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Nontrivial vacua from equal time to the light cone
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Kinematic arguments suggest that the perturbative vacuum may be an eigenstate of the full Hamil-
tonian for light-cone-quantized field theories. Nevertheless, properties such as spontaneous symmetry
breaking can be accommodated in this approach, by applying a quantization which interpolates between
equal-time and light-cone quantization and in which the quantization surface may approach the light
cone as a limit. In several simple two-dimensional models presented here, including the Gross-Neveu
and Schwinger models, the difference between the full and perturbative vacuum vanishes in this limit.
Nonzero vacuum expectation values, however, are preserved by singularities in the fields near k =0.
Furthermore, this procedure provides a simple treatment for massless fields and nontrivial tests of
Lorentz invariance, and may be applied to models, such as that of Gross and Neveu, for which conven-
tional light-cone quantization is difficult to implement. Finally, the connection between long distances
and short times suggests that vacuum effects may be incorporated in an effective Hamiltonian.

PACS number(s): 11.15.Tk, 11.10.Ef, 11.30.Qc

I. INTRODUCTION

Light-cone quantization has proved to be a successful
formalism [1] for computing a large array of quantities,
mainly perturbative, in QCD. It possesses some trou-
bling features, however, when applied in nonperturbative
calculations, especially those sensitive to vacuum proper-
ties. In conventional light-cone quantization, one treats
x+=(x +x )/3/2 as time and x =(x —x )/&2 and
x~=(x', x ) as spatial variables. For free particles of
mass m, their conjugate momenta are

1
I + (10+I 3)

pl +pi
2p

1I — (Po I3) Pl (I 1&I 2) '
2

Both the energy p+ and longitudinal momentum p are
evidently positive. The light-cone Hamiltonian P+ con-
serves three-momentum, including p . Therefore in-
teractions which connect the perturbative vacuum, which
is the ground state of the free theory devoid of particles
and carrying zero p, to states with particles each carry-
ing positive p, are absent. This is in large part responsi-
ble for the simplicity of light-cone perturbation theory
observed in [2]. The perturbative vacuum is then an
eigenstate of the full, and not just the free, Hamiltonian.

Also, the quanta which one might use to construct a
nontrivial vacuum must carry three-momenta which sum
to zero to maintain the vacuum's Lorentz invariance.
While transverse momenta pose no difhculty, the longitu-
dinal momenta p of individual quanta are non-negative.
The only possibility is that each p is zero, leaving one to
try to build a vacuum with quanta whose energies are
divergent. Particles of zero mass and p~ are possibly an
exception, but this requires dealing with states at a single
point in momentum space. Some sort of limiting pro-
cedure seems in order.

implies that QL is only a function of tb2t rather than a
dynamical degree of freedom. However, ft appears to
decouple completely from the dynamics when m van-
ishes. Among other problems, if ft is discarded, the
minus component of the gauge current vanishes. In that
case the gauge and axial currents are identical, with

J+ =J+=+24zA
—J3

=J =3/2$L QL =0 .
(3)

While J" must be conserved, J)5 is anomalous, and it is
not clear what is going on.

The origin of these problems is straightforward. The
surface x+=0 is a characteristic surface of the wave
equation and is inadequate to fully specify initial condi-
tions or commutation relations [5—8]. While right-
moving quanta intercept this surface, those moving left
simply run parallel to it and cannot be initialized.

Nevertheless, the QCD vacuum is believed to be quite
complex, generating chiral-symmetry breaking and its
consequent pseudo Goldstone boson, the pion. It is not
clear how this can emerge in the usual light-cone treat-
ment (though, for a hint, see [3,4]). Furthermore, the
Higgs phenomenon, in which gauge bosons become mas-
sive through spontaneous symmetry breaking and the ac-
quisition of a vacuum expectation value for the scalar
Higgs field, seems precluded.

There are other troubling features which are magnified
in 1+1 dimensions where this discussion will focus. In
the massless Schwinger model, for example, the fermion
field has one left-moving and one right-moving com-
ponent. The constraint equation for massive fermions in
the A+=0 gauge,
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II. INTERPOLATING FROM EQUAL TIME
TO THE LIGHT CONE

In order to study questions such as the structure of the
vacuum on the light cone, this paper will present some
simple (1+1)-dimensional systems in which light-cone
quantization will be defined as a limit of a more conven-
tional procedure. This is in the spirit of the old infinite-
momentum-frame approach, but without the choice of a
particular frame. At each step the quantization will be
performed and the Hamiltonian constructed on a space-
like surface; the quantization will be canonical and unam-
biguous. Unlike the light-cone approach, there will be no
new constraint equations. As a result, some of the formal
simplicity of light-cone quantization will be sacrificed for
the sake of better control over quantities such as the vac-
uum and singularities peculiar to the light cone.

In equal-time quantization, fields and commutation re-
lations are initialized at x =0 to coincide with free fields,
while the Hamiltonian constructed from these evolves the
system to subsequent x slices. In this paper I will define
the initial surface to interpolate from x =0 to
x +x'=0. The angle which the initial or quantization
surface makes relative to x =0 will be left as a parame-
ter. Lorentz-invariant quantities such as masses must in
the end be independent of this angle, while in intermedi-
ate stages this angle may be chosen for convenience.
Such a procedure was applied to the study of two-
dimensional QCD in a generalized axial gauge in [9], and
similar interpolations have been employed recently to
study the Dirac equation [10] and perturbation theory
[11]. Earlier extensions of light-cone quantization to sur-
faces close to the light cone appeared in [12,13], and such
an extension was used recently in [14] and [15] to study
two-dimensional QED and QCD.

Specifically, the time coordinate x+ and space coordi-
nate x are defined to be

TABLE I. Summary of various quantities in the equal-time
and light-cone limits.

S

x+
x
++

Equal time

0
x'

g11
g01 0

Light cone

a/2
0
1

(x +x ')/&2
(x —x ')/&2

0
0
1

III. FREE SCALARS

At this point some simple systems with nontrivial but
calculable vacua can be studied at arbitrary O to see how
they behave in the light-cone limit. A free massive scalar
theory in 1+1 dimensions provides a good initial exam-
ple to show how this scheme works, as it contains all the
essential features. The Lagrangian

becomes

x=—,'c[(a p) —(a p) ]+sa Qa p —
—,'m p

somewhat involved. To avoid confusion I will use upper
indices for coordinates and lower indices for their conju-
gate momenta. Finally, for the simplicity of later discus-
sion, define

e —= —cosO, s =sinO .

Table I gives a summary of these quantities in both lirn-
its.

+ sin8/2 cos8/2
cos8/2 —sin8/2

x'
(4)

[a +m ]p=[c(a', —a' )+2s a a +m2]/=0 . (9)

in these coordinates with the corresponding equation of
motion,

with (m.—8)/2 the angle between the quantization sur-
face and x =0. The equal-time limit is at O=m, while
8=m/2 is the .light-cone limit. Because I will focus on
the light cone, I have chosen to retain the conventional
light-cone notation: x+ for time and x for space, with

p+ and p their conjugate momenta. It should be kept
in mind that throughout this paper what these mean de-
pends on this angle. In the equal-time limit, x+~x and
x ~—x', in the light-cone limit, x+~(x +x')/V'2
and x ~(x —x')/&2. The change in sign for x' is
necessary for the light-cone limit to coincide with the
usual convention.

The metric [9]

—cosO sinO

sinO cosO

also depends on O and is seen to interpolate between the
usual equal-time (goo = —g & &

= 1) and light-cone

(g+ =g + = 1) metrics. It has both on- and off-

diagonal elements, and so lowering or raising indices is

The conjugate momentum is, as usual, the variation of X
with respect to the time derivative of P,

~(x)= =a+y=c a y+s a y.5
5 a+ x

(10)

[~(x),P(y)] + += —~&(x —y ) . (12)

The Hamiltonian, which is conjugate to the time x, is

p+ =f dx (era+/ X) . — (13)

For nonzero c the velocity a+/ can be eliminated in favor
of m by inverting Eq. (10),

a y= —(~—sa y),1

C

while in the light-cone limit, c ~0, Eq. (11) evolves into
the usual light-cone constraint equation a=a P. Away
from that limit the system is canonical, as opposed to
constrained, with the usual equal-x+ commutation rela-
tion
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with

co&
—sp

c

(p 2 +cm 2
)
) /2

P

(14)

(15)

Expanded in these solutions,

dp

P

Plane-wave solutions of Eq. (9) are
exp[+&(p+x++p x }],with the energy p+ given by

tive leading behaviors ofp+ =(2/c) ~p ~
and p+ =0 near

the light cone.
A simple example which nevertheless contains most of

the interesting results that appear in spontaneous symme-
try breaking is that of a scalar field coupled to a constant
source [16]. Specifically, take Eq. (7) as the free Lagrang-
ian Xo. Imposing periodic boundary conditions so that

p =mn/L. and expanding P at x+ =0 yields

(()(x
1 i(nn—lL)x +atei(nnlL)x ]Q~8 ane

g = —ao "(/4(rcoq

(22)

Imposing

Here

co—:(n +cm )' (23)

[a(p ), a (q )]=&(p —
q ) (17)

satisfies Eq. (12). The normalization in Eq. (17) is chosen
to be independent of quantization angle. All dependence
on c or s appears explicitly in coeScients in the fields,
with no implicit dependence in a or a~. As a result, it is
simple to trace the c dependence of states or fields. In
particular, in the light-cone limit, a, a and basis Fock
states are always of order 1.

