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Positronium and heavy quarkonia as testing case for discretized light-cone quantization
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A nonperturbative method for solving quantum field theories in three space and one time dimensions
is applied to the bound-state problem of positronium and heavy quarkonia. The model includes only one
dynamical photon, i.e., the irradiation channels are closed. An integral equation of the Bethe-Salpeter
type is derived, being the light-cone analogue of the Tamm-Dancoff equation, and solved numerically.
The model accounts for the Bohr-Sommerfeld and Dirac physics such as hyperfine splitting including
the correct retardation. Special emphasis is put on the role of the Coulomb singularity in momentum
space. Numerical results for the mass spectrum and the wave functions are presented, and compared to
analytical results. Agreement is found for the physical value of the coupling constant. For very large
coupling constants @ ~0.3 discrepancies are noted and discussed.

PACS number(s): 11.10.Ef, 11.10.Qr, 11.15.Tk

I. INTRODUCTION

In recent years the method of discretized light-cone
quantization [1] (DLCQ) has been tested successfully for
one space and one time dimension by its application to
Yukawa theory [2], quantum electrodynamics [3,4], and
quantum chromodynamics [5]. The perspective to devel-
op this method in three space and one time dimensions
into a tool of comparable efficiency is rather exciting and
worth an effort. In this work, we shall report on some
progress, albeit one has not solved yet all the problems of
a fundamental or technical nature.

DLCQ as a method is based on the Hamiltonian for-
malism in the light-cone gauge 4 ¥ =0, in which all par-
ticles are physical, quantizing the system at equal light-
cone time x T =t +z rather than at usual time ¢ [6,7].
The light-cone gauge might actually generate problems
[8], but they have probably no impact on the questions to
be discussed below. The method as it stands [9,10] is po-
tentially able to generate solutions to gauge field theory
in the real world of three space and one time dimensions.
We refer to Tang, Brodsky, and Pauli [9] for a fairly com-
plete account of the preceding work, for the treatment of
ultraviolet and infrared regularization and subsequent re-
normalization, and for problems with gauge invariance
and their solution in the presence of a sharp momentum
cutoff.

The methods and approximations should be tested
thoroughly by explicit calculations, before tackling the
true challenge, namely, the solutions of non-Abelian
gauge theory in 3+ 1 dimensions. The present work was
undertaken with the aim of providing such a test. In
341 dimensions no soluble models exist, unfortunately,
which are both physical and tractable. One faces head-on
the true physical problems, and thus we have to address
ourselves in this paper to the nonperturbative solution of
(3+1)-dimensional QED (QED;, ), in particular to the
bound-state problem for positronium at strong coupling
(a=0.3). The test is successful if one is able to generate
numerically the correct Bohr spectrum, the wave func-
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tions, the fine and hyperfine structure [11] including
recoil effects [12], and possibly even the Lamb shift, in
this order of numerical relevance. Restricting the test to
QED; ., and positronium, one has the great advantage of
comparing to a large body of analytical work [11,12]. It
should be emphasized strongly that the present work
should not be misunderstood as competitive in either
quality or precision.

We solve positronium in a very simple model, as for-
mulated in Sec. II: Only one dynamical photon is includ-
ed in the Fock-space expansion. The annihilation chan-
nel of two photons is omitted, as well as the single-photon
state which in principle couples into the orthopositroni-
um. Model positronium is thus perfectly stable, cannot
irradiate into two photons and bears a great similarity to
“muonium with equal masses.” Despite its simplicity,
the model should cover all of Bohr-Sommerfeld and
Dirac physics such as, for example, the Bohr scales and
the hyperfine splitting including the correct retardation.
At this level of approximation, QED and QCD are identi-
cal to the extent that substituting @ej.ma,= $%srong 8ED-
erates the corresponding QCD solutions rigorously. The
positronium results can thus be transliterated to the
heavy quarkonia such as charmonium.

While this work was going on, also with respect to de-
veloping the technology, several works of Wilson and co-
workers [13] have appeared, which consider the same
model in abstracto. For good reasons, they stress the
point that Tamm [14] and Dancoff [15] did approach field
theory many years ago in very much the same spirit as we
do it. We therefore shall refer to the model of including
only one dynamical photon as the light-cone Tamm-
Dancoff approach.

As we are abusing a physical problem as a test for a
numerical method, one faces the familiar problem of such
an approach: One is constantly in danger of mistaking a
technological error as a new physical effect. In the earlier
work [9], for example, the vain attempts to generate nu-
merically stable results in line with expectation have been
rather frustrating. Only when realizing that the good old
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Coulomb singularity was present in a light-cone Hamil-
tonian formalism also, of course, did these difficulties
fade away. For this reason, comparatively broad room is
devoted to the “Coulomb trick” in Sec. III, treating the
nonrelativistic Coulomb problem in the momentum rep-
resentation on its own merit.

The major part of this work deals with a careful
specification of the model, leaving out eventually all de-
tails which could be found in Ref. [9]. But much effort
has been devoted to developing the technology, including
the symmetries discussed in Sec. IV, which ultimately has
lead to an amazingly effective numerical approach. One
is able to see the essential physics already when diagonal-
izing a 25X25 matrix. This simplicity provides the po-
tential for treating more complicated models in the fu-
ture.

Unfortunately, as discussed in Sec. V, the formalism is
not yet developed sufficiently well to establish an approxi-
mate independence of the results on formal parameters
such as the covariant momentum cutoff at sufficiently
large coupling constants. As we plan to discuss the relat-
ed problems in forthcoming work (II), the present work
can be only an intermediate step.

II. DERIVING THE LIGHT-CONE
TAMM-DANCOFF EQUATION

In discretized light-cone quantization [9] (DLCQ) the
generalized momentum operators P* are a discrete and
covariant realization of the Heisenberg operators which
propagate the system in space-time, i.e., id,¥=[¢,P,].
Their Lorentz-invariant contraction H;c=PH’P, is
discrete and frame independent, and is called the light-
cone Hamiltonian. Upon diagonalization

HLC|¢1'>=M?|¢;'> ,

it delivers the (stationary) eigenfunctions |1, ) and eigen-
values M? which have the dimension of an invariant mass
squared. For QED;,; their derivation as Fock-space
operators can be found elsewhere [9,10] together with the
complete tables of the Hamiltonian matrix elements.
Some of the latter are compiled in Appendix B.

In the sequel we proceed the way we think DLCQ
should be applied. One formulates the model in a discre-
tized momentum basis, where the Hamiltonian can be
visualized as a matrix with a finite number of rows and
columns. Next, one formulates all necessary model as-
sumptions, in accord with covariance and gauge invari-
ance, and finally by going over to the continuum limit
one converts the matrix equation to an integral equation.
Finally, one solves the integral equations with suitably
optimalized numerical methods. It should be emphasized
that the regularization scheme of DLCQ [9] explicitly al-
lows for such a procedure, since the regularization scales
are equal both for discretization and the continuum, con-
trary to lattice gauge theory, for example.

2.1

A. The formulation of the model

As part of the model we restrict ourselves to the
charge-zero sector and include only the electron-positron
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(ee) and the electron-positron-photon (eey) Fock states,
denoted collectively by |ez) and |ezy ), respectively. It
is convenient to introduce them as projectors, i.e.,
Qo=3,1(eg);){(ee);,| and Q,=3, |(eey),){(eEy),].
The index i runs over the discrete light-cone momenta
and helicities of the partons (electron e, positron e, and
photon ) subject to fixed total momenta and to covari-
ant regularization by a sharp momentum cutoff. Oc-
casionally, we shall refer to Q, and Q; as P- and Q-space,
respectively. The one-boson model was recently investi-
gated also by KaluZa [16] and by Hollenberg et al. [17].

The Hamiltonian matrix equation, Eq. (2.1), can then
be understood as a coupled matrix equation involving the
block matrices H,,, =Q,H 0,

Hoo"/’>0+H01|¢)1:a’W’>o >
H10|¢>0+H11|¢)1=(0|¢>1 ,

with ©@=M? and the projected eigenfunctions
[¥),=0,¢;). Quite in general, by introducing inverse
matrices or resolvents G (w)=1/(w— H), one can express
[¢), in terms of |¢), from the latter of the above equa-
tions, i.e.,

(2.2)

1

11#)1:@_—HUH10|1//)0, 2.3)

and insert it into the first one. Eventually, Eq. (2.1) can
be identically rewritten in terms of an “effective Hamil-
tonian” acting only in P-space: i.e.,

Heﬂ'(w)ilpl(ﬁ)))OZMIZ(CL))h/},(UJ)>0 N

with

Once the P-space eigenfunction |¢;(®)), is known, one
can calculate |¢), from Eq. (2.3) by a quadrature. The
projection technique of deriving an effective Hamiltonian
is fairly standard in many-body theory [18], and has been
applied to light-cone formulation before, both implicitly
[6] and with explicit mentioning [19]. Apart from a
different model (gauge theory instead of Yukawa),
different regularization and a different space-time param-
etrization (equal light-cone time instead of equal time),
the model is the light-cone analogue of the Tamm-
Dancoff approach [14,15]. A similar approach was ap-
plied recently [20] also to QED with scalar fields.

