows.

(1) For W„,

2'„, igF„'„W"+—,'g O'W„=O—.

(2) For V

2

a~F'. ig ( W&'F „W—&F'„)+ g—C 'Z„=O .
pv PV 2 cos8

(3) For V'„
2

8"F'„— sin84 Z =0 .
2cos 8

(4) For 4,
2—a~a —2A.(@ —@ )+—,'g W W"+ Z Z"

P 4cos 8

(lo)

The Lagrangian density for the vector potentials and
Higgs field 4 is

L, = F'g'—~" F'g~— 'F g—~"-+a Ca&e
4 p 2 p 4 p P

r

1
2—x(e' —e')'+ —g'w'w~+ z z~ e'

4cos 8

=0 (12)

Throughout this paper we call hexagonal what is usually

called triangular in condensed-matter theory (and vice versa)
due to our choice of lattice cells with their centers, rather than
vertices, at the positions of zeros of the order parameter.

The integrability conditions are

n(w„e') — 'g z w, c'=o,
cos8

a (z„e')=o .

(13)

(14)
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Because of gauge invariance these conditions are satisfied
by solutions of the field equations (9)—(12) for which they
hold at the boundaries. We look for static solutions of
these equations which are translational invariant in the z
direction. We shall also assume that the only nonvanish-
ing components of the vector potentials are spacelike on
the plane normal to the z axis. This reduces the problem
to two dimensions in the xy plane. Additional symmetries
are dictated by boundary conditions.

In the case discussed in Ref. [4], the coupling constants
were constrained by A, =g /(8cos 8) or MH=Mz. For
B )B„the field equations then have a particular solution
in which the W field has only one polarization with s3 = 1

and the field strength F„„vanishes. In the case of uncon-
strained A, , the two polarizations s3 =+1 do not decouple.
To solve the equations in this general case we use a per-
turbative method in a neighborhood of the transition
point, taking e (B —B, ) as the perturbation parameter.

III. PERTURBATIVE METHOD

where L3 is the z component of the orbital angular
momentum. The symmetric gauge used here for the vec-
tor potential A differs from that used in Refs. [5,6]; it al-
lows for the separation of Eq. (15) in terms of eigenfunc-
tions of L3.

Above the critical value of the magnetic field the
lowest eigenvalue will be zero. W pairs can then be pro-
duced with zero energy. Since the Landau spectrum [Eq.
(1)] is continuous, in order to isolate the zero modes, one
has to make the spectrum discrete by imposing periodic
boundary conditions in the z direction on two boundary
surfaces perpendicular to the z axis and a distance L
apart. Then the momentum p3 becomes quantized with
values (2m.k/L) for integer k.

In cylindrical coordinates (z,p, p) the eigenfunctions,
normalized to L and labeled by the quantum numbers k,
n and m, are

1/2

fk. (p)= exp[i (my&+2m. kz/L)]

n!
X P

(n +ImI)!

1/2

(hami/2L! mi (g)
P

X exp( —g/2), (16)

where g= ,'eBp, nz=n'+—(m —ImI)/2, and L„! i is a
P

Laguerre polynomial (we are here taking the limit of a

Let W~=(Wi+iW2)/&2 be the wave function for
polarized states with spin projection s3 =+1. In the ab-
sence of a Z field and with 4=4o, the subsidiary condi-
tion [Eq. (13)] reduces to 2FW„=O. Using this condition
in the equation for W„ in the presence of a uniform mag-
netic field B=Be3 and vector potential A= —,'BXp, the
linearized equations for polarization states W+ with en-

ergy eigenvalues E+ decouple and become

( b, eBL3+—,'e —B p %2e—B+Mii)W+=E+W+,

(15)

cylinder of infinite radius). The lowest-energy states have
k =0, s3 = 1, m 0, and E will have a gap of size
(2n/L. ) The corresponding eigenfunctions are

f (p)= eB
2am!

1/2 ' 1/2 m
eB

pe

X exp( ,'eB—p—) (17)

with degenerate eigenvalue E+ =M~ —eB. They satisfy
the summation formula

g f'(p)f (p)=
m=0 2'

The general lowest-energy solution is of the form

(18)

W+(p)= g & f (p) .
m=0

(19)

This solution satisfies Fi2 =0, that is (2),+i2)2) W+ =0.
We shall use a perturbative method in the neighbor-

hood of the critical value of the magnetic field, taking Eq.
(19) as the zeroth-order W wave function. Notice that, if
eB )M~, then E+ & 0. Therefore, the perturbation
method will be valid only if the first-order correction to
E+ is positive. The density of W pairs, as measured by
I W+ I, can be determined so that, up to this order,
E+ =0. This yields a density

I W+ I
of order

(eB —Mii, )—:e(B—B, ). The W pairs then become a
source for the other fields which can be expanded in
powers of

I W+ I
.