The Hamiltonian in terms of these creation and annihi-
lation operators is

with m the dimensionless mass m =mL/m. Equation
(12) implies

[a. ai']=~., ( (24)

This X is symmetric under (()~—P. The mass term
m (t) /2 may be thought of as a quadratic potential with
minimum at /=0, and a simple way to generate symme-
try breaking is to shift the minimum to —v by replacing
iI}(x} with P(x }+u in Eq. (7). The effect is to add to Xo an
interaction plus a constant piece,

p, =f" dp
cop sp

a (p )a(p ),
X=So—m'vP —

—,
'm'u' . (25)

while the momentum

p =f" dp [p ]at(p -)a(p )-- (19)

m
p+ — +O(c),

2p
(20)

while negative-definite p particles have divergent ener-

gy

2 p +O(1), (21)

Equation (14) is illustrated in Fig. 1. For positive-definite
p near the light cone, the light-cone energy reduces to
the conventional value

The sane approach, given this Lagrangian, would be to
first shift ((} back to its minimum and then quantize, as in
treatments of the Higgs mechanism. The intention here
is to use it as a model for more complicated theories such
as QCD, where the solution is not known, and so I will
feign ignorance and quantize as is. However, this La-
grangian remains quadratic and soluble. If it is quantized
first and the ground state solved, P must find its way back
to —v, and the vacuum must be complicated. Once ob-
tained at arbitrary quantization angle, the object of this
exercise is to see what happens near the light cone.

Proceeding as usual, the constant term is dropped, and
P(x) is quantized and expanded as above. The Hamil-
tonian P+ has the usual free part,

in this limit. At p =0, p+ =m /c '~, while at
p =m/c', p+ has its minimum value of c' /m. For
the special case when m=0, p+=[(I+s)/c]~p

~
for

p (0 and p+ =[(1—s)/c]~p ~
for p )0, with respec-

plus an interaction

~n~n ~ (26}

L
P+ = f dx m viI)(x )

m~ 3/2 1/2v
[a()+a() ] .

C
(27)

FIG. 1. Energy vs momentum at (a) equal time and (b) near
the light cone for both massive and massless particles.

The result of solving P+ ~Q) =Er) ~Q ) is not surpris-
ing. The ground state
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fQ) =UfO) =exp{ —(c' ~m)' v(ao —ao)j f0)

=exp{ —(c' arm)v /2jexp{ —(c' ~m)' vao j f0)

is a coherent state of zero-momentum particles, and its energy

E&= ——'m v (2L)

(28)

(29)

is just the discarded constant piece of X times the volume of space. The unitary operator U is the exponential of
fdx vm. (x },with m the momentum conjugate to p, and so shifts p by the constant v [17].

Furthermore, the vacuum expectation value of P(x) is also calculable. It involves only the constant part of P(x), and

a +a'
(Qfg(x)fQ)=(0fexp{(c' nm)' v(ao —ao)j, , exp{ —(c' ~m)' v(ao —ao)j f0)

(30)

as it must.
Because these results are valid at all quantization an-

gles 8, it is possible to examine them near the light cone,
that is, as c vanishes. In particular, the full nonperturba-
tive vacuum given by Eq. (28),

fQ) —[1—(c'/ nm)' vao+ ]f0), (31)
0 1

1 0

—I 0
0 (33)

has single components of left and right chirality. In two
dimensions there is no spin, and chirality for massless fer-
mions indicates only the direction of motion.

I will use the chiral representation, with

reduces to the perturbative vacuum f0) in this limit.
This is in accord with the conventional result that in
light-cone quantization the perturbative vacuum is the
full vacuum. Nevertheless, the ground-state energy
En = —(1/2)m v (2L ) and the vacuum expectation
value ( Q

f Q f
Q ) are independent of c and so persist in this

limit. While fQ) becomes trivial as c~O, the constant,
zero-momentum part of P is singular and diverges as
c ' ". This is just sulcient to extract the leading correc-
tion to

f
Q ) such that ( Q

f ((}f
Q ) is constant. En may be

thought of similarly. P+ diverges as m /c ' near p =0
and picks out the first relevant correction in (Q fP+ fQ).
This singularity in c is the analogue of the 1/k singu-

larity which plagues the conventional light-cone ap-
proach. In this case, however, this singularity is fully
controllable so long as c is not identically zero, whereas it
is unclear how 1/k should be handled near k =0.

One last observation from this simple model is that
knowing only the first correction to

f
Q ) in c is enough to

determine ( Q
f Q f Q ) exactly as c vanishes. One might

hope that in a real problem, such as QCD, this procedure
might allow similar, especially Lorentz-invariant quanti-
ties to be calculated as an expansion in c.

and

(1+s)'/

( 1+s )1/2

These satisfy

{r",1'"j =2g"",

—(1—s)'/

Quantization follows as usual, with

6
&(&+/(x ) )

and

{m(x),g(y)j + +=i5(x —y ) .

for all 8 (or c). In the light-cone limit,

0 &2 0 0
0 0 ') v'20

(34)

(35)

(37)

(38}

IV. FREE FERMIONS

Imposing antiperiodic boundary conditions and ex-
panding g(x) gives

In this second simple example, based on free fermions,
the full vacuum will be built of particles with all momen-
ta rather than one of zero momentum as above. It wi11

also provide an opportunity to establish some conven-
tions and simple results for fermions in two dimensions,
which will be useful in somewhat less trivial examples
later.

The field P=(QL, g„) in the free Lagrangian

&o=g(i8 m)g=g(i@+—8++iy r) —m )1(

P(x,x+ =0)
1

X
n =+1/2, +3/2,

t
—i(nor/L)x

+n ne

The spinor

d

hei�(n~/L

)x
Un ne

(1—s ) '/4(co„n)'"—
(2~ )'/~ (1+s) '/ (co„+n)'/ (40)
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while u„differs in the sign of the top entry. The upper
component vanishes as e' for n &0 and diverges as
c ' for n &0; this divergence prevents n (0 particles
from decoupling in Q, for example. The anticommuta-
tion relations are

p ~0 have energy m/c'~, and so the usual light-cone
energy singularity at k =0 is cut off for finite c.

To modify Xo in Eq. (32) such that the theory is still
trivially soluble but possesses vacuum condensation, add
a term

[b. bA=[d. dI']=&., i (41) &i= —sA. (43)

as usual.
The Hamiltonian, after discarding an infinite constant,

is similar to that for the free scalar theory,

7Tp+=
n =+1/2, k3/2,

(btb„+d„d„) .
C

(42)

Near the light cone, eigenstates may be divided into those
with positive p =nm/L of energy p+-m /2p and
negative p with energy p+ -2~p ~/c. As c —+0, those
with negative p possess infinite energy, and if states are
restricted to those of finite energy, these may be excluded
by fiat, leaving the usual light-cone theory. Particles with

I

This is simply a mass shift, and so the new eigenstates are
obviously known. Here, however, it will be treated as
though it were an interesting interaction, and its vacuum
and eigenstates will be solved for in terms of those of Xo.
(This example is something of a cheat when used as a
comparison with conventional light-cone quantization,
since in that case this shift in mass would automatically
be incorporated in the solution of the constraint equation
for 1bL. It will have a more interesting application in the
Gross-Neveu model discussed later. )

The interacting Hamiltonian is

P+ =p f d x:gP( x): (44)

and the full Hamiltonian

po +pi Ir

n =+1/2, k3/2,

Cg„—SIl
+ (btb„+dtd„) 1/2"

—(btdt „+d „b„) (45)

6~(n) =—
, [co„(co„+co„)+cmp]~

(2'„co„)
(47)

At this stage it is not possible to take a light-cone limit by
letting c vanish and discarding states of infinite energy.
The last term in P+, which mixes particles of positive
and negative momenta, becomes infinitely strong in this
limit. That is, states with divergent energy couple to
finite-energy states strongly and cannot be ignored. Be-
fore infinite-energy states can be discarded, then, P+
must be diagonalized, at least up to an appropriate power
in c.

Of course, because X is free, this is possible and P+
may be diagonalized by a Bogoliubov transformation:

B„=—6+(n)b„e(n)6 (n)—d
(46)

D„—:6+(n)d„e(n )6 (n)—b

where

and so may be constructed in terms of the particles of Xo
by

n)0
(51)

using Eq. (46). For a particular momentum n,

BB „DD „~0)

=[6+(n)+e(n)G+(n)G (n)(dtb „—d „b„)
—6 (n)d „dtbt „bt]~0) .

Near the light cone, with c '~ &&
~
n

~ /m, this becomes

(52)

which is the free Hamiltonian for a fermion of mass
Pl +P.

The new vacuum should satisfy

(50)

and

ru„—= (n +cm )', co„=[n +c(m+p} ]'~ (48)

1/2A A

1+ (d„b „dt „bt—) dt—„d„bt „b„~0) .

with e(n) the antisymmetric step function. As before, m
and P are dimensionless. Near c~0, G+ ( n )~ 1 and
6 (n}~c' P/2~n~, as long as c'~ && ~n ~/m or
c' « ~p ~/m in the continuum.

In terms of B„and D„,

The vacuum energy of
~
0) relative to ~0) is

COn COn

(53)

(54)

7TP+=
n =+1/2, +3/2,

co„—sn
(B„B„+D„D„)

(49)

which becomes

En- P L p
L 2/n[ 77 2/n[

(55)
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near the light cone. The chiral condensate in this new
vacuum is also calculable, with

m+p

dk — P . (57)
0 (k2+ 2)1/2 [k2+ ( + )2]1/2

One way to obtain a manifestly Lorentz-invariant Pauli-
Villars regulation of this integral is to subtract the same
integral with m replaced by A and A &&m, p. This yields
the continuum result

1
m ln

7T

m

m+p +pin
A +p, (58)

m+p

to O(m/A). In the special case where the fermions are
originally massless (m =0) and a mass term is intro-
duced,

P
c 0 2L „ lnl

The normal ordering for Pf is with respect to the original
b„and d„.