The effective Hamiltonian H . depends on the un-
known eigenvalue « through the resolvent (‘“energy
denominator”). To solve it in principle, one starts, for
example, with some fixed value o as the “starting point
energy,” inverts (w—H ) in Q-space, calculates and
subsequently diagonalizes H . in P-space to get the eigen-
values M*(w). The true eigenvalues are determined by
variation of  and the fixed-point equation w=M*w).
An alternative and very elegant method to solve the
equations has also been formulated by Tamm [14].
Despite acting only in the smaller P-space Eq. (2.4) is
thus not necessarily simpler to solve than the full prob-
lem. But Eq. (2.4) can be approximated easier than Eq.
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(2.1). This cannot be done without a closer look on the
explicit structure of the matrices.

A restriction to any finite number of gauge bosons
violates gauge invariance, and one has to correct for it.
In order to avoid that scattering amplitudes are gauge
violated already on the tree level, Tang, Brodsky, and
Pauli [9] have formulated a “gauge cutoff,” namely to in-
clude the instantaneous interactions only when the “i
stantaneous parton” is accompanied by a real “dynamlc
parton” with the same spacelike momentum and in the
same Fock-space configuration. As an example, consider
instantaneous interactions which occur in Q-space, as il-
lustrated in Fig. 1. Diagram (a) has to be excluded, since
there are no |egyy ) Fock states in the model, as well as
diagram (b) since the two-photon states are absent. Thus,
only diagram (d) survives the gauge cutoff.

For discussing further the effective Hamiltonian, the
electron and the positron are characterized by their four-
momenta k/' and k¥, respectively, their Lagrangian mass
mpg, and their helicities. More explicitly, as displayed in
Fig. 2, the electron is described by k}=(x,k ,k, ), i.e,
its longitudinal-momentum fraction x =k(;r /P, ts
transverse momentum k, its energy k, =(m2+k?)/x,
and finally by its spin projection s,. Correspondingly, the
positron is described by k{=(1—x,—k,k; ), and s..
The effective Hamiltonian is written as the sum of the di-
agonal kinetic energy M 2 =(k, +k, )2 and the effective
interaction V g(w), whlch both have the dimension of an
invariant mass squared, i.e.,

Hg(0)=MZ+V4o),

with (2.5)
Q1

eey +ng->q8

C+S+Vy Vio -

Veﬂ‘(w)___
The effective interaction contains thus the diagonal con-
traction terms C in P-space, the seagull interaction
S —Sqq_ﬁﬁ in P-space, and the iterated vertex interaction
in which V, =H, connects P-space with Q-space
through the vertex graph V,_, ... The energy denomina-
tor is not diagonal due to the matrix element S (g_*qg
The effective interaction ‘“‘scatters” an ee pair from a
state (k,,k;) into another state (k,, k), which in general

(a) (c)
(b) (d)

FIG. 1. The instantaneous interactions in Q-space.
(b): the instantaneous boson interactions Sy’ - and S5’
spectively. (c) and (d):

(a) and
g —qz> T
the instantaneous fermion interactions
S5 . and S;g’_,qg, respectively.
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T-x,-k,  1-x-k}

(a) (b)

FIG. 2. The off-diagonal matrix element in P-space. (a) the
instantaneous boson graph Sqq_.qq; (b) the iterated graph
W =VGV. The figure displays also the spacelike momentum as-
signment of the fermions; those of the boson are fixed by
momentum conservation. (b) holds for x > x’, the correspond-

ing one for x <x' is not shown.

has a different invariant mass. Their average
=3k, kP + 1k, +k,) e
o =k kg KR
Z+k2 mE+k?

_1 FTK| ’F 1’ 2.6)
2 [x(1—x) x'(1—x")

being introduced for later convenience, will be referred to
as the symmetrized mass (squared).

As part of the model two ad hoc assumptions are made
in the sequel, namely to substitute the eigenvalue by the
symmetrized mass and to omit diagram in Fig. 1(d), i.e.,

and S\, . =0. 2.7

*
>
=0 g Hqg

Supposedly, the first of them accounts approximately for
the violation of gauge invariance by including only one
dynamical photon. Note that the effective interaction is
then independent of the eigenvalue. The second is sug-
gested only by mathematical simplification. The Q-space
matrix is then diagonal and can be inverted trivially.
Note that the same assumptions have been made in all of
the preceding work [6,14,15,19]. This model is solved
with rigor, numerically.

B. The singularity structure of the effective interaction

Investigating the effective interaction V., one should
distinguish between the off-diagonal matrix elements
displayed in Fig. 2 and the diagonal elements with x =x’
and k, =k in Fig. 3. In the discretized case, this is al-
ways possible. The diagonal element V 4(w)=C + W(w)
vanishes strictly due to mass renormalization, as shown
in some detail in Appendix A. The off-diagonal part
Veg(w)=S + W (w) seems to have the collinear singulari-

ty at x =x' due to the instantaneous interaction
S= Sq;)_Hﬁ. But as shown next, it cancels against terms
in W(w). The cancellation can be verified either by in-

serting directly the explicit matrix elements in Appendix
B, or, more transparently, in terms of four-vectors [7,10].
In Fig. 2 one deals with four-vectors: namely, the
momentum transfer of the electron /#=(k,—k,)*, the
momentum transfer of the positron [¥=(k,—k_)*, and
the photon momentum g*=(q,q;,q ), with g=q* /P*.
Using the lightlike vector [6] 5*=(0,0,0,2) they are re-
lated by
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(a) (b)

FIG. 3. The diagonal matrix elements in P-space. (a) the in-
stantaneous contraction terms, (b) the iterated graph W =VGV
(self-mass diagram).

gr=It+igMg T +ID)=1E+igMg T +IT) . (2.8)

Because of momentum conservation, the three have the
same spacelike components, but their timelike com-
ponent is different. It is also useful to introduce a
modified energy denominator as an always positive num-
ber and to rewrite it in terms of the four-momentum
transfers and the symmetrized mass squared o*, i.e.,
_ A2
$: q (CL) Me?'y )
— ! * __ —172__1732
lx —x'[(0*—w)— 11,2 — 112 . (2.9)

Next, evaluate the iterated vertex graph Fig. 2 according

to the rules [10]. With the electron current

jU, #=u(k,)y*u(k,) and the positron current

J)Y=ulk,)y u (k) one gets
W(w)=—(g*/D)j I, "j)d,, .

The polarization sum of the photons

d,,=3,€A,q),e,q)y, yielding [6]
dy,=—8ut(1/9)q,m,tq,m,),

obviously contains a gauge-dependent part. As one

wants to apply the identity (k,—k,) @ (k,;)y*u(k,)=0,
one substitutes the photon momentum g* once by [/} and
once by l;; thus,
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dyy=—8uleyn,—lL;m,+ (1729, (29~ +1, +17) .
One ends up with
g?
W(w)= Ej(le Wjly),
g’
— i (L FG (L)Y 2q +I,+17) .
2;qu(,h,)J(le)'q,;/]v( q I, +17)
When evaluating the instantaneous graph in Fig. 2(a) ac-
cording to the rules [10], i.e.,

(2.10)

, Lo
S =g2;1(le Wi nm,

(2.11)
one notes the similarity with the gauge-dependent part of
Eq. (2.10). Adding the two, using the discrepancy func-
tion

1 _
A=—
2| gq ¢

thus (2.12)

A=o*—0w,
and the definition j(/, )‘n,= Jj.', the effective interaction
becomes finally

2 2
& 1w g A i
Veﬂ'(w) @_](Ie)_](l-e—)‘u—*'i) |x_x,|.]e ]Z: .

(2.13)

The photon energies ¢~ explicitly cancel. The remaining
singularity in A/|x —x’| vanishes in the present model,
see Eq. (2.7). By fiat, the effective potential has thus no
ultraviolet or infrared singularities. Only the usual in-
tegrable Coulomb singularity remains.

C. The light-cone Tamm-Dancoff equation

In the continuum, the matrix equation (2.4) becomes
an integral equation

m}- +ki ~2 290 P, T A A
T M Y kusos)+ 3 fDdx'd K (k53,5 Veglo) | x ' ki ss,s0 Y ¥(x ' K, s),52)=0 . (2.14)
S S
The finite domain of integration D is set by covariant Fock-space regularization [9]:
2412
mg+ki
<A24+4m?2 , (2.15)
x(1—x) mE

with given cutoff scale A. Combined with Eq. (2.7) we shall speak of this equation as the “light-cone Tamm-Dancoff”

equation.