The degeneracy of E+ in the linearized field equation
for W+ will be lifted by the interaction terms in the exact
energy density &. For the static fields considered here
this is given by

~=-,'(+i2)'+-,'(F»)'+ IFi2I'

+V@ V@+A,(4 —40)

+ —g'(I w+ I'+
I w- I')+1 2

4cos 0

The first two terms can be written in terms of A„and Z„
as

We want to compute & up to second order in
I W+ I . To

this end we have to solve Eqs. (10)—(12) for A, Z, and
4, =4—40, taking I W+ I as a source in addition to the
external magnetic field. The suppressed component
W (p) can be obtained from the subsidiary condition
(13). Since it is of third order in W+, its contribution to
the energy density & is only in terms third order in
I W+ I

which are here being neglected.
In the linear approximation, i.e., to lowest order in

W+, Eqs. (10)—(12) reduce to

b, A —g sinOe3 X V I W+ I
=0, (22)

—,'[W»+e(I W+ I' —
I
W I')]'

+-,'[Zi2+g cos~(I W+ I' —
I
W I')]' . (21)
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AZ —g cos8e3 X V
~ W+ ~

—MzZ =0,
b,@,——,'g 4O~ W+ ~

—M~4, =0,
(23)

(24)

Z = —g cos8e& X V U~ (p ),
2g @OUM~(P),

where

U~(p)= JEO(Mip p'i)i—W+(p')i d p',1

(26)

(27)

(28)

and ICO(z) is a modified Bessel function of the third kind.
For z real and positive, Eo is a positive, monotonically
decreasing function.

The integrations in Eqs. (25) and (28) extend over the
whole plane. In Eq. (25), H is a constant vector in the
direction of e3. It should be identified as the magnetic
field strength. The field 8=V'X A is then given by

where Mz is the Higgs-boson mass given by M& =4k.@o.
These equations can be immediately solved in terms of
the Green's functions for Laplace's and Poisson's equa-
tions in two dimensions. %'e obtain

A= —,'HXp

+g sin8e& X fV ln(
~ p —p'~ ) I W+ (p') I'd'p'2'

(25)

background magnetic field, W 's can be produced, form-
ing pair condensates. To find the ground state in the per-
turbative method, the next step calls for the minimization
of the energy using the lowest-order expression (19) for
W+. It is clear that the ensuing configuration should
have translational invariance on a macroscopic scale.
Thus, we are led to look for solutions with lattice symme-
try and investigate which lattice configuration gives the
minimal average energy density for a given value of the
average magnetic field 8.

IV. MAGNETIC FIELD OF A SOLENOID

In this section we assume that the magnetic field is pro-
duced in the interior of a large solenoid of radius R and
look for solutions with cylindrical symmetry. The exter-
nal source is the electron current on the solenoid or more
precisely the voltage producing that current.

As the magnetic field reaches the critical value, the
ground-state energy of W's in this field becomes zero.
The angular momentum degeneracy of the previous case
is lifted in the case of a finite solenoid but the shifts in en-
ergy are extremely small up to values of m =(Mii R) /2.
There will be a maximum value of m above which the
W's are no longer bound since they would be outside the
solenoid where the field is zero.

Taking into account the electron current, the equation
for the magnetic field becomes

B=H+e~ W~ ~ eq .

The average, or macroscopic, induction is

B=H+el W+ I'

(29)

(30)

7 XH=JC)+)~,
where

H=VX A —
e~ W+ ~ e,

(33)

(34)

where e
~ W+ ~

is the macroscopic magnetization.
Using the solutions of the field equations for the real

fields, one can reexpress % as a sum of derivative terms,
which would contribute only at the boundary, and terms
which give, up to second order in

~ W+ ~,

&(p ) = ,' (B —
e~ W+ ~ )—+Mii,

~ W+ ~

+ —,'g Mii U(p) ) W+ ~

where

(31)

U(P)=UM (P) —UM (P)

J "d~ Jd'p'Ip'I&i(~lp'I)I W+(p'+p)l'.

(32)

In the next two sections, we consider two distinct formu-
lations of the boundary conditions.

(i) If one assumes that the uniform magnetic field is
produced in the interior of a large solenoid, then the con-
stant field H is determined by the current per unit length
on the solenoid's surface, which is to be considered as the
external source.

(ii) There is a uniform background magnetic field
throughout space. This is a mathematical idealization.
The total energy is infinite and one has to consider the
average energy density. Above the critical value of the

jii, =ie(WtXF —WXF ) . (35)

To lowest order in
~ W+ ~, j ii vanishes sinceF: F&2e3

=0. Therefore, the magnetic field strength H
inside the solenoid is constant and its magnitude is equal
to the current per unit length in the solenoid.