It was initially observed in the discretized Hamiltonian
of [18] that the only appearance of the box length L was
as a factor in front and only as L ' in front of P . Un-
der a longitudinal boost with rapidity a, the light-cone
Hamiltonian P+ is simply rescaled by e, as is x and
therefore L. On the light cone, boosts are kinematic sym-
metries and only rescale the arguments of operators such
as b(p ) [19,4]; this is also true when discretized. As a
result and with the dimensionless normalization of Eq.
(41), L is the only part of P+ which scales, and any ap-
pearance within P+ apart from an overall coefficient
must vanish in this limit, as was observed in [15] and is
evident in Eq. (55).

By restricting the system to a box, Lorentz invariance
is explicitly broken, and it is instructive to see how it is
recovered in the continuum limit. As L ~~, Eq. (56) be-
comes

The appearance of c in what should have been a scalar
explicitly indicates the violation of Lorentz invariance by
the regulator. The parameter c acts in a way analogous
to the gauge parameter in generalized covariant gauges
or the four-vector in axial gauges whose disappearance
provides a check of gauge invariance.

Integrals of the form

oo 1I= 61p
( 2+ 2) I/2

1

( 2+cA2)1/2
(61)

are typical of those which will appear repeatedly
throughout these examples, especially in regard to vacu-
um properties. The first term is logarithmically diver-
gent, with the second term a Pauli-Villars regulator. It is
not necessary that cA be large, but only that A be much
larger than physical scales represented by m .

In the light-cone limit, c~0, and the integrand van-
ishes for any fixed value of p. However, the change of
variables p —+c '

p completely removes c, and the in-
tegral is c independent. It is clear that as c —+0, the in-
tegral gets its contribution from an increasingly narrow
region around lpl-0 [20]; specifically, from lpl -c'/ m

to c' A. The support is pushed to the region with the
lowest kinetic energy that can still participate in the vac-
uum. As c is made to vanish, the integrand may be re-
placed by I5(p). In usual light-cone language, the in-
tegrand at finite p contributes the usual light-cone result
for this vacuum quantity, that is, zero, while I5(p) gives
the unique correct interpretation of the light-cone singu-
larity at 1/p

The end result of this exercise is that, except for a
small region around p —[cm(m+ju)]' where lG~(p)l
are maximum, the mixing in Eq. (46) vanishes and the full
vacuum reduces to the perturbative one as c vanishes.
Nevertheless, :p1(t: possesses a c ' singularity, as is evi-
dent from P+ in Eq. (45), which preserves a finite value

for its expectation value. In the continuum this value
was independent of c, as it must be.

As a final aside, note that ( nl:pg: l
n ) could have been

computed directly from the vacuum energy,

lnp A

m —+0 2K
(59)

which follows from the form of the interaction @PE in

P+ and the Feynman-Hellman theorem. Curiously, in

the continuum limit, this energy

to leading order in p/A; this result will be useful later.
The parameter c has entirely dropped out of Eq. (58).

This can be directly observed in Eq. (57), through a
change of variables, as discussed below. Had a sharp
cutoff in k at A been introduced, which is not Lorentz in-
variant, the result would have been

1
m ln

7T

I xE„=— —J dp
7T

p ~p mp —(m~A)
c COp

V. FINITE BOXES AND ORDERING OF LIMITS

(63)
is also independent of c, as is evident by the previous
change of variables. It is not clear why this should be the
case; however, since P =0, this leads to a c-dependent
mass Mo =cE2n for ln ) and indicates that this constant
should be subtracted from P+ to maintain covariance.

+pin
2A m

c'/ (m+p)
(60) There are some subtleties in the ordering of the contin-

uum, light-cone, and massless limits when the system is
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discretized, as is evident by the appearance of combina-
tions such as c' mL/n [15). These limits are clarified
by examining how particles intercept the initial surface
x+ =0 as the limit c —+0 is taken.

One way of stating that an initial surface is sufficient to
specify a system is that all independent degrees of free-
dom intercept it at some point. In particular, the surface
x +x'=0 is insufficient for massless particles because
those which are left moving run parallel to it. However,
these particles will intercept the spacelike surface x+ =0
when cAO regardless of how small c becomes, provided
the system's extent is infinite. Massive particles of finite

energy, on the other hand, intercept the surface for any c,
including zero.

However, when the system is confined to a box, even
for nonzero c, both massless and very energetic massive
particles can escape or enter through the sides of the box
without hitting the initial surface. This becomes a prob-
lem particularly as c becomes small. It is possible to mea-
sure the adequacy of a box length by estimating when
boundary effects could become important for a system lo-
calized around the origin. For example, information
from the boundary (traveling at the speed of light) can
first reach the point x =0 at the time

close to zero which certainly play a role in finite-energy
systems; the grid is simply too coarse to intercept them.
This will be evident in the Schwinger model, where states
in this region build up to the degenerate vacua. To en-
sure that these are not neglected as c -0 requires that

cL
« Ephyg (67)

m/c'"»E, „„,. (68)

In this case the grid is still coarse for p positive but
small. That is, the difference in p+ when p =nn/L.
versus (n+ 1)n/L c.an be much larger than E~z„, when n

is small. This should not be a problem so long as these
states are energetic enough to neglect. Requiring

p+ ( n n/L ) )).Ephor, , (69)

when the grid becomes coarse, such that

Again, the restriction is less severe when m%0 and the
lowest energy for p ~0 is p+ =m/c' . Regardless of
the size of L, negative-p states can probably be neglect-
ed so long as

+x bound
1+c—s L.1+c+s (64)

p+(nm/L) —p+ [(n+1)m/L] ~E&hz, ,

imposes

(70)

xb+,„„d-—,'[c+—,'(mlA) ]L . (65)

The requirement now is only that either (cL )
' or

(m L/A )
' be much less than E~„„,.

Another way to see the interplay of these quantities
near the light cone is to examine the dispersion relation
illustrated in Fig. 1(b). If periodic boundary conditions
are imposed in x, the lowest-energy, negative-p mass-
less state has

n~ 1+s no.
L ' + c L

(66)

with n =1. For L held fixed, as c vanishes, this energy
diverges as (cL ) '. The temptation is then to discard all
negative-p particles, since p+ of the least energetic one
diverges. However, there still exist in the continuum
low-energy, negative-p states with energies arbitrarily

For equa1-time quantization, xb+,„„d-L, while near the
light cone, xb+,„„d-cL/2. Thus a physical system con-
tained in a region much smaller than L in an equal-time
box can propagate a long time (of order L) before know-
ing about its edges, whereas near the light cone, bound-
ary effects are felt at the much smaller time cL/2. L
must be large enough that cL is much greater than times
of physical interest.

If only massive excitations exist with m the lowest
mass, the restriction is less severe. Suppose that a typical
energy scale Ephys can be assigned a system and an energy
cutoff A is imposed on particles, with A&&Ephys This
imposes a maximum velocity, and the smallest time
xb+,„„d for which information at the boundary can reach
the region near x =0 when c -0 is

m L &&27TEphys (71)

So, when massless excitations exist, it is necessary to re-
tain some states for which p & 0 and to require
(cL) '«E h„,. When only massive excitations occur,
retaining only positive-p particles and a finite box
should produce accurate results if Eqs. (68) and (71) are
respected.

Evidently, it becomes difficult to obtain accuracy when
discretizing this formalism near the light cone if light
particles are present or when studying processes sensitive
to high energies, such as the axial anomaly. An alterna-
tive and complementary formulation exists which also
addresses the deficiencies of conventional light-cone
quantization while avoiding some of these difficulties. In
it the initial surface includes both the conventional one
x +x'=0 as well as the boundaries along x —x'=+L
[8]. The boundaries are essential to initialize massless
left-moving particles, which would otherwise be lost. In
fact, it is straightforward to show from the equations of
motion that for a finite box the boundaries are necessary
even for massive particles [21].

Such a procedure has several advantages. It avoids the
necessity of taking a limit, and it treats left and right
movers symmetrically rather than relying on cancella-
tions of singularities in c (or at k -0) to retain small-
mass or very energetic left movers. As a result, it leads to
a more uniform discretization of these left-moving states.
Because the boundaries directly intercept massless or en-
ergetic left movers, quantities sensitive to large energies
or short times in x+ are naturally incorporated even for
finite boxes. For example, the small-x singularity in

QL (x)QL (0)—1/x + which picks up half the axial anoma-
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ly in QED?+1 is present directly in the boundary degrees
of freedom.

VI. EFFECTIVE LIGHT-CONE HAMILTONIAN

Hl1(&=El@&,

the effective Hamiltonian

(72)

1
H,fr(E) =H pp+Hpa HapE—Haa

(73)

acts within the projected subspace and so may be thought
of as a conventional light-cone Hamiltonian. It satisfies

H„(E)Ply& =Eely& . (74)

Given the subtlety of the vacuum in the light-cone lim-
it and the importance of negative-momentum, high-
energy quanta in its construction, an obvious question is
whether these effects can be incorporated into the con-
ventional light-cone approach. Fortunately, a formalism
exists which is ideally suited to this problem and in which
these effects can be systematically computed [22].