One has to evaluate the sixteen matrix elements (s,,s,|Vgls,,s,) for the different helicity combinations in terms of
the longitudinal and transversal momenta. As an example, we display the helicity-conserving element, i.e.,

(x’kl; T’l(Veﬂ‘(w)lx',kl;T’ l>=_2__

ki

1 k, k| —ik, Ak, k -k, +ik|Ak]

X + (1—x')(1—x)

x'x (1—x")(1—x)

K72
! 28| (2.16)

x(1—x)

+
x'(1—x")  |x —x']
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The denominator reads explicitly
2

L AP D | 1
D=t e=x) (1—x)(1—x")
+(k,—k|)?
"l(x—x') lﬁ- ki k7 —klz
2 1—x 1—x' x'

+x —x'|(0*—w), (2.17)

with A=w* —0=0, according to Eq. (2.7).
D. The light-cone and
the Coulomb Schrédinger equation

The DLCQ matrix equation is approximated by the
Tamm-Dancoff equation, Eq. (2.14). In the nonrelativis-
tic limit [k? <<m} and (x —%)2 << 1], the latter and par-
ticularly Eq. (2.16) is easily converted into the “light-cone
Schrodinger equation”:

2412
mF+kl
x(1—x) (x.k,)
8miP(x' k)
2.[ dx'd’k] 2 F%z l: 2
2 4mp(x —x")+(k;—k))
=M2¢(x,kl)
(2.18)

as given in Ref. [6]. One should note, however, that this
equation is kind of a hybrid since the nonrelativistic limit
is taken only in the potential energy. Therefore, it cannot
yield the precise Bohr spectrum. Being merely of numer-
ical interest, one may ask, for example, how much it devi-
ates. This was not done before. When the nonrelativistic
limit is taken consistently by replacing the longitudinal-

momentum fraction with a “parallel momentum”
k“52mp(x —1), collecting the momenta into a three-
vector k= (kj,kl) substituting the kinetic energy
(mF+k2)/x l—x) by 4m}~+4k2, and using the

definition M*=4m}+4myE, one arrives straightforward-
ly at the usual Coulomb Schrodinger equation in momen-
tum space: i.e.,

kZ

2m, f
including the correct reduced mass m,=mg/2. Fock
space regularization converts itself into a three-
momentum cutoff; i.e., the domain of integration D is
given by k2 < A?/4.

The nonrelativistic equations will be studied on their
own merit, with the expected results. But they approxi-
mate the full equation only for small a. As will be seen
below, the solutions start to become numerically stable as
a function of A only when the latter is a multiple of the
Bohr momentum, or when A=Cmga with say C~3.
This leads to the inequality |k| <1A <<mp, and thus to

the condition a <<2 /3. For the value a=0.3 used below,
the condition is violated.

—S k) =Eyk), (2.19)

k kl )2
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E. Recalling the analytical results

Which results should one expect? In an expansion up
to order a*, the singlet and the triplet mass (excluding an-
nihilation) is given by [11]

M,=2—1a’(1+8a?)
and (2.20)
M,=2—la*(1-La?),

respectively, where (as in the following) masses are given
in units of the physical electron mass. Rather than deal-
ing with the directly calculated invariant masses squared,
we shall tabulate below the singlet and triplet binding
coefficients B, as for example, defined by
B,=4(2—M,)/a*. For a=1/137, the numerical value is
very close to 1. Even for a=0.3 they differ only little,
ie, B;=1.118 and B,=0.998. The singlet to triplet
mass difference will be given in the form of the hyperfine
coefficient Cyc=(M,—M,)/a*. The Fermi value of the
hyperfine coefficient is then (Cy¢)gemi =+, independent of
a. Bodwin, Yennie, and Gregorio [12] summarize the
analytical work on the hyperfine shift in positronium by

Cpe= §(+§)-%(1n2+'§)

1
2

+%azln% +Ka?+K'a® | . 2.21)
The term 1 is set in parentheses since it originates from
the photon annihilation term. Not much is known about
K’, except that it is stabilized by a lna term; it is set to
zero. The impact of the coefficient K is very small; its nu-
merical value [12] is K =+0.427. Eq. (2.21) predicts
therefore the values C;;=0.333 for a=- and
Chf=0'257 for a=0.3.

III. SOLVING NUMERICALLY THE COULOMB
EQUATIONS IN MOMENTUM SPACE

Investigating the bound-state problem for QED one is
confronted sooner or later with the nonrelativistic
Coulomb problem. Since its analytical solutions are
known precisely, one might wish to use them for testing
and optimizing the computational methods, when trying
to solve the momentum-space equation numerically on its
own merit. Momentum-space [21] approaches have no
difficulty with the center-of-mass problem, and seem to
be a powerful tool for solving, for example, the many-
body problem (as done for one space dimension [22]) for
an arbitrary particle number.

A. The Coulomb singularity

For simplicity, the problem is reduced to treating the
rotationally invariant s states. Integrating over the angu-
lar variables, Eq. (2.19) gets, with p = k|,
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2 ’ "2
» a o p—p

p (p
(3.1)

One is faced with a Fredholm integral equation of the
second kind. If the kernel is continuous, the problem can
also be solved numerically with the so-called Nystrgm
method [23,24]. This means that one evaluates the in-
tegrals with Gaussian quadratures [25] and considers the
whole equation at the abscissa points p =p; to get a
finite-dimensional eigenvalue problem. Using Bohr units
(note: dim[E]=Ry =m,c*a?/2) the integral equation
becomes a matrix equation, i.e.,

N,p, n (pi—p;)

y¢ p)=E¥(p;) (3.2)

2 1 J
Pi¢(Pi)+; 2o

j-] pl (

with o' as the Gaussian weights.

It is obvious that the procedure fails in p;=p;, since
the diagonal matrix element of the interaction is not
defined. The origin of this difficulty can be traced to the
Coulomb singularity at k=k’ in Eq. (2.19). One way of
regularizing the equation is to omit simply the diagonal
element, i.e., to omit the contribution j =i in the sum of
Eq. (3.2). A physical argument could be that the point
k=k’ corresponds to the exchange of a photon with
spacelike momentum zero. But treating the equation this
way, one gets an amazingly poor convergence as a func-
tion of N, the number of integration points included.
This is illustrated in Fig. 4, where the convergence to the
exact eigenvalues E, = —1/n? is virtually absent. Even
for a value as large as N =128 the discrepancy of the
lowest eigenvalues amounts to roughly 15%, as can be
seen from Table I. The poor convergence is not caused
primarily by the infinite range of the Coulomb potential
(or by the zero mass of the photon). Actually, we have
done the same type of calculations with a finite photon
mass. The diagonal element becomes then finite and well
defined, but convergence is not dramatically improved.
One has to conclude that the poor convergence cannot
have a physical, but must have a mathematical reason.

B. The remedy: Include counterterms

To specify reasonable diagonal elements the integrabili-
ty of the Coulomb potential can be used. One adds two
terms in Eq. (3.2) which cancel each other in the continu-
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FIG. 4. The eigenvalues of the s states for the Coulomb
Schrodinger equation vs the number of integration points N.
No measures are taken for the Coulomb singularity. Note the
very slow convergence of the bound states with increasing N.

um limit. One of them contains an integral of exactly the
same type as before but with the wave function taken at
constant abscissa points p; and with an additional conver-
gence generating function g(p,p"), satisfying g(p,p)=1.
The other one is just the discretization of that integral,;
thus,

1 X mbi (p, —p;)
2 1 J J
piv(p)+ . j§1 j i —In (p; )2 IIJ(PJ
1"’ wPi ( p)
j= 13
(p —p’)2
+— fDldP'L —(ﬁg(PnP') Y(p;)

=Ed(p;) . (.3

According to the known ground-state function, one
chooses

(1+p?)?
(1 +p 2 )2
Now, because of the opposite sign, the singularity drops

out of the sums. The remaining integral will be evaluated
analytically, with the result —m(1+p?). It does not de-

glp,p')= (3.4)

TABLE I. Lowest bound states of the nonrelativistic Coulomb potential ¥ = —a/r. The energy lev-
els are given in units of mc2a?/2 and the number of integration points is N = 128.

Equation (3.2) A=10 A= Exact n
—0.8546 —0.9970 —1.0000 —1.0000 1
—0.1875 —0.2496 —0.2500 —0.2500 2
—0.0694 —0.1110 —0.1111 —0.1111 3
—0.0309 —0.0625 —0.0625 —0.0625 4
—0.0146 —0.0400 —0.0400 —0.0400 5
—0.0068 —0.0278 —0.0278 —0.0278 6
—0.0028 —0.0204 —0.0204 —0.0204 7
—0.0009 —0.0157 —0.0157 —0.0156 8
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pend on the wave function ¢ and the occurrent singulari-
ties are irrelevant. One should emphasize that the analyt-
ical integrability of the integral is most important.
Evaluating it numerically should be done with high pre-
cision. In practice it is sufficient to integrate p’ over a
finite interval [0,A]. When the regulator A is sufficiently
large (A = 10), the impact of the convergence generating
function g(p,p’) is negligible; i.e., it suffices to choose
g(p,p')=1. For completeness we mention that after sub-
stituting ¥(p;)=4(p;)/V w,p; the Hamiltonian will be
symmetric.

The reason why the trick works becomes obvious if one
looks at the integrand of the discretized integral in the
neighborhood of the singularity p =p": i.e.,

2
Fp.p)=[9p) —9(p) in LB
(p+p")
There, the function f (p,p’) can be extended continuously
around f(p,p)=0. Figure 5 demonstrates by way of ex-
ample that the function is smooth over the whole domain
of integration, as opposed to the case when the counter-
term is not included. It is well known that integral ap-
proximations by Gaussian quadratures are more efficient
the smoother the functions are. The basic idea of intro-
ducing a counterterm is to account for this fact.

