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Fermionic vortex solutions in Chem-Simons electrodynamics
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We present anyonic vortex solutions made of real electrons which could be interpreted as nontopologi-
cal solitons of the (2+1)-dimensional Chem-Simons electrodynamics. The n-soliton solutions, which we
obtain by imposing an effective axial symmetry on the (3+1)-dimensional quantum electrodynamics,
have 4n real parameters which represent the position, size, and phase of each soliton.

PACS number(s): 11.15.—q, 03.50.Kk, 12.20.Ds, 74.65.+n

The axially symmetric vortex solutions which exist in
(3+ 1)-dimensional gauge theories have played a very im-

portant role in physics. They describe the quantized
magnetic flux lines in superconductivity [1], the string
model in hadrodynamics [2], and the large-scale cosmic
strings in cosmology [3]. Similar vortex solutions also ex-

ist in the (2+1)-dimensional Chem-Simons gauge theory
[4]. In all these solutions, however, the presence of scalar
fields has played a crucial role in providing the source of
the vortices. So far no vortex solution made of a fermion-
ic source has been constructed, although the fermionic
bound states coupled to an arbitrary external magnetic
vortex have been discussed by many authors [5]. The
purpose of this paper is to show the existence of axially
symmetric vortex solutions in which a fermion field pro-
vides the source of the vortices, and to discuss the physi-

cal implication of the solutions.
The system we discuss is the one derived from the

(3+1}-dimensional quantum electrodynamics which has

an effective axial symmetry described in the following.
With the symmetry one can reduce the theory to the
(2+1)-dimensional Maxwell electrodynamics which has
two interacting fermionic sources: the right-handed and

the left-handed fermions. Furthermore, when the
effective axial symmetry is chosen in such a way to
violate parity, one may add the Chem-Simons interaction
to the theory. This is because the Chem-Simons interac-

tion could be induced by the higher-order quantum
correction of the fermions when a parity-violating in-

teraction is present [6]. In this case the theory becomes
Maxwell-Chem-Simons electrodynamics, but again with
two fermionic sources. This means that, in the long-
distance limit in which the Chem-Simons term dominates
the Maxwell term, the theory can be approximated to an
effective Chem-Simons electrodynamics. In this limit we

show that the theory admits vortex solutions made of fer-
mions.

Let us start with (3+1)-dimensional quantum electro-
dynamics. In the chiral representation in which y5 be-

comes diagonal one can describe the Dirac spinor 4 with
two two-components spinors

where %'+ and 0 are the right-handed and the left-

handed Weyl spinors. Now we impose the effective axial
symmetry and assume that the Weyl spinors 4+ are
periodic in the z coordinate (with different periodicities),

4+=e + g+(t, x,y),
but the gauge potential is independent of the z coordi-
nate. With this effective axial symmetry one can easily
reduce the theory to (2+ 1)-dimensional electrodynamics.
After the dimensional reduction by integrating out the z
dependence, we obtain the (2+1)-dimensional effective
Lagrangian

'F ~F t3+Q+i—(D—O+cr'D)+cr D2)$++f i(DO o'D) cr D2)Q— —

p, y, o'q++p q'o'q m(q'+q +q' q—, }

l pFF tt+P+iy+—D g++P iy D tlj —p+P+P+ —p P g —m(P+ttr +g g+), (3)

where cr' (i =1,2, 3) are the Pauli matrices, y+ and y
(et=0, 1,2) are two sets of (2+1)-dimensional y matrices
given by

y+ =(o,io, —icr'), y =( —cr3,io2, —icr'),
and m is the mass of the (3+1)-dimensional electron.
Notice that here we have neglected the z component of

the gauge potential, which is irrelevant for our purpose.
At the same time we have kept the (3+1)-dimensional
mass term for the generality, which must disappear when

p+Wp . But of course here the momenta p+, not m,
play the role of the (2+1)-dimensional mass of the fer-
mions.

Now, under the parity we have
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p+0—+0+ p 0—0 --m(-4—'+0 +0'- (4)

where p is the Chem-Simons coupling constant. From
this we conclude that in the long-distance limit the
theory reduces to Chem-Simons electrodynamics, but
with two fermionic sources interacting with each other
through the (3+1)-dimensional mass term.