The conventional light-cone Hamiltonian includes in-
teractions among quanta whose momenta are positive
definite. The Hamiltonians discussed thus far include
particles of all momenta. In the light-cone limit, howev-
er, the energies of particles with negative momentum typ-
ically become very large, and one might imagine that
these are irrelevant to states of low energy in which
positive-momentum quanta should predominate. An ex-
ception occurs when these energetic particles have cou-
plings to positive-momentum quanta which also become

large near the light cone. In this case an effective Hamil-
tonian can be defined which acts only on positive-
momentum states, but with extra interactions added to
account for the effect of excluded states. Because these
excluded states are very energetic, their interactions with
low-energy states occur over small (light-cone) times and
these additional interactions will be local in x +.

To see how these additional interactions can be com-
puted, consider an operator P, which projects out the
subspace of states which contain only positive-
momentum particles, while 6= 1 —P projects out states
in which at least one particle has negative or zero
momentum. Then, if in the full state space

so represent local interactions. This expansion works so
long as E/H66 is small. However, in cases where H&6
is large near the light-cone, H,z may acquire terms in ad-
dition to the conventional light-cone Hamiltonian H~.

A. Discrete free fermions

Consider the example of Sec. IV when c becomes small,
first in the discretized version. The dominant terms are

'?r ~ m + mP
I. „2n n

(b„b„+d„d„),

(btdt „+d „b„)6, (77)
C

H66 — — g (b„b„+d„d„).

Because the interactions Hpc? which couple states in 6 to
P are of order c '~, while those of H06 are order c

1
H,?r-Hpp Hpa —Hap+0(c) .

66
(78)

The correction to Hpp in the subspace P is simple to
evaluate. Each vertex in H~6 contributes a factor

Pe(n)m—/c' L w. ith vacuum pair production or annihi-
lation, while the denominator from H@6 contributes, to
leading order, an energy 2?rl n

l
/cL

Acting on the perturbative vacuum, which is included
in P, with H, f? gives zero for Hpp, while the correction,
illustrated in Fig. 2(a), is

H,&l0) — Hpa H—c?pl0)
1

66

p 1
lo& =Enl0&,

2 „ lnl
(79)

as c vanishes. So l0) is an eigenstate of H,?f, but with the
same vacuum energy computed by diagonalizing H in the
full space. Likewise, H,z on the one-particle state of
momentum k )0 is illustrated in Fig. 2(b). Hpp assigns
an energy (?rlL )[m /2k+ mP/k ], while the correction
reproduces both the vacuum energy and a term
(?r/L)[P l2k]. As a result,

Here

(75)

A 2

H, ?tbk l0) = E„+— bktl0) . (80)

and so on.
If the states removed by P are at much higher energy

than the energy E for states of interest, the denominator
in Eq. (73) may be expanded in E/H66. As a result,

H,s(E ) is given as a series of effective interactions of de-

creasing importance which are polynomial in E:

1
H,?f(E ) -Hpp Hpa—

66
+ + . -- Hap.

H66

(76)

These powers of E correspond to derivatives in time and

So bk l0) is an eigenstate of H, ff, but with both the vacu-
um energy and mass shift m ~m +p correctly accounted
for.

k
11

(Ei)

FIG. 2. Diagrams contributing to H,z on (a) the vacuum and

(b) the one-particle state.
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This is a typical renormalization-group result. High-
energy states are removed through a cutoff, but their
effect, which can be large, can be entirely incorporated
into a series of extra terms in the Hamiltonian. In partic-
ular, the energy of the fermion external to the vacuum
bubble in the first diagram of Fig. 2(b) is negligible rela-
tive to that in the loop, and so it disappears from the en-

ergy denominator. The large energy associated with this
vacuum process makes it essentially instantaneous,
unaffected by the propagation of the external fermion.
As a result, the vacuum energy due to this fluctuation is
disentangled from the fermion, and its effect is to contrib-
ute a particularly simple effective interaction, the univer-
sal constant E&, to H, ff.

An alternative to computing these extra terms would
be to enumerate the possible interactions consistent with
the symmetries of the QCD light-cone Hamiltonian and
match them to experiment [23]. Examples of such an ap-
proach are [24,25], which graft phenomenological results
from QCD sum rules to a light-cone formalism.

The effective Hamiltonian may be useful for more than
simply incorporating negative-momentum particles to
define a conventional light-cone Hamiltonian. In many
cases it would be calculationally advantageous to include
the effect of states into H, ff with positive but small, as
well as negative, p . For example, in (1+1)-dimensional
QED and QCD, the Hamiltonian at small p is singular.
Wave functions are badly behaved in this region, espe-
cially when the electron or quark mass m is small. While
this singularity leads to interesting analytic results, it
makes numerical calculations difficult [21,26—28]. How-
ever, fermions at small p have large kinetic energies
m /2p and should probably be removed from the prob-
lem and incorporated into H, ff. Analytic results which
depend on the singularity of this region would then reap-
pear in the form of corrections to a better behaved H, ff
with this region excluded.

One such analytic result is that in (1+1)-dimensional
QCD at large N„ the meson mass squared vanishes as a
single power of the quark mass m [29]. Presumably, this
would be accounted for in H, ff by a new, less singular
term proportional to ~m ~. It is perhaps also worth men-
tioning in the context of this model that its chiral con-
densate [3] and even current conservation [30] can be
computed only indirectly, by examining operators within
matrix elements of low-energy eigenstates. That such a
procedure is frequently necessary further indicates that
the conventional light-cone P+ is best treated as an
effective Hamiltonian.

B. Continuum free fermions

To obtain the correct continuum result for Ez in this
example requires a bit more care in counting powers of c

I

I I
P

-p

(b) (c)

k

-k

FIG. 3. Diagrams contributing to H,z on the vacuum in the
continuum.

(81)

it is still only necessary to keep the leading term in
E~/Heo. Although Hpa-c i 2 and Hoe & c

—in

H66 is of order c ' only in the region ~p ~

Sc' m,
introducing another factor of c' when summing over
states. Consequently, —H&6H66H6& is still of order 1.

The power counting in this discussion depends on the
mass m not vanishing, so that particles with p & 0 have

p+ of at least m/c', making their exclusion sensible.
For m =0 the p chosen as a cutoff would have to be at
least slightly negative so as to include low-energy states
with p small but negative. Because negative-p parti-
cles would now also appear in the projected (P) space, it
is possible that the perturbative vacuum would not be the
ground state even for the effective Hamiltonian. In this
discussion m will be kept nonzero.

To compute Ez in the continuum limit, consider Eq.
(81) with only the leading term in En/H@ retained on
the left. Because P excludes negative-p states,
~Q)&~ ~0). Then

1—(O~H&6 He&~0) =E
H66

(82)

As discussed, the nondiagonal terms in H66 must be re-
tained, and H66 may be treated as a series in the interac-
tion

to ensure that important contributions are not discarded.
As c vanishes, the dominant term in Hoa is diagonal and
of order ~p ~/c for particles of fixed and negative p
However, particles in the region ~p ~

Sc' m, which are
present in the continuum limit, have a diagonal term for
p+ which only diverges as c '; in fact, p+ =m/c'
when p =0. As a result, the least divergent piece of
H66 is of order c ' . To be consistent the nondiagonal
term in H66, which is also of this order, must be re-
tained.

In the expansion of (En Haa) —' in

H66-6 J dp 1/2
P

[d( —p )b(p )+& (p )d ( —p )]6, (83)

over the free part H66, which contributes a denominator [(co —sp )/c+mp/co&] for each particle.
The first term, represented by Fig. 3(a), is
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—(0~H,6, H6„~0&= — —— J
1 L 1

66 7T

pp—

p

2
~p mp

C CO&

—(m~A), (84)

which is the continuum limit of the discretized term discussed in the previous subsection. That this diagram is of order

1 can be seen by the change of variables p ~c' p, such that c disappears. The next term which also contributes to

order 1 in c,

(H66 ) L 1—(0)H,6, , H~~~o &
= — —f dp

(H60 } 8

pp—
1/2

p

p+mp
C COP

(85)

pp'—
1/2

p

+ ~ ~ ~

is shown in Fig. 3(b}. As before, c may be completely scaled out. To this order in Haa /H66, terms such as Fig. 3(c}

also appear, but these vanish as c' . In general, the order for any diagram in this example is determined by assigning
c' for each loop, c ' for each vertex, and c' for each denominator. Then, for example, diagrams with more than

the minimum possible number of loops vanish. A large number of diagrams disappears as a result. The power counting

is completely analogous to infinite-momentum-frame calculations, as in [2,31—33], apart from the need to choose a par-

ticular frame. In [32,33] an effective interaction in QED is introduced to incorporate backward fermions in Z graphs,

much as in this example.
The contributions from the terms which survive as c~0 are relatively easy to sum, with

r 2 —1 4 —3

L ~ 1 ~p my 1 PP — ~p my+ +
7T oo 2 C COp

c'/2' c co
p P

a)
dp

7T 00

' + ", (86)
C COP

and reproduce the continuum expression for Ez obtained
directly from the full solution for ~Q&. The continuum
expression for (A~:gitt:~Q& may also be obtained directly
from Eq. (86) by computing B„En.

One special case should be mentioned. If p= —m, the
massive free fermions are converted to massless fermions.
It would not be sensible to incorporate all p (0 fer-

mions into H,z, even though the free Hamiltonian with

massive fermions suggests otherwise. This is reflected in

the denominator, which becomes

I

Fig. 2(b}. In that case the denominator would remain of
order c ' rather than c ' because of the presence of an

external particle of fixed momentum —k, and such dia-

grams would vanish as c' or faster.