For completeness one should mention that the same
method was applied before by Hardekopf and Sucher [21]
to relativistic problems (for equal-time quantization), and
also that a different method of treating the singularity
had been suggested [26], the so-called Galerkin method.

(3.5)

C. Comparison of methods

The results of diagonalizing the Hamiltonian matrix of
dimension N =128 are shown in Table I. The numbers in
column 1 are obtained solving Eq. (3.2) with a momen-
tum cutoff A=10. The third one figures the energies won
with the convergence generating function g(p,p’) as
defined by Eq. (3.4). In column 2 we list the results ob-

f(p,p") | LA AL B B B
0.0 —
-10— —
F -
- l 1 1 1 1 l 1 1 1 1 ,
20 0.0 0.5 o 1.0

FIG. 5. The quadratic singularity of the integrand, plotted vs
p'. Momenta are given in units of the Bohr momentum
pr=am,. The lower curve represents the integrand at p =0.4
without, and the upper curve with the counterterm included, re-
spectively. Note the smooth behavior of the upper as opposed

to the singular structure in the lower curve.
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tained by a finite interval D,=[0,A], with A=10 and
g(p,p')=1. In all of the cases the integral equation was
transformed before discretization by means of the substi-
tution h(p)=1/(1+p). Thus, the density of abscissa
points is increased near the origin. Legendre polynomials
in Gaussian quadratures have been used for evaluating
the numerical integrations.

The first column should emphasize the insufficiency of
solving Eq. (3.2) directly, as opposed to columns 2 and 3
when numerical counterterms are included. In fact,
when plotting the eigenvalues as a function of N as done
in Fig. 6, one observes an amazing independence of the
order of Gaussian quadratures. Already for a 5X5 ma-
trix, the lowest eigenvalues are reproduced quantitative-
ly, and the fact remains when having N significantly in-
creased. We do not know of any other numerical method
which combines comparably accuracy with efficiency.

We should mention that the ground-state energy in
A= is exact because of our special choice of the con-
vergence generating function g (p,p’). Therefore only the
second (or any higher) eigenvalue should be taken as a
measure of convergence. The results for A=10 show
how convenient in practice the restriction to a finite
domain of integration is. The necessity of choosing large
upper bounds is substituted by the slow decrease of the
ground-state function. Increasing the cutoff A, the com-
puted eigenvalues converge rather fast against the exact
values. Setting A=100 the numbers in the second and
third column in Table I become identical (for equal N).

The higher the energy of the (s) states, the more nodes
are in the wave functions, and it should be no surprise
that more points are needed to reproduce them. This is
illustrated in Fig. 7, where it is shown also that the (s)
wave functions ¢, <1/[(1/n%)+p?]* are reproduced
most accurately.

Concluding one should state that the Coulomb singu-
larity is present always when working in a momentum

_} 1 T T T [ 1 T T T l 1 1
L N
[ M

-05 —[ —

o TR R R SR RS N R

0
50 N 100

FIG. 6. The eigenvalues of the s states for the Coulomb
Schrédinger equation vs the number of integration points
N =2[2]128. Calculations including the Coulomb counter term
are done for A=10. Note that fast convergence with N, and
that a 10X 10 matrix (N =10) suffices to calculate to the lowest
eigenvalues reliably.
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FIG. 7. The analytic s-state wave functions ¥, (p) are plotted
as solid lines vs the absolute value of the momentum p for the
lowest nodal numbers n =1, 2, and 3. They are compared with
the eigenfunctions as generated numerically for A= 10, and la-
beled by (x), (+), and ), correspondingly. Note the excellent
agreement, although the number of points (and the matrix di-
mension) is only N =32. Note also, that the scale of ¥, and ¥, is
compressed by a factor 10 and 2, respectively.

representation. Coulomb counterterms therefore seem to
be most important to achieve reasonable convergence at
comparatively low numerical resolution.

D. Solving the light-cone Schrodinger equation

The Coulomb singularity is present also in the light-
cone Schrodinger equation. When solving Eq. (2.18) nu-
merically, one uses Gaussian quadratures, and therefore
has to apply the Coulomb trick again. One adds and sub-
tracts a counterterm from the left-hand side (LHS) of the
equation, i.e., [C,.(x,k,)—C_4(x,k,)]¥(x,k, ), whose con-
tinuum part is given by

_ a
C,(x,k )=— py=)
5 8m?
X [ dx'd*k|— . <.
D, dmip(x —x')"+(k|—k,)

(3.6

The discrete part C.; has the same structure, but being
discretized and taken at the very same integration points
as the discretized version of Eq. (2.18). The Coulomb
domain D, must therefore be the same in both terms in
order that they cancel in the continuum limit, but it need
not be identical with the domain defined in Eq. (2.15), as
long as D, C D and D, covering the singularity. In what
follows we shall use A, =A and

D.: (x—x")*+ (k, —ki)*

———5 <R?,
¢ Al+ami

(3.7

defining a sphere with the dimensionless “radius” R
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around the point (x,k,). In order to satisfy D, CD,R de-
pends itself on x and k?: i.e.,

172 172

AZ
AZ+4mi

ki

R= N —
P A t4mp

1
2
(3.8)

The three-dimensional integral can be evaluated analyti-
cally: i.e.,

g am2 |12
a = F
C.(x,k)=——m2R(xk,) [1+
o(x,k;) M (x,k;) A2 ]
A AV A2 +4am}
X1In L (3.9)

A~V A2 +4m}

More technical details for solving the integral equations
are given below. As displayed in Fig. 8, the numerical
spectra of the light-cone Schrodinger equation converge
rapidly to something like the Bohr spectrum with the in-
creasing number of mesh points. This was not the case
without the Coulomb counterterms; in fact, convergence
if any was even worse than the one displayed in Fig. 4 for
the nonrelativistic equation. The corresponding calcula-
tions for varying A are compiled in Table II. The extra-
polation to A— o is done by a Padé approximation. The
small but significant deviation of the binding coefficient
from the Bohr value 1.0 in the limit A— o is no numeri-
cal effect but attributed to the fact that the light-cone
Schrodinger equation is similar to but not identical with
the Coulomb Schrodinger equation. In particular it is
not rotationally invariant and therefore the 2s and 2p
states are not completely degenerate (see Fig. 8).

|f||||l||||l|ll:

[TTTT

+4.05— ]
M2 T ]
400 .
395 .
3.90(- .
3'85_llllllll|IlI[llLLLlIIJ

1 5 9 13 17N2‘I

FIG. 8. The invariant mass squared eigenvalues of the light-
cone Schrodinger equation vs the number of integrations points
N. Note the good convergence with N towards the nonrelativis-
tic values. Calculations are done for J,=0, A=m, and a=0.3.
The analytic Coulomb counter term is included.
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TABLE II. The binding coefficient for the light-cone Schrddinger equation. The binding coefficient
B, is given as a function of A for the lowest eigenvalue corresponding to the 1s state. Masses are in
units of mp. Calculations are done for a=0.3 with N =15 integration points. The extrapolation to
A— o was done with the Padé approximation f(A)=(c,+c¢,/A)/(1+c¢;/A) using the values A=1.0,

3.0, and 5.0.
A 1.0 2.0 3.0 4.0 5.0 Padé
B, 0.9355 0.9757 0.9813 0.9827 0.9851 0.9896

IV. SOLVING NUMERICALLY THE TAMM-DANCOFF
EQUATION

Dealing with the model of including only one dynami-
cal photon one faces a whole sequence of approximations:
DLCQ matrix equation = Tamm-Dancoff equation =
light-cone  Schrodinger equation = Coulomb
Schrodinger equation. All of these approximate treat-
ments, have now been investigated numerically. The
solution to the “master equation” (the matrix equation) is
given separately [16]. The solutions to the Coulomb and
to the light-cone Schrodinger equation is given above.
The solution to Tamm-Dancoff equation will be present-
ed below. For all of them hold that the numerical effort
is remarkably small when the numerical methods are op-
timized to the particular problem. A particular aspect of
optimalization is the inclusion of symmetries.

1 o
27 Yo

In a way, one replaces the azimuthal angle ¢ by the pro-
jection of the orbital angular momentum L,=0,*1, ...
as a variable, but neither L, nor S,=s,+s; is a good
quantum number. The explicit expressions for the matrix
elements of ¥4 are derived straightforwardly from those
in Tables VII-IX. For the case J, =0, they are compiled
in Table IV. (See also Table III.)

The point symmetries. The Lagrangian is also invariant
under the operation of charge conjugation @, parity P,
and time reversal T. In the present approach, they are
associated with unitary or antiunitary [27] matrices U or

—iL,p 27 +iL!g' ~
z ’ z . IR ool o1\ — . ’ 1o
dope fo do'e X,k @350, 5, | Veglx' kL, @'550,50 ) =(x,ky,L38,,5,| Veglx', k' ,L;s,,5.) .