The energy density is, to lowest order in
~ W+ ~,

m=-,'H'+M'
/ W, /' (36)

eH 1

2m. V'2nm
exp —— —1

m p
R 2

(37)

and for a fixed value of H it increases with W production.
But, for eH & M~, W's would be created with E 0,

which is the signal of an instability.
In order to resolve this paradox, we suggest that one

should take into account the interaction (g/&2)vy"eW„.
This allows electrons in the solenoid to decay into a neu-
trino and a negatively charged W, provided that the mag-
netic field H is large enough (but below 8, ) that the
W 's can be produced near the surface with an energy
smaller than M, c . They will be produced in a state of
angular momentum m =eHR /2 and their electric
current will vanish to lowest order in

~
W

~
. Equation

(17), with B =H, describes approximately the wave func-
tion for this state, which for large m =eHR /2 has the
following behavior:

2
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This is sharply peaked at p =R.
The process qualitatively described above provides a

mechanism for preventing the electric current in the
solenoid from increasing beyond a critical value as the
voltage is increased, thus preventing a phase transition
from occurring.

a side, s is a coordinate along the side with origin at the
middle point and running counterclockwise, and Bu/Bn
is the derivative of u in the direction of the outward nor-
mal to the side, at the position s. Since f (z) is analytic in
2), Bu /Bn =Bv/Bs. Then, on each side of the polygon, we
have

V. LATTICE SOLUTIONS v (h, s)= —,'eBhs —k arctan(s/h) . (42)

(38}

where

In this section we discuss the general properties of per-
turbative solutions with lattice symmetry and proceed
with their explicit construction. By introducing the com-
plex variable z =pe'+, we can rewrite the general solu-
tion, Eqs. (19) and (17},as

' 1/2

W+ (p) = exp( ——'eBp )G (z},2' 4

The condition

ds =0Bv

Bs
(43)

along the perimeter of the cell is equivalent to the flux
quantization condition.

Now one can use Poisson's formula to determine f (z)
inside the cell:

' m/2 2m -~ e'e —g(z)
(44)

G(z)=
~0 m!

m (39)

~ inl W+ I

= —eB+2~g &"'(p—p; } . (40)

The right-hand side represents a uniform charge distri-
bution with density —eB and point charges at the posi-
tions p; as sources for the potential function lnlW+ l.
Since lW+ l

is invariant under translation by a lattice
vector, it follows that the total charge inside a cell must
be zero. Integration over a cell proves the theorem. %'e
remark that a zero on the edge of a cell counts as —,', and

at a vertex it counts as

(angle between the two sides at the vertex)/2~ .

Theorem 2: Uniqueness theorem (8]. For a lattice of
regular polygons or a rectangular lattice there exists a
unique solution for W+(p) (up to a multiplicative con-
stant) with the following properties: (i} W+ has a zero of
order k )0 at the center of the cell; (ii) l W+ l

is invariant
under reflections in the sides of the polygon.

Proof Let us take the r.eal axis perpendicular to a side
of the polygon with origin at the center of the cell. Set
G (z }=ckz exp[f(z) ], where f (z) = u + iv is analytic in
the domain 2), f(0)=0, and ck is an arbitrary constant.
Because of the symmetry property (ii), the normal deriva-
tive of lnl W+ l at the boundary of a cell vanishes. There-
fore,

,'eBh+kh/(h +s )+Bu/—Bn—=0, (41)

where h is the distance from the center of the polygon to

We shall assume that the function G(z} is analytic in
some domain 2) containing a lattice cell centered at z =0.
Then translational invariance of

l W+ l by a lattice vector
implies the following.

Theorem 1: Flux quantization The .magnetic flux

through a lattice cell of area A is given by BA =2mkle,
where k is the number of zeros of W+ inside the cell.
This is the equivalent of the result (19) of Ref. [4].

Proof. Since in[6(z)] is analytic inside 2) except for
branch points at the zeros z; of G (z), one has

where g(z} is the map of the interior of the polygon onto
the interior of the unit circle, with the origins and direc-
tions of the real axes coinciding and s (e' ) determined by
the inverse map. Then W+ (p) inside Xl will be given by

' 1/2
eB

W+(p) =ck exp( —
—,
' eBp )z "exp [f (z)], (45)

which is unique up to the multiplicative constant ck.
The theorem can be generalized to the cases in which

W+ has other zeros inside the cell, provided that the po-
sitions of the zeros preserve the reflection symmetry (ii).

A proof of the existence of periodic solutions for the
nonlinear equations of Ref. [4] was given by Spruck and
Yang [9].

For lattices of regular polygons, triangular, square, and
hexagonal (n =3,4, 6) in addition to the translation and
reflection symmetries one has invariance of

l W+ l
under

rotations C„by multiples of a„=2m/n Such la.ttices
have maximal symmetry C4& for the square and C6~ for
the lattices of equilateral triangles and regular hexagons.
Any other symmetry group of a two-dimensional lattice
is a subgroup of either C4& or C6v.

Let us denote by W„and G„(n =3,4, 6) the functions

W+ and 6, with k =1, for these three regular lattices. A
representation for the function G„(z) which explicitly ex-
hibits the rotational symmetry was given in Ref. [10]:

'n

G„(z)=c„zg Z

j j
(46)

where the product extends over the centers zj of all the
cells within the domain —a„/2 & Arg(z) ~ a„/2, exclud-

ing the origin. For n =3,4, 6, this infinite product is uni-
formly convergent throughout the complex plane,
defining an entire function. Under a rotation by a„,
G„(z) clearly transforms to e "G„(z). The triangular lat-
tice is the dual of the hexagonal lattice. It may be con-
sidered as a hexagonal lattice with the zeros of S'+ at the
vertices of the hexagons. Then, if one takes a hexagon as
the lattice cell, it has two zeros per cell. As shown in
Ref. [10), W3(p) can be expressed in terms of a product
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of two functions 8'6 with their arguments shifted by con-
stant vectors.