VII. LIGHT-CONE CONSTRAINT EQUATIONS

The equation of motion for a two-dimensional free fer-
mion of mass m,

2 2
m p—
COP C COP

(87)
(i r} m)$=0- ,

on the light cone becomes

(88)

This may become arbitrarily small as p vanishes, and

the suppression at small c is 1ost.
The lesson from this subsection is that to accurately

reproduce the continuum value for the vacuum energy re-

quires power counting in c that is slightly more subtle

than straightforward light-cone arguments might suggest,
because of the importance of the region ~p ~-c' m.

Nevertheless, the light-cone limit eliminates a large num-

ber of diagrams and makes the calculation of H,~ on

~Q&r much simpler, if not trivial. Furthermore, once the
vacuum energy is removed, computing H,z on excited
states such as b t( k ) ~

0 &~, with k finite, follows the
earlier discrete discussion and is essentially trivial. In
particular, while in the continuum this full set of vacuum
diagrams will appear in Fig. 2(a), no continuum vacuum

diagrams become important between the interactions in

(89)

m
i~ —1L PR

2
(90)

In particular, Eq. (90) is a constraint equation, as it in-

cludes only a spatial derivative. In conventional light-
cone quantization, one solves for the dependent field gL
in terms of i}/R and quantizes only the independent field

For nonzero c the fields do not separate in this

manner; both are independent and so are quantized. It
might be useful to see how the constraint Eq. (90)
emerges in this picture as c~0.

Consider the previous example with free fermions but
with zero initial mass and a mass shift of p=m. Then
the two sides of Eq. (90) as c~0 (and at x+ =0) are

m
2s/4L i/z

n&0

D~
]/2 ~ El 1l

C m

i(nn/L)x +0( 1/2)

c m1/2 ~ (91}
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and

—i(nn!L)x +Dt i(nw/L)x ~+g(C1/2)
5/4 1/2 ne

2 L „)p
(92)

The only difference arises from operators which involve
particles of negative momenta and therefore divergent en-

ergies. If these can be excluded by hand as physically
unimportant, then the constraint equation is satisfied.
Consequently, constraints which appear in the equations
of motion in conventional light-cone quantization appear
in this approach as dynamical results. That is, the con-
straint equations are satisfied on the subspace of states
with finite energy as c vanishes.

VIII. RELATIONS FROM LORENTZ INVARIANCE

M =P"P„=c(P+ P)+2sP—+P (93)

While the operator P+ depends explicitly on c, P is just
the spatial momentum and does not. Requiring B,M &

=0
in a state ~f) of momentum p and energy p+ and using
the Feynman-Hellman theorem leads to

& @[a,P, [@&=a, & @[P,[@&

p —p —(2c /s )p p=B,E~—
2(cp+ +sp )

(94)

The first term on the far right allows for a variation in
the vacuum energy.

Further relations may be generated with higher deriva-
tives. As a result, expectation values of various deriva-
tives of the operator P+ with respect to c can be related
to the energies of eigenstates. These relations hold for ar-
bitrary values of c, as well as ~()/) and p, and so may be
examined in both the equal-time and light-cone limits.
As may be checked, the ground states in the previous ex-
amples satisfy this.

A possible benefit of this interpolating quantization is
that it preserves something more of Lorentz invariance
than a usual Hamiltonian approach. Quantities such as
masses which are known to be Lorentz-invariant must be
independent of the quantization surface. However, the
parameter c which identifies this surface appears explicit-
ly in the Hamiltonian P+. Consequently, relations can
be derived which express this invariance and provide
nontrivial constraints on energies and wavefunctions.

For example, the mass M& of an eigenstate ~f) must
be independent of c. The mass-squared operator is

It is not clear yet how useful these relations might
prove. Perhaps a judicious choice of combinations of
derivatives with respect to c can be used to isolate impor-
tant parts of P+ or to focus on particular regions of wave
functions. In the massless Schwinger model, for example,
expectation values of the free Hamiltonian alone can be
related to the eigenvalues p+ and p of the full theory,
as will be shown. In general P+ tends to have a simple
dependence on c in the light-cone limit and these rela-
tions may be most useful there.

Also, with regard to Lorentz invariance, it should be
noted that for the quantization surface away from t =0,
there will be c-dependent Poincare generators which
leave the surface invariant but affect the momentum of
states. As a result, the ease of boosting states on the light
cone [19]should be preserved for arbitrary values of c.

IX. GROSS-NEVEU MODEL

A less trivial two-dimensional model than the free
theories considered thus far is that of Gross and Neveu
[34,35]. One version is given by the Lagrangian

f
(t/J(iB m)g, +— (f JP )2 (95)

J

with the index j identifying Aavor. When m =0 it
possesses the discrete symmetry f~y P, so that

PP, which —would seem to preclude mass genera-
tion. (Other versions of this model possess a continuous
chiral symmetry. This particular version is suScient for
what follows. ) As discussed in [34], this model is soluble
in the large-Nf limit and shares several features with
(3+1)-dimensional QCD. It is asymptotically free and, at
least at large Nf, displays chiral-symmetry breaking:
& Q~:PP:~Q) is not zero, and a fermion mass is generated
spontaneously even when m vanishes. Following [34], m

initially will be kept finite to induce breaking in a particu-
lar direction, then taken to zero.

This model will serve to illustrate two useful features of
this quantization procedure. The first is that it allows
models to be quantized near the light cone which would
be diScult to do in the conventional light-cone approach.
The second is that results associated with a nontrivial
vacuum can be reproduced.

In conventional light-cone quantization, dependent
fields are identified in the equations of motion. These are

and

a A, =
& y„.+ & [A, (q,'&+A'y, )+(y.,'%+A'y, W„]&2 ' 2&2

(96)

(97)
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The second equation relates Pl to Pz by a spatial derivative and so is a constraint. As the only independent field, g„
should be quantized and QI solved in terms of gii. Unfortunately, that Eq. (97) is nonlinear makes this difficult. This
could be made easier by introducing an auxiliary scalar field o coupled to gf, as in [34], and then perhaps giving o dy-
namics but a large mass .Also, [36] is able to treat a similar model on the light cone in a mean-field approximation and
reproduce spontaneous symmetry breaking. That will be unnecessary in this discussion.

In contrast, quantization at arbitrary e is canonical and straightforward. The fermion 6elds satisfy the usual commu-
tation relations given in Eq. (38). The Hamiltonian has the usual free part

P', =I" dp [b (p )b(p )+dt(p )d(p )]e
(98)

and an interaction

PI
2

f dp' dp' -dp' -dp' -5-&p-

X [[u(p' )u(p )u(p' )u(p )]b '(p' )b;(p )b '(p' )b, (p )

+[u(p' )u(p )u(p' )v(p )]b '(p' )b, (p )b. ~(p' )dh(p )+ ], (99)

which includes all Qavor-conserving four-fermion vertices.
As usual, the spinors u and V of Eq. (40) appear for incoming particles and antiparticles and u and v for those outgo-

ing. These satisfy

u(p)u(q)= —v(p)v(q)= W~++ Wpq,

u(p)v(q)= —v(p)u(q)= —W++ W

with

+p ) i/2(~ + q
)I/2

2(ceo co )

In the light-cone limit, if both p and q are positive or both negative, with lp I, lq I
&)c' m,

m 1 1 + m 1 18' +W + 8' —8'
Ipl Iql

' " " 2 p q

(100)

(101)

(102)

but

W++ W -c '/ W+ —W -e(p)c (103)pq w sq

when p and q have opposite sign. Equation (103) also holds when lp I or lq I or both are of order c '/ m, for either rela-
tive sign.

This behavior with respect to c is typical of scalar couplings of fermions in two dimensions. It is the job of a scalar
interaction to couple left- to right-handed particles, and it must become strong as c disappears to keep them coupled.
This is not true for vector interactions, as in QED and QCD, which preserve chirality.

If the quartic terms in P+ are put into normal order, extra quadratic terms are generated. The complete quadratic
part of P+, including P+, becomes

Pq+' = J dp
co —sp g~m ln(A /m )+ [b (p )b(p )+d (p )d(p )]

e 27Th)p

g~m ln(A /m )p
[b (p )d ( —p )+d(p )b( —p )]

2&c Qpp

(104)

The parameter A is a Pauli-Villars regulator mass, and
gN=g (Xf—

—,').2 2

Pq+' is identical to P+ of Sec. IV, where the fermion
mass in P+ was shifted by an interaction of the form
P+ =p fdx:fP:. Here p corresponds to

gNm ln(A /m )

2' :—5m . (105)

As in that example, P$' can be diagonalized by the
transformation in Eq. (46). In terms of 8 (p ) and
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D(p ) from that equation, Pq+' is a free Hamiltonian
with mass

g~ln(A /m )
m+5m =m 1+

2m
(106)

2

m(n+1)=m+ m(n)in[A /m (n)],gN

2' (107)

with m the original mass appearing in L. For m (A, Eq.
(107) converges so that

m(n+1)/m(n) — 1 (108)

and

Because of the discrete symmetry, 5m is proportional to
m. It is also independent of c, as would be expected for a
mass.