A. Implementing the symmetries

Not all of the approaches to gauge field theory respect
the elementary symmetries of the Lagrangian, by the na-
ture of their construction. The exact Lagrangian sym-
metries are however not violated by DLCQ or the above
model, not even by the ad hoc assumptions.

The rotational symmetry. The Lagrangian is invariant
under an arbitrary rotation of the coordinate system in
the x-y plane, related to an exact quantum number, the
projection of the total angular momentum J,. Introduc-
ing the coordinates (k,), =k cosp and (k,), =k sing,
one can Fourier transform the continuum version of the
Tamm-Dancoff Eq. (2.14), and in particular the effective
potential V4, according to

(4.1)

[

V, respectively.

The light-cone Hamiltonian is invariant under charge
conjugation. One can thus construct eigenstates of
charge conjugation, with eigenvalues me==x1. The
creation operators of the electrons b*, positrons d T, and
photons a T transform like [28]

Uob(x,k ) Uz '=d](x,k)) ,
Ueal(x,k)Us'=—al(xk,),
Uedl(x,k UG =b}(x,k,),

(4.2)

TABLE III. Spectroscopic notation and discrete symmetries. The relation with 74, =PT =P(—1)’

and 7= Cis given explicitly for J,=0.

ZS+1LJ JPC T Te 25+1LJ JPC T Te
1So o+ -1 +1 38, 1=~ +1 -1
3Py ot+ +1 +1 D, 17~ +1 -1
°P, 1+ -1 +1 ’D, 27° -1 -1
’P, 2%+ +1 +1 ’D; 37° +1 -1
'P, 1t -1 -1 'D, 2-" -1 +1
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where the fermions carry spin s =41, and the bosons
helicity o ==x1. The P-space wave function reads

W (x,Kp,8.,5,)b) (xk)d) (1—x,—k)I0) . 4.3)

There are two eigenstates of €: i.e.,

lme==1) =T/1~5—\Peg(x,kl,se,sg (bd] Fbld])l0),

(4.4)

if the quantum numbers of the electron and the positron
differ. When they are the same, the wave function (4.3) is
an eigenstate of @ with eigenvalue 7= — 1.

Neither 7 nor T is an explicit symmetry of the light-
cone Hamiltonian, because 7 and 7 do not leave the
x ¥ =0 plane invariant. Parity interchanges x * and x ~.
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But exp(—iwJ3)PT, for example, or exp(—inJ,)P are
exact symmetries [5,16,29]. In the sequel, we shall use
the combined symmetry # =77, and for having no
better word, we call it the handedness. Associating with
Ff the antiunitary matrix Vg =Up® V¢, the parton
operators transform according to

Vbl (x,k )V =(—11 "1 (xk,),
H 1 H s 1

Vyal (xk)Vi'=—a' (x,k)),

Vaudl(x,k )V ' =(—10*"2q" (x k).

Note that the handedness just reverts the spins (or helici-
ties) of all partons, up to a phase factor which depends on
the conventions [27,28]. The eigenfunctions of # with ei-
genvalues 75 ==11 are easily constructed:

TABLE IV. The matrix elements of the effective interaction for J, =0.

77' ~
;(x,kl,Jz,sl,s2| Verlo®)|x'k|,J,,s1,55)

Helicity factors

N (x'—x)?
m ) , 6 .8 ,
Fl—x")x"(1—x)x TSy SpSyp Sp T
—mg 1 5 LB+kll_x A 5 , 8 .8
kl 1—x S9:5) SpSy TShS
1 , 1—x
tmp—=s, |77 Btk A 5 . & 8 )
x X ki I—x SpSy S TSy TSy
tmp—— s | LBk, X 4 8 5
Fa—xn1—x)"" |k, Lx sy sy O—spush Ospst
tmp—— s | -L Bk X 4 8 8
Fla—x1—x) ™! ki tx! sp7sy spsy sps)
1 1 ki k'
— A4 20 - 4+ 3} ) ) ’
Me xx'  (1—x)(1—x") x(1—x) x'"(1—x") 52052 S TS Sps)
1
—A——————k k| § , & 5 |,
xx'(1=x)(1=x") "+ spsh Ospsh Osps)
+B | e 8 .8 8
xx'  (1—x)(1—x") 59055 Sy Sy sps)
1 1 1
+B|—+ m2 5 , 8 5
xx' (1=x)1—=x") | kk, " © spesy Ospsh Osps)
Abbreviations
1
A-_———‘—; B=L(1+0A),
Via*—4k3k? ’
= — e E L 1 —(k2+k"?
@ X e T (1= | REHED)
NL S 1 kil 1
T T'l—x’ T2 |x 1=
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TABLE V. The singlet binding and the hyperfine coefficient for the light-cone Tamm-Dancoff equa-
tion as functions of A and a. Calculations were done with N =15 integration points. For convenience
they are extrapolated to A— o with a Padé functional f(A)=(c;+c¢,/A)/(1+c3/A) using the values

A=1.0, 3.0, and 5.0.

a=-L

a= 13—0 1 137
A BS B, Chf A—3—(; Bs B, Chf
1.0 1.0486 0.9999 0.1354 1.0 0.9328 0.9328 0.1028
2.0 1.1797 1.0752 0.2903 2.0 0.9872 0.9871 0.1970
3.0 1.2344 1.0948 0.3876 3.0 0.9955 0.9955 0.2393
4.0 1.2681 1.1043 0.4550 4.0 0.9980 0.9979 0.2617
5.0 1.2927 1.1105 0.5062 5.0 0.9990 0.9989 0.2753
6.0 1.3122 1.1151 0.5475 6.0 0.9996 0.9996 0.2844
7.0 1.3285 1.1189 0.5822 7.0 1.0001 1.0000 0.2908
8.0 1.3426 1.1222 0.6122 8.0 1.0005 1.0004 0.2956
9.0 1.3552 1.1252 0.6389 9.0 1.0008 1.0008 0.2993
10.0 1.3666 1.1279 0.6630 10.0 1.0012 1.0012 0.3022
Padé 1.4046 1.1323 0.8356 Padé 1.0029 1.0028 0.3371
1
=1y = —=V (x k505, s, (x,kl)d;;( 1—x,—k,)[0)
( 1 )sz +sE
+-— Wr (k5,506 (xk)d (1—x,—k)[0) 4.6)

for the case of the P-space wave function.

Relation to spectroscopic notation. We shall discuss the
results in terms of the spectroscopic notation, using J, L,
and S, the quantum numbers of total, orbital, and spin
angular momentum, respectively. Adopting a particular
time-reversal convention [30] Vld,J,)
=(—1) J‘|J,—Jz ), one can relate them to the above
quantum numbers. A compilation for the first few cases
is given in Table III for J,=0. In the sequel the integral

equation is solved only for the J, =0 subspace, with spe-
cial emphasis to the ground and the first excited state,
i.e., to parapositronium (11S;) and to orthopositronium
(138 1), respectively.

Using the rotational symmetry the dimensionality of
the problem reduces from 3 to 2, i.e., one saves a factor
10-30 in the dimension of the Hamiltonian, depending
on the number of integration points. The point sym-
metries provide another factor of 4. Since the computa-

TABLE VI. The dependence of binding energies on the cutoff A. Calculations were done for the
light-cone Tamm-Dancoff equation with the modified interaction V.4 using 41 integration points in u
and 11 points in cosf. The nonrelativistic (NR) values are added for convenience. Note the improved

convergence as compared to Table V.

a=-L

. a= % i 137

A B, B, Chr A B, B, Cir
1.0 1.0816 1.0047 0.2135 1.0 0.987 645 0.987 603 0.1972
2.0 1.1239 1.0157 0.3005 2.0 0.998 186 0.998 130 0.2622
3.0 1.1377 1.0171 0.3351 3.0 0.999437 0.999 376 0.2853
4.0 1.1449 1.0174 0.3539 4.0 0.999 647 0.999 584 0.2968
5.0 1.1494 1.0176 0.3661 5.0 0.999 881 0.999 816 0.3040
6.0 1.1526 1.0177 0.3746 6.0 0.999 936 0.999 871 0.3086
7.0 1.1549 1.0178 0.3810 7.0 0.999 966 0.999 899 0.3119
8.0 1.1568 1.0178 0.3861 8.0 0.999 983 0.999916 0.3143
9.0 1.1583 1.0178 0.3902 9.0 0.999 994 0.999 926 0.3164

10.0 1.1595 1.0178 0.3936 10.0 1.000 001 0.999 933 0.3178

NR 1.1181 0.9981 0.3333 NR 1.000070 0.999 999 0.3333
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TABLE VII. The matrix elements of the vertex interaction V. The coupling constant a is hidden in
B=8ma/(P*Q). In the continuum limit one replaces sums by integrals and 8 by B=C,;B=a/27*. The
transverse polarization vector is defined as €,(A)=(—AX—i9)/V2.