Here we shall generalize the results of Refs. [4,6, 10]
and consider lattices of arbitrary identical parallelograms
with one zero of 8'+ at the center of each cell. Let us
take one parallelogram in the complex z plane, with four
vertices at +( a/2)(1+v), where a is the length of one
side along the real axis and ~=~~+i~l is a complex
number with positive imaginary part ~1. The center of
the parallelogram is at the origin z =0. Its area is given
by A =a ~1, which by the flux quantization condition
determines the parameter a. This is a unit cell of the lat-
tice of parallelogram s. There is then a one-to-one
correspondence between lattices of parallelograms and
the upper half ~ plane. For a solution with the symmetry
of a lattice of parallelograms, lW+ l

must be doubly
periodic with periods a and ~a in the z plane. Therefore,
the function G (z) should have a representation in terms
of Jacobi 8 functions [11]. Indeed, let

G(z/a, r)=(2rl)' exp (z/a) 8,(mzlale)
2%I

(47)

and

%'+(p, r) = exp —
p G(z/a, r), (48a)

where 7 —age&+~ie2. Then
' 1/2

%'+(p, r)W+ (p, r) =c eB
(48b)

has the following properties under translations:

. ma
(i) W+(p+ae„r)= —exp i y W+(p, r),

(ii) W+ (p+ ax, r)
(49)

. m.a= —exp & ( xrl+yrz —) W+(p, r) .

As shown in Ref. [8] these are precisely the gauge
transformations of 8'+ corresponding to the transforma-
tion of the gauge potential A, =

—,
' e BXp, to

A2= —,'eBXp2, where a&2—=p2
—

p& is a constant vector

corresponding, in the complex plane, to the displace-
ments a and ra, respectively. It is clear that l W+ l

is left

invariant by these transformations.
The function G(z/a, r) defined by Eq. (47) coincides

(up to a constant factor) with G„(z) given by Eq. (46) for
the values of r corresponding to the square (n =4, r=i)
and hexagonal [n =6, r=(1+i v'3)/2] lattices. The tri-
angular lattice does not correspond to a simple lattice of
parallelograms with a single zero at the center but to one
with two zeros in each cell. Therefore, as already ex-
plained, it can be represented in terms of a product of
two 8 functions. The functions

are also solutions with the same lattice symmetry but
with a zero of order k at the center of each parallelo-
gram.

VI. AVERAGE ENERGY DENSITY

We now proceed to express the average energy density
in terms of the lattice solutions. In expression (31), the
first term is a constant —,'H . As given by Eq. (30),
H=8 —el W+ l, where 8 is taken as the external back-
ground field. The bar over a function indicates the space
average of that function, which for lattice solutions
equals the average over a unit cell. The average energy
density becomes

Ff= '8 (e—B —M~)l—W+ l
+ 'e (—

l W+ l )

+—,'g M~U(p) W+ l
(50)

f [g Ms, U(p)+e l W+

—(eB —Ms, )]W+(p)f (p)d p=0. (51)

If one assumes that the minimal average energy density
corresponds to a particular lattice solution, then a
sufficient condition for (51) to hold is that, for this solu-

tion and all m ~ 0, one has

—,
' y flW+(p'+ep)l'W* {p')f (p')d'p'

v=+1

The last two terms are of order (lW+l ) so that, if
eB & M~, the average energy density decreases with the
production of 8' pairs. Therefore, a phase transition
occurs with

l W+ l playing the role of an order parame-
ter.

The stability of the system depends on the quartic
terms. We distinguish two cases.

(i) MH (Mz. In this case, U(p) is negative. One can
show that there are configurations of the W+ field with
lattice symmetry for which the quartic terms become
negative. As the density of 8' pairs in such
configurations increases, the average energy density be-
comes increasingly negative, that is unbounded from
below, and the system would be unstable. However, this
instability is an artifact of the perturbation method. One
can, in fact, verify that the system is always stable but the
perturbative method cannot be used in this case.

(ii) MH Mz. In this case, U(p) is positive and the
quartic interaction is positive definite. The system is
stable and the average energy density will have a
minimum with

l W+ l
%0.

The minimal average energy density, in lowest order of
l W+ l, is obtained by varying Eq. (50) at a fixed value of
B with respect to the parameters A, . One obtains the set
of equations

W+ (p, r)=ck eB
2'

' 1/2

[%'+(p, r)]"
where

=A(p) f W+(p')f (p')d p', (52a)
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~(p)= f lw+(p'+p)l'lw+(p'}I'd'p' J lw+(p')I'd'p'. (52b)

Using the properties of the 8 functions, one can show
[12] that such identities do indeed hold for the solutions
with k =1 on the hexagonal and square lattices.

On the other hand, for a particular lattice solution,
W+(p) is known up to a normalizing constant c which
sets the magnitude of the density of 8'pairs. This overall
constant can then be determined by the condition

(Mir —eB)l W+ l

From (i) it immediately follows that G(zla, r)
=e '""~ G(zla, r+n).