In the absence of the Maxwell term the Lagrangian (4)
gives the equations of motion

2 re "Ft,=e(4 r 0++0 r-
(i r+D —p+ }1(+=m o f (5)

(t,x,y)~(t, —x,y),
Q~(t, x,y)~cr'P+(t, —x,y),

so that after dimensional reduction g+ and g become
the parity partner of the other. But notice that the La-
grangian (3) becomes invariant under parity only when

p+ =p . So one can legitimately add the parity-
violating Chem-Simons interaction when p+ Xp, which
can be induced through quantum correction [6,7]. With
the Chem-Simons interaction we obtain

F~—F + +e ~r A Fit4 aP 4 a Py

+0+(r+D.0++0 (r-D.-0

So with

E —p =m

we have the following solutions. When p & 0 we have

2(eAO+ n +1)
2(n +1)

2(eAO+ n +1)
P

2(eAO+ n +1)
P—Ao 2(eAO+ n + 1)
P

f+= (eAO+n +1)A, E+p
2p

e

' 1/2 eAO+n
P

2(e A 0+ n + 1)
P

f = —f+

g+ =g =0,

eAO+n +1&0,

where A 0
= A (0}, l(, are the integration constants, and

n =k+. When @&0we have

(6)ll+ ip

ig+ (p)e
T

f (p)e—e il
ig (p)e

where k+ and i+ are integers. Now, when m%0, Eq. (5)
is reduced to

k+=l+-1=k =l -1,
E+ =E =E, p+ =p =p,

(ir D —p )g = —mo g+.
To obtain the desired solutions we choose the polar coor-
dinates (t,p, tp) and the ansatz

0, a=t p,
A

A (p), a=p,

f (p)e
e

2( —e Ao+ n + 1)
p g2—Ao 2( —e A 0+ n +1)
P

( —eAO+n+1)A, E+p
2p

—eAO+n
P

X
2( —eAO+n + ) )

P

E —p

f+ =f =0—

2( —eAO+ n + 1)
2(n +1)

2( —eAO+n +1)
P

' 1/2

(10)

df+ k++eA
f++(E+p}g+=mg

dp p
dg+ l+ +eA
dp

df
dp

dg l +eA+ g +(E+p)f =mf+ .
dP P

g+ « p}f+= mf— — —
P

k +eA f (E —p)g = —mg—+,
P

=« If+ I'+
Ig, I'+ If I'+ Ig I'),

P P

f+g+ f g— — —

—eAO+n +1&0,

when n = —l+. Notice that the solutions (9) and (10)
remain valid even when m vanishes.

We have pointed out that the Chem-Simons interac-
tion can be induced through quantum correction only
when the axial symmetry (2) violates parity So one may.
ask whether Chem-Simons electrodynamics admits any
solution when p+ Ap . To answer this notice that when
p+Xp the (3+1)-dimensional mass term in (3) must
disappear, after one integrates out the z dependence and
makes the dimensional reduction. Now, with m =0, Eq.
(5) with (6}is reduced to
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k+ = I+ —1, k =I —1,

=e(If+ I'+ Ig+ I'+ If I'+ Ig
p dp

o=f+g+ f—g*-

k++eAdf+
dp p

dg+ l+ +eA

dp

df
dp

dg +
dp p

f++(E++p+)g+ =0

g+ (E+——p+ )f+ =o
p

k +eA f —(E-- —p-)g- =o

g +(E +p )f =0.

E+ —u+ =o E-+~- =0

p dp

df k +eA f =0,
dp p

f =cp ' f, g+=g

eAo+k++1) 0, eAo+k —+1)0

(12)

where c is an integration constant. The equations can
easily be solved. When k+ =k, the solution becomes
almost identical to the solution (9) with m =0. The only
difference is that here one obtains the solution with
p+Ap . In general with k+Ak, one can easily obtain
a solution whose generic feature is very similar to the
solution (9). When p & 0 Eq. (11)can be reduced to