Graph Matrix Element

= Momentum X Helicity

:2 Vyrge(1;2,3)
1

3

VB it 3, 8
B A am)-[(&),- (2),) ok o
+v28 71;: €1(A3) - [(E;")s - (%)1] 6+A,\', 5—'\,\’1

V=23 a0 (b1b2a3 - dIdWS) Vo—gg(1;2,3)

+ qu,q:,q, (a;b;bl - a;d;dl) Vq"i.,qg(1;2,3)

tional time for matrix diagonalization increases like N°
with the matrix dimension N, one reduces the effort by a
factor ~ 10° without any loss of accuracy.

B. The spectrum and the wave function

Instead of x,k, (and @) one preferably uses [20] kind of
spherical momentum coordinates u, 0 as defined by

1 LB cosf

k,=psinf and x =

Since the invariant mass is (m}+k?)/x(1—x)
=d4m}E+4u?, u can be interpreted as an off-shell mass, or
as a generalization of the nonrelativistic momentum [k|.
Fock-space regularization translates then into u=<A/2,
see also Eqgs. (2.15) and (2.19). Since the integrals are

TABLE VIII. The matrix elements of the contraction terms
C. The coupling constant « is hidden in f=8ma/(P*Q) . In
the continuum limit one replaces sums by integrals and S by

BE CLBZQ/ZTI'Z.

Type Graph Matrix Element
Clq1) 1a COlq)=BL T,z &
1
| s T
1

C =Y, (blby +dld1) C(q1)

evaluated by Gaussian quadratures, x4 and cosé are to be
taken at discrete longitudinal and angular integration
points, respectively. If not mentioned otherwise, the
same number N is taken in either direction.

Which Coulomb counterterm should be used? One
might conjecture that the residue at the Coulomb singu-
larity depends sufficiently weakly on the off-shell momen-
ta in order to use the analytical expression, Eq. (3.9). In
practice, however, this counterterm turns out insufficient,
as shown in Fig. 9. Although one recognizes the singlet
and triplet are correct by order of magnitude, one ob-
serves an unpleasant sensitivity to N. Particularly in view
of the high numerical precision required, one has to
resort to the full counterterm. Its continuum part is

defined by

1’[‘05'_| ITII|1[||I||]IIIIX|
C \ \ N _

M2 \ Gk ¥ Ny |

4.00 \ ) ] —

3.95 ﬁ -

3.90__ ft_—‘_—h_‘—‘-*‘-ﬁ—‘_

385 ) il T

1 5 9 13 17 21

N
FIG. 9. The invariant mass squared eigenvalues of the
Tamm-Dancoff equation vs the number of integration points N.
Note the reasonable convergence with N, and the appearance of
the hyperfine splitting. Calculations are done for J,=0,
A=myp, and a=0.3 and with the analytical Coulomb counter-
term for the light-cone Schrddinger equation.
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Ccc(x,kl)=fD dx'd%\(x,k ,L,;5,,5,|Veglx', k1, L};50,5,) .

Unfortunately, the advantage of an analytical expression
fades away. Two of the three integrations can be done
easily by analytical quadratures, but the third one has to
be done numerically with sufficiently high resolution.

The so-obtained spectrum is given in Fig. 10. One
recognizes the appearance of the singlet and triplet state,
as well as the higher parts of the spectrum at roughly the
correct values, and that they approach a stable limit as
functions of the resolution N. The comparatively slow
convergence of the higher states is no surprise, and was
observed already in the much more trivial case of Fig. 6:
Although the wave functions in momentum space are lo-
calized also at x~1 and k, =0, they have more nodal
structures. Consequently, one needs more integration

(4.8)

[

points to account for them.

One should emphasize that the numerical methods are
obviously rather efficient. For example, only a 25X25
matrix (for N =5) is needed to render the singlet and the
triplet state reasonably stable as functions of N. This cor-
responds to only two transverse-momentum points. One
should emphasize also that these calculations add evi-
dence to the requirement that the longitudinal and trans-
verse continuum limit of DLCQ exists at all.

How sensitive are the results to the value of the cutoff?
Do the numerical results converge with A, and do they
agree with the analytical predictions? These questions
cannot be investigated at the comparatively rough scale
of a figure such as Fig. 10. The binding coefficients for

TABLE IX. The matrix elements of the seagull interaction S. The coupling constant « is hidden in
B=8ma/(P*Q). In the continuum limit one replaces sums by integrals and B by B=C,B=a /272

Type Graph Matrix Element | Momentum x Helicity Factor
S1 12:3 Si-a(1,2%3,4) | B ity 63 &3
2 4
S3 123 Su(1L23,9) | Bty &Y &)
2 4
sl Az
9:"‘44(1 2;3,4) -8 (zx-l?zz;’ 6—»\1 6-’\»{3

SS ] —=—rA~~d

qn—’qn(l 2;3,4)| B z;inv;lzT.

4 | 85 es(1,2;3,4)

B 6 5

s <A
5 6 6%

B wim e

,5'7 1—=—F"n~~3

——

2—.—-—"\/\/\4

Sqd—'“(l’ 2;3,4)

b
6—)\; 6%, 6 s

ﬂ 1
T1—T3 4/T3Z4

+ eq 142,93,q4 (b

S =3 gu 00,0504 (blb;b3b4 + blblbzbl) 51(1,2;3,4)
+ Eq;.q:.!h,qq bId;b3d4 53(112; 3, 4)
1bsaq + dlaldsas) Ss(1,2;3,4)

+ th‘h-ds.q‘ (bld;a:"“ + a’Ia;dzbl) 57(172; 37 4)
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FIG. 10. The invariant mass squared eigenvalues of the
Tamm-Dancoff equation vs the number of integration points N.
Note the good convergence with N, and the appearance of the
hyperfine splitting. Calculations are done for J,=0, A=my,
and a=0.3. The numerically integrated Coulomb counterterm
for the Tamm-Dancoff equation is included.

the singlet and triplet state are therefore tabulated in
Table V for ten values of A and two values of «, together
with the hyperfine coefficient.

For a= 15, one should emphasize first that the calcu-
lated mass square deviates extremely little from the free
value 4my. A reliable extraction of the data in Table V
requires therefore a numerical accuracy with ten
significant figures. The fact that the calculations do not
become numerically unstable as functions of A is taken as
a valuable indicator of the overall numerical accuracy of
the codes. Second, one observes with these numbers a
similar behavior as for the nonrelativistic case in Table I.
One needs a couple of Bohr momenta, i.e., A=Cam,, be-
fore the numbers begin to converge. With increasing A
however, the typical relativistic effects become important.
One cannot separate these ones from the others, and one
observes a very small but significant dependence on the
increasing cutoff. Nevertheless, the calculated hyperfine
shift is reasonably in between the Fermi and the Bodwin
values.

For the very large value of the coupling constant
a= 3, the numbers in Table V agree with the analytical
predictions by order of magnitude—but not much more.
They agree less than, for example, the recent results of
Koniuk and co-workers [31,32] for the very same model
but in equal usual time quantization. The dependence of
the results on A is much more accentuated than for the
small value of a. The present calculation overbinds posi-
tronium, since one gets numerically B, ~1.40 instead of
the predicted B,=1.118, and similarly for the triplet.
Also the hyperfine shift is larger than predicted. In order
to guide the eye, the table includes a Padé extrapolation,
which however is a meaningful concept only when the re-
sults vary like an inverse power of the cutoff.

What is the functional dependence on A? At first, it
might look as if the binding coefficients vary logarithmic-
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ally with the cutoff, i.e., like VInA. But the results are
also consistent with an inverse power law, as found by de-
tailed analysis of the numbers. The problem is related to
the structure of the relativistic interaction, Eq. (2.16). At
fixed values of x,x’, and k,, both the numerator and the
denominator are governed by k%, such that the interac-
tion tends to a constant for sufficiently large values of k.
A logarithmic behavior could thus be understood if the
wave function behaves asymptotically like constu* with a
slope parameter k=—2. In Fig. 11 the wave functions
are displayed for both values of a. Remarkably, the nu-
merical results for the small coupling constant follow al-
most identically the analytic nonrelativistic solution, over
more than six orders of magnitude. The slope parameter
k agrees with the nonrelativistic value k=—4 to within
three relevant figures. Note the contrast with the cou-
pling case. The relativistic effects become obviously more
important since the slope is close to k=—2.5. A loga-
rithmic dependence of the eigenvalues is therefore less
likely, although one cannot exclude positively an even
slower decay at momenta even higher than the large
cutoff A=10mj. The latter is large by all standards, the
minimum of the longitudinal-momentum fraction for this
cutoff is as small as x ;, ~m2/A*~0.01, see Eq. (4.7).
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FIG. 11. The leading component of the singlet wave function
on the Gaussian mesh, i.e., ¥1,(u;,cos0;), is plotted for all in-
tegration points i =1, ...,41 vs the off-shell mass u in units of
the Bohr momentum pB=%mFa. The curves for j=1,...,12
are plotted on top of each other to show a possible deviation
from rotational symmetry. The upper plot shows the results for
the small coupling constant a=1/137 with a cutoff A=30amp.
The straight line corresponds to constu” and has the slope
k= —4. The lower plot shows the results for the large coupling
constant @ =0.3 with a cutoff A=10m. The line has the slope

5

K=—3.
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V. DISCUSSION AND IMPROVEMENTS

On the one hand, the numerical results are not really
discouraging. For the small value of the coupling con-
stant, in fact, they are quite satisfactory. Even for the
large coupling constant ¢=0.3 and the very large cutoff
A=10m the calculations overestimate the binding ener-
gy only by a few percent. On the other hand, their
dependence on the cutoff particularly at strong coupling
is intriguing. What is the origin, and how could it be re-
moved? Unfortunately, the kernel of the integral equa-
tion in light-cone variables is so complicated that we have
been unable to work out the explicit functional depen-
dence of the solutions on A. Perhaps, this would be pos-
sible in perturbative series, but their combination with
bound-state calculations is highly nontrivial [12]. There-
fore, in the present context, one cannot apply procedures
such as the one proposed by Kinoshita and Lepage [33].
They propose to introduce additional classes of operators
subject to vanish in the limit A— o, and to tailor them
at any finite value of A such that they cancel an explicit
dependence on A sufficiently well.