Let us introduce in (ii) the variable z'/a'=(zla)r' Be.-
cause of the flux quantization condition, we set
A'=(a') rJ= A =a ri, and therefore (a') =a t and
z = —z'e'~. The factor exp[(n/2rt)(z/a) ] in the
definition of G(zla, r) combines with exp[in(z /a )r']
in (ii) to give exp [(n./2rt )(z'/a' } ]. Moreover,

=e '~ (rt)' . Therefore, from (ii}, one obtains

+g [sin 8(lW+l ) +MirU(p)lW+l ]=0 (53)
G(zla, r)=e '~ + 'G(z'/a', r') . (58)

from which one obtains the following expression for the
average value of the energy density in a cell:

~=—,
'B'—,(eB Mw) r—i(Mz/MH) ~

2g

where

g(Mz/Mlt)=1/[MirU(p)l W+ l /(l W+ l2)z+sin28] .

(54)

(i) 8i(n.z/a lr}=e '" 8i(n.z/a lr+n ),

n =integer, (56)

2
(ii} 8i(nz/a lr) =e ™/4r ' exp in.

0

XB,(rr(z/a)r'lr'), r'= —1 lr . (57)

(55}

This parameter ri is also a function of (eB/Mir) but to
the order of magnitude we are calculating one can set this
equal to unity.

This result would qualitatively agree with Skalozub's
[6] were it not for a sign discrepancy in the magnetiza-
tion. Our sign agrees with that of Ref. [4]. Skalozub also
makes an approximation which effectively replaces the
nonlocal quartic interaction by a local one. Our exact
calculation in Sec. VIII shows that the effects of nonlocal-
ity can change the values of ri by as inuch as 10% as
compared to differences of about 0.25% between the
square and hexagonal lattices. Our conclusion is that, for
any MH & Mz, the hexagonal lattice has the lowest ener-

gy density.
Lattices of parallelograms are specified by the complex

parameter w with Imv & 0. We shall now show the follow-
ing important result.

Theorem 3: Modular invariance of the overage energy
density. With %'+ given by Eq. (48a), or some power k
thereof, the average energy density & considered as a
function of the lattice parameter ~=te'P is modular in-
variant.

The proof is based on the following properties of the
function 8,:

Since r~r+n and r + —1/r—are the generators of the
modular group, it follows that the modulus of G(z/a, r)
is invariant under the modular group with the variable
z la transforming under each inversion as z'/a'= (z/a)r'.
Therefore, by Eqs. (48), it follows that the average energy
density is invariant under modular transformations. A
simple geometric interpretation of this invariance was
given in [7].

Theorem 4: Re+ection symmetry. The average energy
density is invariant under the transformation v~ —~'.
In fact, G(zla, r)"=G(z'/a, —r'). Since p and A are
unchanged by the transformations z —+z', v~ —w*, the
theorem follows from Eqs. (48), (54), and (55).

A numerical analysis searching for the lattice
configuration for which Eq. (54) is an absolute minimuin
is deferred to Sec. VIII. In the next section the classical
treatment we have been following so far will be justified
by an approach where the 8'field is quantized.

VII. QUANTIZATION OF THE W FIELD

So far we have given a completely classical treatment
of the instability of the electroweak theory against the
production of 8'-pair condensates in a strong magnetic
field above the critical value e8, =M~.

Since the W field is complex, representing a charged
particle, it is not an observable and therefore does not
have a classical limit. The expectation value of W in any
physical state is always zero. Therefore, this classical
treatment has to be justified by a quantum field approach.
We shall here follow a simplified approach in which the
real fields A, Z, and @are treated classically while the 8'
field is quantized. One should then look for the quantum
state of an ensemble of 8"s that corresponds to the
minimal eigenstate of the energy density operator. For
the lattice solutions, this quantum state will be one with
6'-pair condensates.

The field equations for the real fields should be inter-
preted as classical equations, in which the 8'-dependent
source terms are to be taken as expectation values in the
state l0 ) that minimizes the energy. On the other hand,
the equation for the 8'field is operator valued.

We shall quantize the field W+ in a constant magnetic
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field B, taking the set of eigenfunctions fk„(z,p, y) given
in Eq. (16) with degenerate eigenvalues

Ek„=M//, +(2nk/L) +(2n —1)eB (59)

as a basis for the one-particle states. It will be given by
oo oo oo

1
W+ (z,p, qo) =

k = —ao n =0 m = —n V'2LEk„
kn

(t/knm e

Xfk„(z,p, q)) .

The components W and W3 should be quantized in the
same way, but since they do not develop zero modes we
do not have to consider them here.