E+ +@+=0, E —p =0,
dA 2 2(l+ —l )=e(l+c p

+ )g+,
p dp

dg+ I+ +eA
g =0

dp p
I+ —l

g — cp g+~ f+ =f
eA +I —1 &0, eA +I —1 &0,

(13)

Notice that in this case E+WE and p+ &p, in gen-
eral. When p) 0 the above equations can be reduced to
the equations

including the origin. However, Ao can be nonvanishing
if one is willing to allow a singularity at the origin. To
see this notice that the magnetic fiux C&(p) passing
through the area enclosed by the circle of radius p cen-
tered at the origin is given by

dA (p')
4(p) =2m.f, dp'=2m. A (p) .

p'~p dp

This means that when AOAO the solution has a singular
magnetic flux 4o at the origin:

@o=2m.Ao . (14)

Notice that the singularity becomes harmless and physi-
cally acceptable, as long as the ferrnion wave function
vanishes at the origin. This is because with the boundary
condition one could treat the singularity as an external
magnetic flux. In this case, of course, we need an extra
boundary condition: eAO+n )0 for the solution (9) and
—eAO+n )0 for the solution (10). So, when AOAO, the
solutions with the extra boundary condition could be in-
terpreted to describe the motion of electrons around an
external magnetic vortex line. Of course one could al-
ways require Ao =0 by choosing a proper gauge. Howev-
er this is possible only with a singular gauge transforma-

ieAO
tion which replaces 4 with e '%', so that the gauge
transformation does not change the physical nature of
the singularity. For this reason we will keep the singular-
ity in the following. The solutions are summarized in
Fig. 1.

To discuss the physical content of the solutions notice
that the total magnetic flux 4 and the electric charge q
carried by the solution (9) is given by

n+1@=2m A = —4o —4m
e

477 v

e 2

(15)

where e is the charge of the electron and v= e A o. To find
the total energy and angular momentum notice that the
energy-momentum tensor and the electron number densi-
ty of the system are given by

T.P= —
2 I: 0+(r+ DP+1'+PD )0+

+P (y Dp+y pD )Q ],
~=4'+0 +0' 0+ . —-

So we have the following (2+ 1)-dimensional total energy
@, electron number N, and angular momentum J:

which again admit a solution very similar to solution (10).
This confirms the fact that Chem-Simons electrodynam-
ics admits solutions very similar to (9) or (10), even when

u+&s —.
Obviously the solutions describe vortices. The scale

parameter A, determines the size of the vortices, because it
determines the position of the rnaxirnum of the magnetic
field (or equivalently the density of the electron wave
function). To discuss the meaning of Ao, notice that
when Ao=0 the solutions become regular everywhere,

@=f 7~d~~= ~E,
e

Nd x ————,2 q m

e E

J= e,- x'T Jd x=
/J 2e

+n+1
2 2e

(16)
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A-Ao

-eA +n&0

Solution (10) 10)

Solution (9)

2(n+1)
0

eA +n&0

FIG. 1. The vortex solutions: The magnetic potential is shown in (a), and the magnetic field is shown in (b).

4m

e
V——+n+1 q = —p4
2

7

8=+E, N=+-
e

'
e E

J=— 4= — ——+n+1p 27Tp v q
2e e2 2 2e

Observe that the angular momentum includes the intrin-
sic spin of the electron. For the solution (10) we have

A, =o, a, A, =0,
F+(x,y)

~+ iG+(x,y)

F (x,y)

iG (xy)

Then with

E+ =E =E, p+ =p =p,
E-E2 p2 m2 F p F, 6

m

Eq. (5) is reduced to

E —p
m

(18)

(19)

Remember that when Ap =0 the above solutions become
regular everywhere. In this case the solution (9) has neg-
ative magnetic flux and angular momentum, but the solu-
tion (10) has positive magnetic flux and angular momen-
tum. But both solutions carry positive electric charge.
Also notice that the unit of magnetic flux of the solutions
is 4n/e, not 2n. /e. This should be contrasted with the
vortex solutions made of scalar fields, where the unit of
the magnetic flux quanta becomes 2m. /e.

Clearly the above solutions describe the charge-flux
composite states made of real electrons. But notice that
when E=p, (9) describes a solution in which g =0.
Similarly when E =p, (10) describes a solution in which

g+ =0. This means that when E =p, the solutions (9)
and (10) become exact solutions of Chem-Simons electro-
dynamics which has only one fermionic source.