One of the difficulties in interpreting this work is that
the peculiarities of light-cone variables and the model as-
pects are so strong interwoven. We only know with cer-
tainty that we have not solved the model formulated in
Sec. I, i.e., the model with strictly one dynamical pho-
ton. The model with strictly one photon would require to
set the “starting point energy” w equal, or at least ap-
proximately equal, to the eigenvalue w~(4—a?)mp.
Like before [6,7,20,31], this was given up because of an
essential and untractable singularity (0* —w)/|x —x'|D
in the kernel. This singularity vanishes when requiring
ad hoc ¥=o*. But taken at face value, this assumption is
horrible. One replaces a number by a function. That the
same assumption gives the usual Coulomb singularity in
the nonrelativistic approximation is a welcome byprod-
uct, but despite all these advantages, one loses track of
the physical model, unfortunately. What is the physical
model, and how could it be improved? Can it be im-
proved at all?

In order to make progress one should generalize the
model to include two or more dynamical photons, and
then look back on the one-photon case to see perhaps the
difference. As it turns out, this is possible, at least con-
ceptually by means of the projector technique introduced
in Sec. II. The full problem with arbitrarily many pho-
tons can be projected on ee space, leading again to an
effective Hamiltonian. Unfortunately, the complete, par-
ticularly the numerical treatment exceeds the aim and the
length of the present work and will be given in forthcom-
ing work. The following outline might however put the
present work into the right perspective.

A. The effective Hamiltonian for many photons

The definition of projectors Q,, as introduced in Sec. II
is easily generalized to Fock states with »n photons,
n=0,1,...,N. The projector technique can then be
generalized to many photons, exploiting the fact that the
Hamiltonian block matrix H,,. has a pentadiagonal block
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structure. This has not been done so far, and is based on
the observation that the light-cone Hamiltonian [9,10]
cannot change the parton number by more than two.
Consequently, the block matrices H,,. vanish identically
for [n —n'| >2. To remind us of the fact that the vertex
interactions change the parton number always by 1 and
the fork interactions always by 2, we shall choose the no-
tation ¥, , . ,=H, ,,,and F, , . ,=H, ,,. Asan expli-
cit example, consider the block matrix equation for 3
photons:

Hy—o Voi Fp 0 1¥)o

Vo Hj—o Via Fy; l¥)
Fy Va ﬁzz_w Va3 ), -0

0 Fs, Vy Hyu—olll¥)s
(5.1

where we have set Hy; =H;3, V3, =V5,, and ﬁ22 =H,,.
Consider Eq. (5.1) as a set of coupled linear equations. In
analogy with Eq. (2.3), substitute in a first step

[¥)3=(0—Hy3) "Wy, |¢),+(@—Hy;) " 'Fy|¢),.  This
is a special version of the general reduction scheme
|¢>n= 1~ f;'nn—lhp)n—l
o—H,,
1
+———F,, ), 5,
CO'_H,,’,, n,n 21/} n—2
with
- . 1 =
Vn,n+1_Vn,n+1+Fn,n+2 = Vn+2,n+1 >
O—Hpy 425 +2
~ ~ 1 ~
Hn,n:Hn,n+Vn,n+l~*Vn+l,n
w_Hn+1,n+1
1
+Fn,n+2—~_Fn+2,n ’ (5.2)
O~y 42n+2
1
ﬁn,n =Hn,n+Fn,n+2 £ Fn+2,n .
0—H, 1,4,
After one step, one gets thus
Hy—o Vg Fy, [¥)o
V]O ﬁ“—(o ‘712 |¢>1 :0 (5.3)
F20 721 ﬁzz_w |¢>2
Repeating the procedure one arrives sequentially at
ﬁoo_a’ I701 [¥)o
I7'10 H“—w |'/’>1 =0 5.4
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and
Hyl)o=olt), .

Note that Egs. (5.4) and (5.3) are identical with Eq. (5.1).

]
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In fact, Egs. (5.1)—(5.4) are identical with Eq. (2.1) for an
arbitrary N, as can be shown easily by induction.

The general structure of the effective interaction
H.;=H,, is more transparent when omitting the fork
matrices F, momentarily. For N =3 one gets

Hg(o)=Hy+ Vo, 1

(5.5

o—H,;—V, 1
o—Hy—Viy

Obviously, a continued fraction expansion wants to de-
velop, very similar to formal resummations of perturba-
tive series to all orders [34]. For an arbitrary photon
number N, the expansion comes to an end whenever one
hits the combination @ — H yy in the denominator.

One should emphasize that the reduction scheme (5.2)
holds also for the general case when including in addition
any number of e pairs: the light-cone Hamiltonian is
pentadiagonal in the parton number. Equations
(5.2)-(5.4) are therefore another and equivalent way of
writing down the Bethe-Salpeter equation on the light
cone. In principle, a similar reduction scheme could also
be derived for the usual equal-time variables, but due to
the typical vacuum fluctuation terms, the matrix would
have nine block diagonals. The reduction scheme would
be correspondingly more complicated and has not been
worked out so far.

B. Interpreting the ad hoc assumption and the model

Let us now assume to work in a model with two
dynamical fermions (eg), arbitrarily many photons
N — o, but no instantaneous fermions interactions at all.
By definition, all fork interactions are then absent. The
Hamiltonian block matrix is tridiagonal, and the effective
interaction has the structure of a “simple” continued
fraction, in analogy with Eq. (5.5), which is written as

1
C()_H“ —Wll(a))

Hgw)=Hyp+Vy Vio - (5.6)
The definition of the iterated vertex interaction W, (w) is
obvious from a comparison with Eq. (5.5). Combining it
with the instantaneous photon interactions hidden in H,
into an effective interaction U 4(w) in the e€y space, one
rewrites Eq. (5.6) identically as

1

—M}, —Uglo)

H(w)=Hu+ Vg, Vie. (5.7

When comparing this with Eq. (2.4), one realizes that the
higher-photon spaces generate an effective interaction
also in eey space. When one replaces the associated
resolvent according to

1 -~ (5.8)
_—Ueﬂ"(m)

w—M?

eey

0o—H;j,

one substitutes the sum of kinetic and interaction opera-
tors w* and U 4(w), respectively, by the eigenvalue, i.e.,

0*+Uglw)~0*+{(Uglw)) ~o . (5.9)

Contrary to Eq. (2.7) this is at least plausible, and can be
interpreted as resuming the photons to all orders. The
incomprehensive ad hoc substitution w==w* combined
with the one-photon model leads to the same final equa-
tion only formally.

But despite its plausibility, the so-generated effective
interaction seems to be bothered with the fact that the re-
sulting eigenvalues depend on A too strongly. The prob-
lem can be traced to the 1| matrix element given in Eq.
(2.16), i.e., to that part of it which behaves like

”
k)

x'(1—x")

__a 1| Kk
eff,con 217_2 D | x(1—x)

V . (5.10)

For sufficiently large transverse momenta, e.g., for
k| >>mpg and k| >>k, with fixed longitudinal momenta
(x ~x"~1), Veg con tends to —2a/m?, corresponding to a
delta function in configuration space. The larger the
cutoff becomes the more of this term is picked up by the
wave function. How could one eventually account for
this aspect?

One way of avoiding the above asymptotic behavior of
the effective interaction is to change it by hand. One
could substitute the energy denominator in Eq. (2.13) like
D—>D+D*/m},ie.,

D
Veg— Vmod=Vcﬂ$—+52—/_m_§_ . (5.11)

In the vicinity of the Coulomb singularity (D~0), i.e.,
for small momentum transfer, or correspondingly for
large distances, the approximate effective interaction
would practically coincide with V4. Only for relativistic
momentum exchanges, or correspondingly for the very
small distances, the approximate interaction would differ
substantially. But such a procedure is not really satisfac-
tory and we shall pursue another approach in the sequel.

C. Towards a simplified model

One should emphasize that nothing has been solved
when writing down an expansion scheme such as in Egs.
(5.2)—(5.4). The only advantage is to see more clearly
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certain structures, which we want to develop when the
infinite perturbative series are resumed to all orders. The
scheme is however particularly suited for a matrix ap-
proach such as DLQC, since the “denominators” are the
inverses of finite-dimensional matrices. In principle, an
expression such as Eq. (5.5) is thus well defined.