Thus far P+ has been normal ordered in terms of
b(p ) and d(p ), that is, with respect to the original
mass. Replacing b and d in P+ with B and D and normal
ordering again produces additional quadratic terms, and
the process iterates. The new fermion mass, after n +1
iterations, is

FIG. 5. Higher-order (in 1/N&) contributions to (a) the vacu-
um energy and (b) the chiral condensate.

spond to normal-ordering the interaction include those
which dominate as Nf ~~ with g Nf fixed. These same
results could also have been obtained from a covariant
Schwinger-Dyson equation or its Hamiltonian equivalent.
All dependence on c has vanished in the expressions for
scalars such as (:gg:) and the running coupling. While
these are only leading order expressions in 1/Nf, this ex-
pansion is Lorentz invariant and results at each order
should have a sensible light-cone limit.

Before the full Harniltonian to all orders in 1/Nf
makes sense near the light cone, much more needs to be
done. For example, the leading terms as c —+0 in the now
normal-ordered interaction have the form

2

m Im(00)=1+ ln[m(~ )/A],gN
(109) PI

2 T

f dp' dp dp' dp 5 gp

which may be solved self-consistently. A particular case
is illustrated in Fig. 4. For the special case when the La-
grangian mass m approaches zero, the left side of Eq.
(109) vanishes and

X '
e( —p' p' )e( —p' pd )

bt~(p' )btf(p' )b, (pb )b..(

m „„,=Aexp( n/g~) .—. (110)
+ ~ ~ ~

mp„„./W 04—
0.2—
0.0

(g2/4~ = .5)
I I I

0.0 0.2 0.4 0.6 0.8 1.0

m/A

FIG. 4. Physical mass as a function of Lagrangian mass m
for g~2/2m = 0.5.

This is the final, physical, mass which appears in the
quadratic part of P+ when the original mass m is finite
but taken to zero. Inverting this gives the running cou-
pling

2= 2~
gN

ln(A /m h„, )

Results for the vacuum wave function and expectation
values can also be translated directly from Eqs. (51), (58),
and (59) of Sec. IV, with the shifted mass p replaced by
m phys In particular, when m vanishes

(Q~:fP:~Q) =(—A/g~)exp( rr/gN) . —(112)

For Nf &) 1 these reproduce the large-Nf results deduced
diagrammatically in [34], since diagrams which corre-

(113)

Divergent terms in c involve couplings to negative-
momentum particles, which could be incorporated into
an effective Hamiltonian. A related alternative might be
to diagonalize divergent terms in P+ order by order in
1/c and then to restrict the full P+ to the lowest of these,
that is, to define physical states as the subspace of states
for which the divergent part of P+ vanishes [14]. The
simple, nearly structureless, form of the divergent terms
in P+ in Eq. (113)suggests that this might not be intract-
able. Moreover, this procedure could be further
simplified by performing it as an expansion in I /Nf.

That terms higher order in 1/Nf near the light cone
contribute to the vacuum energy of an effective Hamil-
tonian and to (:gf:) is evident from diagrams such as
those of Fig. 5. As before, c' is associated with each
denominator, c' with each loop, and e ' for each ver-
tex in this model, and Fig. 5(a) is therefore finite near the
light cone. Related contributions to the condensate can
be computed from d En or directly, as in Fig. 5(b).
There, the extra c ' from a second denominator is can-
celed by the c '~ singularity in:PP:.

X. TWO-DIMENSIONAL QED

As a final example, this section will present the results
of applying this scheme to the Schwinger model [37] or
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two-dimensional electrodynamics. This model is interest-
ing, especially for massless fermions, for several reasons.
It is known to have degenerate 0 vacua which break
chir al symmetry, it has left-moving fermions which
would appear to decouple in the usual light-cone ap-
proach, and it has been solved exactly using a wide
variety of methods. In this discussion I will follow close-
ly the treatment and notation of Nakawaki [38] especially
as reviewed in [39], focusing on the aspects peculiar to
this quantization procedure. These references should be
consulted for a more detailed exposition, including dis-
cussions on subtleties such as point splitting and infrared
regulation.

Nakawaki diagonalizes the equal-time Hamiltonian in
I

a Fock-state basis and in Coulomb gauge, and this can be
carried over directly into quantization at arbitrary angle.
Most of the results in this section will be a straightfor-
ward generalization of the careful treatments of this mod-
el in the near-light-cone limit in [14] and [15], in that
their results are extended continuously from near the
light cone back to equal time. Related work appears in

[40], where an operator solution on the light cone is dis-
cussed; also, nontrivial vacua in the bosonized version are
treated in [41].

The conserved electric current for a free massive fer-
mion in a box with antiperiodic boundary conditions at
x+ =0 has components

J+=:Qy+Q:=(I—s)'/ ft ltt: +(1 +s)'

g [ [ Vkl + Vkl l(bk+1/2bl+1/2 dk+1/2dl+1/2)e'"
k, l

+ [ Vkl Vkl ]( bk + 1/2dl + 1/2 d —I —1/2 b —k —1/2 )e+ — f t i(k+ I+1)(n./L)x (114)

J =:1)/y 1)'I:=(1+s)':p g:—(1—s)'

C + 1+S i(k —I )(m/L )x
Vkl Vkl ( bk + 1/2bl + 1/2 dk + 1/2dl+ 1/2)1+s C

c + 1+s — t f i(k+1+1)(m'/L)x+ 1+s Vkl + Vkl (bk, / dl+1/2 d I —1/2b
—

k ——1/2)c
(115)

with

[~k + 1/2 —( k +
z ) J [I + 1/2 —( 2 ) J

~kI —=
1/22[~k + 1/2~1+ 1/2 J

(116)

When the electron mass vanishes,

V„*,=8(+k+—,
' )e(+I+—,

' ), (117)

so that positive- and negative-momentum particles decouple.
For a massless electron, the Lagrangian, though not the ground state, is chirally symmetric. The components of the

axial current J5 =:1Ty"y5$: are identical to those for the gauge current J", but with the opposite sign in front of the
left-moving, negative-momentum operators. In the light-cone limit, the coefficients Vkl approach the form of Eq. (117),
and J+ for massive fermions reduces to that for the massless case. However, J is ill behaved in this limit. The
offending term is composed entirely of negative-momentum operators, which are discarded in conventional light-cone
quantization, but are necessary for current conservation. This problem has been typically circumvented by computing
matrix elements of the well-behaved J+ and inferring those of J by Lorentz invariance or by evaluating J in finite-

energy eigenstates for which this term is suppressed [30].
The electric charge

Q = dx J = g (bk+, /2bk+1/2
—dk+, /2dk+, /2) ~

+ (118)

for both massive and massless cases. The dependence on quantization angle has dropped out, as it must for the
Lorentz-scalar charge so that it is the same at equal time and on the light cone. In fact, for massless electrons, not just
Q, but the current J+ at x + =0 is c independent, which will allow for a simple transcription of the equal-time results in

[38,39]. Throughout the remainder of this discussion, the electron will be massless. In this case the axial charge

Q, = dx J = g [e(k+ —,')—8( —k —
—,')](b„, b„, —d„, d„, )

+ (119)
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A. General solution

The Lagrangian for massless electrodynamics is given
by

1 FF"—"+ 'g g]tl —gA J—' " .
4 p& 2 IJ

(120)

Following [39], the current J'" is defined such that the
overall charge is removed, with

~ + + (121)

is conserved and is also c independent.
Given that, near the light cone, s ~1 and, in Eq. (114),

J+~&2:f~zPz, it is surprising that operators for left-

moving massless electrons appear in J+ with equal
weight as right movers. Their retention is due to singu-
larities in the spinors. For example, in Eq. (40},the upper
component of u„diverges as c ' when n &0. In prod-
ucts such as u y+u, this divergence cancels the vanishing
coefficient of 1(tr gt. Such a cancellation must occur to
reproduce expressions for Q and Q5 which are the same
as for equal time.

2L "-I. 2L
1+s

L
1 —s

c

(126)

Qz and QI] are the charges carried by left- and right-
moving fermions, with Q =Qz +Q]t and Q5 =Qz —Q„.

The terms in X containing A ' ' contribute

2
112 ... +gA'0] —Q, +—'Q + g L(A]'])2,

4L
(127)

to the Hamiltonian P+. The momentum conjugate to
A (0)

II„, ,
—=

, ,
=2LB A' ',

ga, A'") (128)

changed, and the kinetic term i ]tly"B„]t/ picks up
(g'/c~)( A '" )'.

A ' ' also appears explicitly in the Lagrangian in
—

—,'F„„F""and —gA„J'I'. Because A' ' is constant, it
couples only to the zero-momentum part ofJ

The equations of motion are then
satisfies the usual canonical relation

[II ...(x+), A'"(x+)]=—I . (129)

[c(i8 —eA )+(I+s)(iB eA )]P—=0,
(122)

[(1+s)(iB+—eA+ )
—c(iB —eA )]]tII]=0,

Apart from terms involving A' ', P+ is most simply
constructed from the fusion operators C„, which are
modes of the free charge density [44]

a a A —a'A =J-,
a+a A —a2 A+ ——J'+. (123) J&,+„= g [C„e " +C„e " ].

nAO

(130)

The gauge condition which interpolates between light-
cone gauge, Ao —A, =0, and axial gauge at equal time,
A, =0, is [9]

Here J&,+„ is periodic in x, with k =nn/L and

k +=(~n~ sn)rr/c—L. By Eq. (121), J&,+„has no mode

constant inx . For n)0
A—:cos(8/2) Ao —sin(8/2) A, =0,

which yields the constraint equation

(124)
Cn g bl + ] /2b g + I + ] /2 dl + ] /2dn + I + ] /2

I =1

—8 Ai =J'+ . (125)

In this discussion I will use a slightly difFerent gauge,
8 A =0, which becomes the Coulomb gauge at equal
time and requires the retention of an x -independent
field denoted A' '(x+). This choice is more convenient
for a system in a box, as it permits A+ to satisfy periodic
boundary conditions and has proved useful in both
equal-time and light-cone contexts [42,38,43,39,14,15].
The time derivative of A ' ' produces an x -independent
electric field, whereas in the strict A =0 gauge this field
is represented by —8 A+ on the boundaries which must
be included when inverting Eq. (125) [21].