The annihilation operators a, b and their Hermitian
conjugates a, b have the following nonvanishing canoni-
cal commutators:

where 7= ( I /&2LE )g A, f is a classical solution.
In order to construct these eigenstates it is convenient

to perform a Bogoliubov transformation

u=aA, a =Aa~,

P=Ab, P'=b'A',

where A is a unitary matrix, a and b are row vectors, a
and b are column vectors, and one makes the
identification Ao =/(, /A. , with

=2LE J 7'Vd p . (66)

For the lattice solutions this integral diverges. It is then
necessary to introduce a cutoff mo in m: m &mo. This
cutoff roughly corresponds to quantizing inside a cylinder
of radius R such that mo =—,'eBR . In all that follows we

shall neglect terms of order mo
In terms of the operators defined by Eq. (65), W+ W+

[~k ~k' ' ]=fikk fi- fi
(61)

1s

[bk. bk. ]=fikk fi- fi

The operators a, b annihilate a state i & which is the vacu-
um of the interaction representation. The charge opera-
tor is given by

Q=e y (t/k„ /tk„—b/, „b/,„).
k, n, m

(62)

W = g [a (t)+b (t)]f
2LE

(63)

where a (t) =a e ' ', b (t)= b e ' '. These operators
satisfy the same commutation relations (61) as a, b . In
the limit E~O, a (t)~a and b (t)~b . From now
on we shall write a and b for a (t) and b (t) with the
understanding that only in the limit E~O do they be-
come time independent. Since we are now dealing with
time-dependent solutions of the linearized equations for
the W field, we have to add to the energy density the ki-

~ f ~

netic term W+ W+.
In the static limit, the energy density will become a

function of W+ W+. Therefore, one should look for
eigenstates of this operator of the form [13]

W' W iQ&=V*ViQ&, (64)

Above the critical value of the magnetic field, the
lowest eigenvalue (Eoo ) becomes negative and the expan-
sion (60) does not make sense since Eoo becomes imagi-

nary. In order to circumvent this difficulty we shall add a
mass counterterm M& W+ W+ to the unperturbed Hamil-
tonian density and subtract the same term from the in-
teraction part. Then (Eoo) =M//, eB+Mc, w—hich is
positive for a properly chosen M&. One finds that the
minimum of the energy density occurs for (Eoo) =0 and

M& equal to the shift in E due to the perturbation.
In what follows we shall be interested in the sector 60

of the Hilbert space spanned by the zero-mode operators.
Therefore, we shall restrict ourselves to the set of quan-
tum numbers [k =O, n =O, m )0] and shall drop from
our notation the indices k and n. In So, 8'+ reduces to

Wt+ W+ = g (a +P )(a„+Pt )F'F„, (67)
1

m, n

where F =Af. In order to obtain an eigenstate of
W+ W+ of the form (64}, the following conditions must
be satisfied:

(i) m&0: (at +P }iQ(/(, ) & =0,
(a +P }iQ(/(, ) & =0,

(ii) (aot+Po)(ac+Pot)lQ(z) &=~"~i Q(X) &.

(68)

The general solution of these equations such that iQ(A, ) &

can be expressed as a power series in the set (/t, bt) act-
ing on the state i & is [14]

0
1

iQ(A, ) & =Z ' exp —g a~P~
p 2'

X I du g(u) exp(Aaoe '"+A, 'Poe'")i &, (69)

where Z is a constant. The Fourier decomposition of
g(u) gives a decomposition of iQ(A, ) & into eigenstates of
the charge operator with eigenvalues equal to the index
of the Fourier component of g (u). For a solution corre-
sponding to a condensate of W pairs the total charge is
zero. This state is obtained with g(u)=1. Then the in-

tegral becomes

f du exp(Aaote '"+A,*Pote'") =ID(2+A, 'AaoPto},

(70)

where Io is a modified Bessel function of the third kind.
The state iQ(/(, ) & as defined is not normalizable. .Never-

theless, one can use a simple device which allows for the
construction of normalized states dependent on a param-
eter c; in the limit c,~O they go over to the eigenstates
iQ(A. ) &. One can then use these states to compute expec-
tation values and only after this is done take the limit
E~0. In fact, for c, such that i 1 —E

~

& 1, the states [14]
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are normalized to unity by taking
mO+1

2
exp —

A, *A,z=

m0

~Q(A. , E)) =Z ' exp —(1—e) g a P

X I du exp(Aaoe '"+A, Poe'")~ ) (71)
0

operators W+W+, (W+W+), and W+W+. This rath-
er laborious computation is omitted here. We shall give
only the results.

Take E real, let 5=1—
~1

—
e~ =2E —e and

g=e /(2LEE). We consider two regimes: A, ~A, && b, and
A, *A, »A. First, at the onset of the phase transition, one
has the following.

(i) A, 'A, «b, :

XIO(2K*A/(1 —
~1

—E~2}) . (72)
&w', w, &=' q+-'V'V,

2
(74a)

&Jv&= —,'(B —e& wt w &) +M &
wt w

+—,'g Ms U(p)& W+ W+ )

+-,'g'[&(wt w )'& —
&

wt w )'j
+&w', w, & . (73)

In this expression U(p) is given by (31) with
~ W+ ~

re-
placed by & W+ W+ ).

We need to compute the expectation values of the

2
—m

O
—1/2

As e~O, Z-(1 —
~1

—ci )
' —moo.

The expectation value of the energy density in the state
~n) is

&w'w &='B ' —' — ' '
V V

2~ 4L g 8L

(74b)

(74c)

where we used Eq. (18}.
Assuming a lattice solution, the energy density be-

comes a function of only two parameters: A, 'A, /(2LE)
and y. Averaging over a unit cell and varying with
respect to these two parameters, one obtains the condi-
tions for the minimum.