Recently Jackiw and Pi [8] have shown that the
Chem-Simons-Higgs theory in its symmetric realization
allows zero-mode soliton solutions in the nonrelativistic
limit. It is very interesting to notice that, in spite of the
fact that physically our solutions are totally different
from theirs, mathematically they are closely related. The
similarity follows from the fact that in both cases the
main part of the equations of motion could be reduced to
the Liouville equation with a proper ansatz. To see this
let us choose a more general ansatz

(IF+ I'+ IGE+p
(D)+iD2)Fg =0, (D) iD2)Gp =—0 .

pe'~B A =—
l J

(20)

So with F+ =0 or 6+ =0, the above equation becomes
formally identical to the equation which describes the
nonrelativistic solitons [8]. Nevertheless, it should be
emphasized that our solutions are fundamentally different
from theirs. First of all, our solutions are neither nonre-
lativistic nor the zero modes. They are completely rela-
tivistic, and carry a nontrivial energy. Second, our solu-
tions are made of real electrons with intrinsic spin. So
the total angular momentum in our case is given by
J= +(p/2e)4, which should be compared with
J= + (p/e)4 in their case. Finally, our solutions have a
vanishing electric potential but theirs require a nontrivial
electric field.

%'hen the Chem-Simons interaction is induced by the
quantum correction of the fermions the Chem-Simons
coupling constant no longer remains an arbitrary param-
eter. Indeed, when p+p (0 the quantum correction
gives us [6]

2

p=+
277

'
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In this case from (9) one has

q =(v+2n +2)e, J=—q
2e

Similarly from (10) one has

q =( v—+2n +2)e, J= q
2e

Notice that the charge and the angular momentum of the
solutions remain fractional when v is so.

We conclude with the following remarks.
(1) When p, is arbitrary (or when v is nonvanishing),

our solutions could describe the anyons [9,10] made of
real electrons. Probably the solutions constitute the first
example of anyons made of fermions. Again, it is the
Chem-Simons interaction which successfully provides the
binding force for the charge-flux composite states. But
remarkably the angular momentum of the anyons is no
longer given by (q/4m. )4, which is the angular momen-
tum of a quantum-mechanical charge-flux composite
state bound by the Chem-Simons interaction [10].

(2) From the (2+ 1)-dimensional point of view our solu-
tions clearly describe nontopological solitons, n identical
solitons centered at the origin. But one could easily gen-
eralize the solutions to obtain multisoliton solutions in
which each soliton locates at different points, with
diFerent sizes and phases. This is so because Eq. (20) can
be reduced to the Liouville equation which admits an n-

soliton solution which has 4n real parameters which
determine the size, phase, and position of each soliton.
The existence of the solitonic sector (which is made possi-
ble with the Chem-Simons interaction) demonstrates the

fact that Chem-Simons interaction changes not only the
statistics but also the dynamics of the theory.

(3) The solutions of the (2+1)-dimensional Dirac equa-
tion coupled to a background magnetic vortex has been
discussed by many authors [5]. But notice that in our
case the magnetic field (at least the regular part of the
magnetic field) is generated by the electrons themselves.
So our solutions describe the bound states of electrons in
which a self-created (rather than independent) magnetic
field, or more properly a nonlinear self-interaction of
electrons, provides the binding force. Certainly one
might wish to give a quantum-field-theoretic meaning to
these solutions by quantizing them, treating them as
(2+1)-dimensional solitons. The quantization will clarify
the physical meaning of the solitonic sector.

(4) To obtain the above solutions we have neglected the
Maxwell term for simplicity, which is well justified in the
long-distance limit. However, it must be remembered
that near the vortex the short-distance interaction be-
comes more important, so that the Maxwell term could
alter the vortex solution significantly around the origin.

(5) It is quite possible that, with the realistic effective
axial symmetry (2), our solutions could describe real
physical objects. So they could play an important role in
connection with the quantum Hall effect and the high-T,
superconductivity [11].

A more detailed discussion on the subject will be pub-
lished elsewhere [12].
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