Products of fields are regulated by point splitting a dis-
tance e along x, following [38,39]. Inserting an ex-
ponentiated gauge field preserves gauge invariance when
splitting fermion fields. As the splitting is along x, this
involves only the constant field A ' '. As a~0, the singu-
larity in ]tII QI goes as i[2m(1 —s)' e] and fzpz as—i [2m.(1+s)'/ e] ', so that each acquires a finite
correction. This adds (g/c~)A' ' to J,while J+ is un-

n —1

+ g dl+]/2bn —I —]/2 &

1=1

while for n &0

(131)

n 2 (bl+]/2 n+I+]/2 I+]/2 n+I+I/2)
I= —1

dl + ]/2bn —I —] /2
I= —1

(132}

[C„,Ct ]= ~n ~5„ (133)

and that they annihilate a large class of low-lying states.
Let ~M, N ) denote the state of lowest kinetic energy with
~M

~
left-moving and ~N~ right-moving fermions, with M

and N positive for positrons, negative for electrons. Then

Note that C„ is independent of quantization angle, as is
J'+ at x+=0.

Two properties of these fusion operators which will be
useful later are that they satisfy bosonic commutation re-
lations,
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C„IM,N) =0, (134)

for all M, N, and n. Of particular interest are the
charge-singlet states

I N, N—) for which Q =0 and
Q~ = 2—N T.hese states provide the basis for the 9 vacua

I

at equal time. As discussed in Sec. V, because the fer-
mions are massless, the usual suppression of such states
near the light cone is lost, and their importance in vacu-
um dynamics will persist. Their role may differ dramati-
cally with massive fermions, however.

In terms of the fusion operators,

1
f 2L

1+s
QL + g [C„e " +C„e "

]
n(0

1

2L
1 —s Q„+ g [Ce " +Cue" ]

n&0

and the momentum P and Hamiltonian P+ are particularly simple. The momentum

(135)

QQ5
——g e(n)C„C„

n&0

has the same form for all c, while the free Hamiltonian

0 77PO
2L

1+s Qz+ 1 —s
Qq + m

c c L g C„C„+ g C„C„
n(0 n&0

(137)

explicitly depends on c.
This dependence follows immediately from the form of the free equal-time Hamiltonian H„given in [38,39] and two
observations. First, H„separates into a term with only left-moving operators plus one with only right movers, both
when expressed in terms of b„+ ~ &2 and d„+ & &2 and in terms of C„. Second, to convert the H„given in terms of fermion
operators,

+('= )=—X In+ll(&'+i/2~ +1/2+d +1/2d +1/2)L (138)

to P+ at arbitrary c, one replaces the energy ln+ —,'I with [ln+ —,'I —s(n+ —,')]Ic. This is equivalent to multiplying the
left part of H„by (1+s)lc and the right part by (1—s)lc. Therefore to convert H, , expressed as a function of C„ to
P+ only requires separating H, , into left and right halves and multiplying by (1+s ) lc and (1—s ) lc, respectively.

The interaction is even simpler to convert from H„. Because the current density J'+ as well as the constraint Eq.
(125) are independent of c, the part of P+ due to gA+ J'+ is also independent of c and may be copied directly from the
corresponding term at equal time. So

2
2

P+ = g [C„+C „][C „+C„],4L „~0 nm

plus the terms involving 2 ' ' in Eq. (127). In position space this is the Coulombic term

g f dx dy J'+(x )lx —y IJ'+(y ),

(139)

(140)

which produces linear confinement.
The conversion from H„ to P+ at arbitrary quantization angle has been remarkably simple. As a result, the eigen-

states at all angles are also simple to convert. Ignoring for now the zero-momentum parts of P+ containing A ' ' and

Q~, which will be considered next, and restricting Q to zero, P+ may be rewritten as
2

2

P+ =——g CtC„+ g [C„+C „][C „+C„].——. —g e(n)C„C„. .
c L ~0 4L ~0 n m

" " " " c L „&0
(141)

This has the form

1 2 2 s
P+ = H„(g ~cg )

— P„, — — (142)

where H„and P„are the equal-time Hamiltonian and
momentum and the coupling g has been replaced by cg .
Consequently, the eigenstates of the equal-time Hamil-

tonian given in [38,39] may be immediately translated to
those of P+ by simply replacing the parameter g by cg .
As is known, the spectrum of H„ is that of a free boson
of mass

glair'/,

with energy (k +g /m)'/ when P„=k. .

By Eq. (142) the eigenvalues of P+ are therefore

[ ( k +cg /m )
'/ —sk ]/c, which are the appropriate ener-

gies for free particles of mass g/~' at arbitrary c when
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a(n) =—,[cosh/(n)C„+sinhg(n}C „],ie(n)
(143}

with

cm'P(n):——ln =—ln 1+
Ip. I

4 p„'
(144}

and

a)(p):—(p +cm )'/, m —=g2/m. , (145)

while P„ is already diagonal. Then, apart from the vacu-
um energy and zero-momentum contributions,

P~= g a (n)a(n) . (146)

P =k, as in Eq. (18}.
The operators which diagonalize H„(g ~cg ) tran-

scribed from [38,39] are

(151)

Then, for the general case when Q5%0,
1/2

(a —a)Q~
m y . m~

C
1/2 4C 3/2L

less, the spectrum for all finite energy states with p %0
is given by the Hamiltonian of Eq. (150).

At this point all that remains is to diagonalize the
zero-momentum part of the Hamiltonian, P+(n =0),
given by Eq. (127) and the first term of Eq. (137) with Q
restricted to zero. This part plays a negligible role in the
continuum limit. In the absence of fermions, Q5 =0 and
P+(n =0) is quadratic in 3' ' and II„(o). It is therefore

simply a quantum-mechanical harmonic oscillator, diago-
nalized by the annihilation operator

1/2 1/2
mL (O) c 1/2a=i, A —

4 L II„,o, .
c 4mL

n%0

The unitary operator
7r 2

4cL
(152)

S=exp. —g,
~

[C „C„—C C „]2 n~o
(147)

effects the transformation of Eq. (143), with

SC„S =if(n)~n~' a(n) . (148)

Because C„annihilates ~0), the state S~0) is annihilated
by a(n),

ie(n)~n ~' a(n)S~O) =SC„S S~O) =0, (149)

and so may serve as the full vacuum. The same is true of
states S~N, N). As w—ill be seen shortly, diagonaliza-
tion of the zero-momentum sector makes these degen-
erate with S~O).

For any fixed and finite p„, ((}(n) vanishes as cm /4p„
in the light-cone limit, S approaches unity, and the
ground state reduces to the perturbative vacuum or, more
generally, to the states ~N, N). Furthe—rmore, the
creation operator a (n) for free bosons with n )0 reduces
to the simple fusion operator i ~n ~

'/ Cf. This may also
be deduced directly from the form of P+ in Eq. (141). As
c vanishes, there is no interaction which strongly couples
negative- to positive-momentum operators. It is conse-
quently sensible to simply discard the negative sector and
take C~O. P+ reduces immediately to the light-cone
Hamiltonian for free bosons of mass m =g /m'

P+~ g a (n)a(n),(g '/m. )
(150)

n) o 2pn

as observed in [20,26].
This argument fails for p„near zero. The large kinetic

energy p„/c responsible for the suppression of negative-
momentum states becomes small relative to their cou-
pling to positive states, g /p„, when p„«c' g. There-
fore, for the quanta in this region, there is a great deal of
mixing, and their contribution to the operator S and
therefore the vacuum does not vanish. This region will
sustain the vacuum expectation value of gP. Neverthe-

the constant photon field A ' ' couples to the axial charge
of ferrnions. For fixed L this coupling becomes large near
the light cone, although it vanishes in the continuum lim-
it.

On a state of fixed axial charge, this Hamiltonian is
identical to that of the shifted scalar field of Sec. II with v

replaced by Q5. In fact, the shift

1/2
g (0) g (0) ~

Q2mL
(153)

completely removes Q& from P+ and leads to the exact
degeneracy of the states IN, N). As—in Sec. II, acting
on these states with the unitary operator So,

(154)

gives the ground state for P+(n =0). The cost in kinetic
energy of additional electron-positron pairs popped from
the vacuum in the state )N, N) is compen—sated by a
coherent state of zero-momentum photons equivalent to a
constant electric field.

The corresponding shift on a,
T 1/2

a(0}=S0aS0 =a +—
2 c

Q5 (155)

diagonalizes P+ (n =0) completely to

P+(n =0)=[m/c'/ ]a (0)a(0), (156)

equivalent to the Hamiltonian for a free particle of mass
m:—g/~' and P =0. Finally, the fu11 Hamiltonian for
all momenta n, including zero,

P+= 7T

L
n = —oo

co„—sn
a (n)a(n), (157)

S0~N, N) =exp. — Q~(a —a ) ~N, N)—
2(c )/2mL ))/2
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ln(N)&=ss, lN, —N&

are degenerate, zero-energy and -rnomenturn vacua.