Variation with respect to A, 'X gives

&(eB —M2 )V+—V+ &g2 +V@V+ &e2 ++ V+V V+V+ &g2M2 U(p)V+V V+V=0 .eB eB 1 1 1
W 2 277 2 277 2 8L2 x

(75)

Dividing by —,
' V"V and taking the limit A, 'A, ~O, one ob-

tains

'2

&(W W ))—&W W ) = y+2 yP'P,
2~ 2~

2

(eB—M~}+—g 2 — y — =0 . (76)
Me' eB 1 1

M 2~ 4L t )
1 eB1

4L2 2a g

(79b)

(79c)

Variation with respect to y in the limit A, 'A, ~O gives the
same equation.

If one assumes that the energy density is continuous
through the transition point, one finds that, for finite L,
the critical magnetic field is shifted to

Variation of the average energy density with respect to
A, 'A, gives

(eB M~)V" V—+g yP'7—+g Ms, U(p)V'V

eB, =M~

with

1 — 2 — X.
3g' Mw

8~ M2 (77) +e y+ V*V V*V=0 . (80)
277

Variation of the average energy density with respect to g
gives

M
X, = g'L'

277

M W

2
MH

(78) —(eB —Ms, )+g Ms, U(p)+e y+V*V

Next, consider the following regime.
(ii) A, *A.))h. In lowest order in y,

&w', w )= ' y+v'v,
2~

(79a)

1 1 2 eB+g' /+V*V =0. (81)
4L2 ~2 2'

Dividing Eq. (80) by V*V and subtracting from Eq. (81),
one obtains
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TABLE I. Values of the parameter q(Mz/MH ) resulting from four difFerent distributions of
~ W+ ~,

in units of (eB—M~) /(2g ).

Mz /MH

0.0000
0.062 5

0.125 0
0.187 5

0.2500
0.312 5

0.375 0
0.437 5

0.5000
0.562 5

0.625 0
0.687 5

0.750 0
0.812 5

0.875 0
0.937 5

1.0000

Triangle

0.936 86
0.94044
0.951 24
0.969 39
0.995 28
1.029 60
1.073 53
1.128 89
1.19847
1.28646
1.399 25
1.547 01
1.746 63
2.028 42
2.452 44
3.156 84
4.545 45

Square

0.977 15
0.980 58
0.99092
1.008 30
1.033 10
1.06607
1.108 49
1.162 27
1.230 29
1.31680
1.428 25
1.574 77
1.773 22
2.053 66
2.475 53
3.174 79
4.545 45

Hexagon

0.981 66
0.985 06
0.995 31
1.012 54
1.037 14
1.069 88
1.11203
1.165 56
1.233 35
1.31964
1.43090
1.577 26
1.775 56
2.055 84
2.477 49
3.176 30
4.545 45

Uniform

1.00000
1.003 06
1.012 34
1.028 20
1.051 25
1.082 45
1.123 20
1.175 50
1.242 24
1.327 66
1.438 20
1.583 96
1.781 74
2.061 52
2.482 54
3.180 12
4.545 45

g 1+ 1
(82)

where the parameter r) is defined by Eq. (55) with

~ W+ ~

=9'*9' and given in Table I for the triangular,
square, and hexagonal lattices and
=[1—(Mn /MH)]

Now one can take the limit E~O, c.~O at fixed
ratio I /(4Ly). Then

~
0) becomes an energy eigenstate.

In the limit L ~Do, y-I/(2gL 1/7 7) goes to zero.
In this limit the energy density (73) averaged over a unit
cell reduces to the classical expression (50).

~u6(p) =[~+(p,r)]',
cu3(p ) =%V+(p+ e2a /&3, r )'V~ (p —e2a /v'3, r )

(83a)

(83b)

ergy density is obtained for the hexagonal lattice with one
zero of W+ at the center of each cell; and (iii) the average
energy density for the triangular lattice with k =1 is ex-
actly equal to the energy density for a hexagonal lattice
with k =2. This rather surprising result comes about by
virtue of the following remarkable identity, involving 8
functions.

The wave functions c03(p) and ro6(p) corresponding to
these two lattices are (up to a constant factor)

VIII. NUMERICAL ANALYSIS AND CONCLUSIONS

Using Eq. (55), the parameter r) in the expression (54)
for the average energy density was calculated numerically
for lattice configurations with maximal symmetry, name-

ly, lattices of regular triangles, squares, and hexagons.
The results were given in Ref. [11]. Because of a small er-
ror in the computer code, the numbers given there for the
triangular and hexagonal lattices were accurate only to
three decimal places. We have now been able to do the
integrations analytically [15].

The corrected values of the parameter g, for
sin 0=0.22, are reproduced in Table I for completeness.
The conclusions are independent of the value of the
Weinberg angle 0. The last column in this table was cal-
culated taking

~ W+ ~
=const. Such a uniform distribu-

tion does not correspond to a classical solution; it could
result from a coherent quantum state of W pairs [as given
by Eq. (71) with A, =O], but the quantum fiuctuations,
given by Eq. (74b) with V*V=0, would raise the energy
density above the values for lattices of regular polygons.