(158)

B. Vacuum energy

After the diagonalization of P+ by means of Eqs. (143)
and (155), the energy of the ground state

l
Q(N ) & is

is equivalent to that for a scalar of mass m. As a result,
the states

The continuum limit for the first term
taken straightforwardly. It contributes

&Q(N}lP+ln(N)& = — J dppl~ oo & 2C 0

m

4

Then

E„—&olP lo&

in E& may be

+ p
p Qpp

(164)

A,

+
4 neo ~~

(159)

The two terms on the right are the contributions of P+
and P+, respectively; there are no contributions from
P+(n =0).

The term due to P+ is ultraviolet divergent, while the
other term is finite. If P+ is normal ordered with respect
to the perturbative vacuum, the second term

&Q(N)IPI+ In(N) & &olPJ+ l—o&

m 1
XL 4 „&0 co„

(160)

ml. /" 1 c'"mL—-yE+ln +O(L '),
1

n 7T

with y E Euler's constant, and

(161}

acquires a subtraction which renders it ultraviolet finite
but infrared divergent in the continuum limit. As
L ~~, the dominant part of this sum is clearly an in-
frared logarithm which is cut off when co„-n and so will

go as ln(c' mL/m). Evidently, the dominant contribu-
tion is from momenta p =—n m/L in the region
~/L & lp l

(c' m. As will be seen, this contribution
will persist even if c is taken to zero, so that if these states
are discarded, their effect must be incorporated in some
other manner to retain vacuum dynamics. In the formal-
ism of [8], they would be contributed by boundary de-

grees of freedom.
In fact, in the continuum limit [45],

L m

4
cm L

1 —2yE ln
4m

(165)

The final c-dependent logarithm contains the remains of
the noncovariant regulation of the infrared divergence.

The vacuum state provides an interesting example of
the simplest of the relations contained in Eq. (94). Be-
cause only the free Hamiltonian P+ contains an explicit,
and simple, dependence on c,

a,E„=&n(N)la, P', ln(N) &

&n(N)l y lnl(btb„+d„'d„)ln(N)&
L

n

1= ——
& Q(N) IP+ In(N) & .

c
(166)

In the continuum,

& Q(N)IP+ In(N) &
=—

4
(167)

which is independent of c, while

aE =ac 0 c
L m

ln
4

L

m

4c

cm2L2

4a

(168)

and is due entirely to & Q(N) lP+ l Q(N} &. So Eq. (166) re-

lates the expectation value of a simple, diagonal operator
to the infrared-divergent inc dependence from the in-
teraction. In the same way, for the one-boson state of
momentum p and p+ =(co~ —sp )/c,

c l/~mI. )~ fl CO

——&Q(N}la(p )P+a (p )ln(N)&

dpin p ( 2+c 2)1i2

c'/'m 1
dp 2 21/2+0 L(p'+cm')'"

= —ln(2)+O(L '), (162)

L m

m 4c

and so on.

p —p —(2c/s )p p

2(cp+ +sp —)

C. 8 vacua

(169)

so that
To preserve desired qualities such as cluster decompo-

sition, orthogonal 0 vacua

exp ~

n

T

y E

2' (163) le &
= „, y e'"'ln(N) &

(2m. )'" „=
(170)
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may be built from the degenerate vacua
i Q(N) ) such that

(e ie) =fi(e' —e), (171)

e
' 'ie&=ie+a&. (172)

just as the instanton vacuum is defined for QCD. The 8
vacua in general break chiral symmetry, and the axial
charge rotates 0 according to

first the part of (ff) which raises chirality, (1(L 1(z ),
evaluated inthe iQ(N)) vacua:

(Q(N')ill( iQ(N))

=(N', N—'iS(p Q Q„SSoiN, N—) . (173)

C„annihilates the states iN, N)—; to take advantage of
this, the relations

Once a choice is made for 8, excited states, that is, those
with free bosons, are built with products of a (n) acting
on ie). The spectrum is entirely independent of that
choice.

As in previous examples, the value of the condensate
(ff) can be computed in the 8 vacua as a measure of
chiral-symmetry breaking and studied as the quantization
angle goes from equal time to the light cone. Consider

I

e "Be "=B+[A,B]+—,[A, [A,B]]+1

e A +B e Ae Be —(1/2)[ A, B]+

and

[y', I(„(0),C„]=[y,' y„(0),C„']=e(n)y,' y„(0)

may be used to rearrange terms such that

(174)

(175)

S $1 gxS=exp. —g [—,'(e "—1) +(e "—1)] .I. x

Xexp —g [e—"—l]C„PLPze. xp . g —[e "—1]C„..
n%0 nAO

(176)

Using Eq. (144), the term multiplying QL Px that survives in Eq. (173) is the same exponential evaluated in Eq. (163).
The contribution from the zero-momentum sector may be evaluated separately. Using Qs iN, N) = 2—NiN, ——N )

in Eq. (173),So/i tP„SO may be rearranged such that

(N N'). —
Sot(I /+So=exp —, exp . —

2c' mL mL

1/2

(N N')a Pz—I(z exp

' 1/2

(N —N')a

(177)

Finally,

&N' N'ifi~PR i»——N &
= „, &n, n

1

c1/2

which involves only free fields. Combining these results,

(178)

&Q(N')iy', y, iQ(N)&=5„.„, „, exp. y2c L „—1
n n

7T
exp

mL
(179)

and

&8 iy,'1(, ie&=e"S(e'—8) „, exp. y1
"

1 7r
exp (180)

In the continuum, L ~ ao, the zero-momentum contri-
bution becomes negligible, and that due to finite momen-
tum has been computed above. The exponent of the sum
over n gives a factor (c'~ mLlm) The L de. p. endence
cancels that due to Eq. (178), leaving a finite result. In
addition, the c dependence also cancels, as it must for a
Lorentz scalar. Near the light cone, this is the same sto-
ry as for symmetry breaking in previous examples. The
singularity in QL gz near the light cone is just enough to
pick out corrections to the perturbative vacuum that
would like to disap~ear in that limit. Were this singulari-
ty not present in gr 1(z, the result would be zero, just as

for the perturbative vacuum. Unlike previous examples,
vacuum states containing negative-Inomentum fermions,
iN, N), are not—suppressed, since the fermions are
massless. However, the complicated vacua iQ(N)) are
built on the iN, —N) with the operators C„associated
with massive excitations, so that iQ(N) )~ iN, N) asc-
vanishes. It is this vanishing difference that the singulari-
ty in Eq. (178) picks out. So the 8 vacua persist, but are
greatly simplified, in that limit [39].

It is necessary to take the continuum limit prior to the
light-cone limit so as not to lose critical degrees of free-
dom, as discussed in Sec. V and [14,15]. In particular,
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(a) (b)

FIG. 6. Contributions to (a) the vacuum energy and (b) the
chiral condensate in the massive Schwinger model.

the apparent exponential suppression in the last factor of
Eq. (180) as c~O is an artifact of the poor sampling a
regular grid makes of massless, negative-p particles. In
the continuum limit this factor goes to one rather than
zero. Finally, including the contribution from the chiral
lowering operator gtt11L, which is proportional to e
gives the correct total continuum result [46,14,15],

XI. CONCLUSIONS

The vacuum wave functions and energies for a variety
of two-dimensional models have been presented explicitly
as a continuous function of the angle of the initial quanti-
zation surface. Near the light cone, these wave functions
do in fact evolve to the perturbative vacuum, as conven-
tional light-cone arguments dictate for massive excita-

( 8'i $$i 8) =e cos8 5(8' —8) .
277

While this section has focused on massless QED, where
known equal-time results could be easily translated to
those at arbitrary c, it would be an interesting exercise to
study the more general massive case, where exact solu-
tions are unavailable but numerical light-cone results are
known [26]. In particular, it would be worth exploring
how difficult it would be to construct an effective Hamil-
tonian and to what extent it would agree with [26]. That
the vacuum is not trivial even for massive fermions is
suggested by contributions to the vacuum energy in H,z
such as those in Fig. 6(a). The instantaneous photon
propagator is 1/p, and so each vertex introduces c
This diagram and the related one for (:$11:) are indepen-
dent of c, just as those of Fig. 5, so that if these exist at
equal time, they also survive the light-cone limit. As a
result, light-cone quantization of massive fermions does
not appear to preclude a vacuum expectation value for

tions. Nevertheless, operators with nonzero vacuum ex-
pectation values possess singularities in the region k =0
which are sufficient to extract finite contributions from
the vanishing vacuum corrections. As a result, it is possi-
ble to maintain the effects of an involved vacuum on the
light cone. This is important, especially in the context of
QCD, as the goal of quantizing on the light cone is cer-
tainly to employ a formalism which is as simple as possi-
ble while still giving correct results.

In general, whether conventional light-cone arguments
hold and the vacuum is trivial depends on what is being
measured. The low-energy spectrum generally follows
from conventional arguments, while quantities sensitive
to high energies, large distances in x, or small k may
be singular enough to probe nontrivial corrections. In
certain cases it is possible to take advantage of the simpli-
city of the light cone by examining matrix elements
which are not sensitive to this region and using dispersion
relations or Lorentz invariance to relate them to those
which are [47].

Keeping the quantization angle as a parameter has
several advantages: It controls singularities in k and
permits a simple power counting to determine when con-
ventional arguments about the vacuum must be modified;
it retains massless left-moving particles; it allows non-
trivial relations from Lorentz invariance; and finally, it
makes quantization simpler in certain cases by avoiding
constraints.

The connection between short times and the long dis-
tances of the vacuum near the light cone suggests that
computing an effective Hamiltonian is an appropriate
way to include vacuum effects in the light-cone limit.
Such a procedure was illustrated by a simple example
here. It is worth exploring whether this approach is vi-
able for more interesting models such as QCD.
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