For MH in the range 0 & Mz/MH & 1 the results can be
summarized as follows: (i) For each lattice symmetry the
energy density is lowest for k = 1 and increases monoton-
ically with the order k of zeros of W+, (ii) the lowest en-

with 'N+~(, r) defined by Eq. (48a)
r =

—,'e, + (&3/2)e2. Then we find numerically that

f ~~6(p') ~'~~6(p'+ p) ~'d'p'
r e.tl

f ~u6(p')~ d p'

f „~~3(p')~'~~3(p'+ p) ~'d'p'

f I~3(p') I'd'p'

and

(83c)

For k = 1 we have also investigated the behavior of the
average energy density for lattices of parallelograms,
specified by the complex parameter ~=~& +i ~1 with
~I &0. Because of the modular invariance one needs to
investigate the average energy density only in a funda-
mental domain of ~ space. Such a domain can be
specified by [r:—0.5 (rz ~0.5, ~r~ & I]. However, be-
cause of the additional reAection symmetry under

one needs to consider only the region
2)=[r: O~rz ~0.5, ~r~ ~1] (see Fig. 1).

The minimal average energy density corresponds to a
configuration for which f~ dAt V(Ai, r) is a minimumz
[cf. Eqs. (32), (54), and (55)], where
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vq =0 0.25

0.5

1.5

1.000 26
1.002 26
1.008 01
1.003 30
1.024 28
1.073 64
1.012 19
1.072 60
1.18962
1.026 59
1.13093
1.305 52
1.061 25
1.229 95
1.47005
1.180 34
1.424 80
1.732 61

1.000 22
1.002 20
1.007 93
1.002 92
1.023 70
1.073 02
1.01089
1.071 05
1.188 27
1.02401
1.128 43
1.303 64
1.056 28
1.226 21
1.467 61
1.171 95
1.419 71
1.729 61

1.000 18
1.002 02
1.007 69
1.002 34
1.021 96
1.071 17
1.008 94
1.066 42
1.184 23
1.020 15
1.120 89
1.297 94
1.048 90
1.214 89
1.460 24
1.15960
1.404 24
1.720 53

TABLE II. Sample of values for u (At/'(/eB, r) for lattices of
par allelograms.

JN/', t/eB 0.5
3$

rrrr~rrf
1!Wr~'i'rl l~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrr rrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr

~rrrrrrra~rrrrrrra~rrrrrrra~rrrrrrrr
~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrr~rrrrrrrrgrrrrrrrr~rrr

-1 -05 0 05 1

FIG. 1. The hatched area is the semifundamental domain of
~ space corresponding to the set of parameters of inequivalent
lattice solutions. The solid squares indicate points sampled in
Table II.

fd'p'Ip'I& (Atlp'I }f d'pllv (p}l'IIv (p'+p}l'
V(At }

cell

f I IV+ (p) I'd'p
(84}

function only of the geometrical parameter w. In this lim-

it, v coincides with the parameter p„ in the Ginzburg-
Landau theory of type-II superconductivity near the
transition point H, z [7]. The values of u in Table II for
M=~ and IvI=1, u =1.18034 for the square and
v =1.15960 for the hexagonal lattice, agree with the
values of p„calculated by Abrikosov [5] for the square
and by Kleiner, Roth, and Autler [16] for the hexagonal
lattice.

This treatment of the electroweak phase transition is
mathematically a generalization of the Ginzburg-Landau
theory in that the quartic interaction mediated by the Z
and 4 fields is nonlocal. The propagator, in coordinate
space, for the respective interactions is given by the func-
tion (I/2~)ICO(Mlp —p'I), where the inverse of the mass
parameter M ( =Mz, M~ } determines the range of the in-
teraction.

Our analysis supports the conclusion that the hexago-
nal lattice with k = 1 has the lowest average energy densi-
ty. This result is valid for more general quartic interac-
tions of the form

The integrals were carried out analytically [15]. Using
Eqs. (47) and (48) and the condition eBA =2m, one ob.-

tains

(85)

and

X exp — Ikr l
I

. (8—6)

The sum converges very rapidly.
We have scanned this function numerically for ~ in the

region 2). It has the following properties for all positive
values of At: (i) For fixed I~l it decreases monotonically
with rz, (ii} for fixed ~z it increases monotonically with

The point IvI =1, r„=0.5 that corresponds to the
hexagonal lattice gives the minimum of this function.
The point I ~l = 1, rz =0, corresponding to the square lat-
tice, is a saddle point.

The function V(At, v ) behaves as

fd'p' fd'p
I
Iv (p'}I'&( Ip' —pl ) I

Iv (p) I' (87)

where %'(p)= f o g(At)KO(Atp}dAt, with g(At) ~0 for
all A, .

(2eB/At )v (At /YeB, r)

d 1
V(At, r) =-

dAt „, „JK'/eB+(2~/~1 }1k~ Il—

where v is a slowly varying function of the arguments and
v (0,~}=—1. A sample of numerical values of
v(Atl+eB, r) is given in Table II. The limit At~ao
corresponds to a local

I IVI interaction and v becomes a
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