Consider the effective interaction in Q-space, as it ap-
pears in the denominator of Eq. (5.6). It connects the eey
states among each other by finite matrix elements, which
for simplicity will be represented graphically, below. The
instantaneous interactions contained in H; have already
been illustrated in Fig. 5. Some of the iterated vertex in-
teractions W, are given in Fig. 12. They arise due to the
scattering into the next higher, eeyy space. In principle,
the Q-space matrix is therefore nondiagonal. Construc-
tions such as Eq. (5.9) must be interpreted as a diagonali-
zation by brute force. In another approximation scheme,
one expands the Q-space resolvent into a series. Restrict-
ing to the first nontrivial order, this generates matrix ele-
ments in P-space such as those in Fig. 13. Graphs such
as 13(a) or 13(b) are directly related to graph 12(a): the
Q-space photon plays the role of a spectator. Opposed to
this, the photon is a participant in graph 13(c) related to
graph 12(b), since it is absorbed and reemitted in Q-space.
Graphs such as 13(d) originate from the instantaneous
fermion interaction in Q-space, while a graph such as
13(e) is generated by the iterated fork interaction
Fo(w—H,,) 'F,, in Eq. (5.2). All of them have “two
photons in flight.” Finally, graph 13(f) referring to the
first iteration of the effective interaction in P-space is
added to be complete in the terms of order a?.

As will be shown elsewhere [35] for the on-shell
scattering amplitude, each individual graph in Fig. 13
diverges logarithmically due to the k, integration. Par-
ticularly, the logarithmic divergence in the partial
scattering amplitude corresponding to graph 13(f) is
caused by the term corresponding to Vg .on» Eq. (5.10).
But when all terms of second order are summed up con-
sistently, i.e., when summing graphs 13(c)-13(f) in all
time orderings and in Feynman gauge, the logarithmic
singularities cancel each other. This result had to be ex-
pected since the second-order Feynman amplitude for ee
scattering has no logarithmic divergencies. Nevertheless,
the result is important since a complete analysis of the
scattering amplitude up to second order had not been
given thus far in light-cone coordinates, particularly not
for a Hamiltonian approach, and allows us to propose the
following procedure.

To account for retardation effects in an approximate
way, we propose to simply omit the worrisome piece, and

(a) (b)

FIG. 12. The Q-space matrix elements generated by the
iterated vertex interaction W, are given in diagrammatical
form, see discussion in the text.
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FIG. 13. The P-space matrix elements in an expansion of the
QO-space resolvent are given in diagrammatical form for the
graphs of order a?.

to replace the effective interaction by the modified
effective interaction according to
Vet—=Vmoa =Ver— V.

eff,conasl,—s2 ’

(5.12)

with Vg .., given by Eq. (5.10). The corresponding nu-
merical values are presented in Table VI. As expected,
they differ only little from Table V for the small coupling
constant; in fact, they agree even better with the nonrela-
tivistic predictions. We have verified that the extrapola-
tion of the hyperfine coefficient to A— oo either by a fit
or by a Padé functional yields the value 0.331. For the
strong-coupling case, however, the results depend much
less on A, and are in reasonable agreement with predic-
tion. Also the wave function looks reasonable. At
sufficiently large momenta, the slope is in between the
values k= —4 and k= —2.5, as was displayed in Fig. 11.

Apart from being very simple, the procedure can be
generalized to higher orders of perturbation theory. For
example, when formulating the interaction perturbatively
in the next higher order (~a?), including all graphs as
displayed in Figs. 13(a)-13(e), one includes first Vg ..,
again and subtracts the piece which in order a? tends to a
constant. More details will be given in Ref. [35]. The
procedure is also applicable in an explicit matrix ap-
proach: One adds the corresponding counterterm in the
last sector of the effective interaction which is explicitly
included. Finally, one should emphasize that the present
approach produces a wave function at all for an interac-
tion which generates the correct hyperfine splitting; non-
relativistically, for example, a solution of a Schrodinger
equation including a Serber-Uhling term would not be
stable.

D. Application to quantum chromodynamics

In principle one could apply the same model also to
quantum chromodynamics. Including only one pair of
quark (gg), arbitrarily many gluons g, omitting ad hoc all
instantaneous fermion interactions, and replacing the
propagator in the manner of Eq. (5.8), one would end up
with the same formal equations, except that the coupling
constant a would have to be replaced by $a. The factor
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4 arises by the summation over the colors n,=1,2,3, and
would have to be replaced by (n2—1)/2n, for general
non-Abelian theory. It is obvious, that the model misses
the very important aspect of confinement, and therefore
might be of relevance at most for the case of heavy quar-
konia. But even when disregarding the problems met al-
ready for QED in the above treatment, one should raise
the question: How is it possible that the simplest model
gives reasonable answers for the Abelian, but fails already
in the lowest order of approximation for the non-Abelian
theory? One realizes quickly that Eq. (5.9) by nature of
its construction accounts at most for the electron posi-
tron, or more generally for the quark-antiquark kinetic
energy and interaction, but certainly not for the gluon-
gluon interactions. Therefore, the present procedure can-
not be taken over to QCD without major modification.

VI. SUMMARY

As a particular example of applying the method of
“discretized light-cone quantization” to quantum field
theory in three space and one time dimension, we consid-
er quantum electrodynamics and study the bound-state
problem for positronium, particularly its Bohr-
Sommerfeld aspects including the correct retardation and
recoil structure.

The aim of the present work is rather modest. We
want to see whether the continuum limit of discretized
light-cone quantization exists, whether or not the numeri-
cal solutions are independent of formal parameters, and
to which extent the solutions agree with available analyti-
cal work. Last but not least, we would like to provide the
actual numbers. The aim is thus the technical question
whether the method of DLCQ has a chance at all when
applied to more difficult problems than positronium.

Summarizing the approach, the original DLCQ matrix
equation is mapped identically onto another problem by a
projector method. The so-obtained effective matrix equa-
tion is converted to an integral equation by going to the
continuum limits. After two simplifying ad hoc assump-
tions, see Eq. (2.7), one arrives at the light-cone analogue
of the Tamm-Dancoff equation, Eq. (2.14). The equation
and the ad hoc assumptions are not particularly new; they
had been used before in different contexts [6,13,14,15,19].
The main contribution of this work is the numerical solu-
tion of the Tamm-Dancoff equation in light-cone momen-
ta, which has not been done so far, and its interpretation
as an effective resummation to all orders. In addition,
two other equations and their numerical solutions are
studied in this work, the so-called light-cone Schrodinger
equation and the usual Coulomb Schrédinger equation in
momentum space, which both can be considered as non-
relativistic approximations to the light-cone Tamm-
Dancoff equation.

One should emphasize the effectivity of the numerical
side of the approach. Most of the results have been gen-
erated by diagonalizing matrices as small as 225X225.
The so-called Coulomb counterterms which are applied
here for the first time to gauge theory in light-cone coor-
dinates are particularly important. They speed up con-
vergence whenever one investigates numerically
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Coulomb-like problems in the momentum representation
and override some of our earlier pessimistic conclusions
[9]. The numerical methods are also unexpectedly accu-
rate. In order to extract reliably the hyperfine shift one
needs at least ten significant figures.

Summarizing the numbers, one reproduces the expect-
ed Bohr spectrum M, =2m [1—B,(a?/4)] almost quan-
titatively, as well as the typical relativistic effects such as
the hyperfine shift v=a*C,;m. The binding coefficients
B, ~1/n? are reproduced with small but significant devi-
ations. The discrepancies with the expected results are
much smaller for the physical value a=1/137 than for
a=0.3. Similarly, the hyperfine coefficient is close to the
correct value C.~1/3 for a=1/137, but for a=0.3 it is
about twice as large. All of the results depend weakly on
the value of the invariant momentum cutoff, with the ten-
dency of overbinding. This seems to be caused by one
identifiable term in the interaction. If one simply drops it
according to Eq. (5.12), the results become much more
satisfactory.

We have to conclude, therefore, particularly in view of
having omitted important parts of the full theory as out-
lined in the preceding section, that the present work can
only be an intermediate but important step in applying
discretized light-cone quantization to three space and one
time dimensions.
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APPENDIX A: THE ELECTRON AND ITS MASS
RENORMALIZATION

As in the positronium sector one separates the Fock
space in the electron sector into a P- and a Q-space, le)
and |ey ), respectively. The P-space contains only two
helicity states s,=+*1 of the electron with x =1 and
k, =0; actually when using the point symmetries, it con-
tains only one state. In Q-space, the electron states carry
the quantum numbers x’,k},s, and correspondingly the
photon states 1 —x', —kl,sy. Since the P-sector contains
only one state, the problem of solving the integral equa-
tion analogous to Eq. (2.14) reduces to the solution of an
algebraic equation for the eigenvalue, i.e.,

mE+C+W(w)=MXw) fori=1. (A1)
The LHS has contributions from the free part (m % ), from
the contractions terms (C), and from the effective in-
teraction W(w)=VG (w)V. The latter contains the ver-
tex loop and describes the scattering of the electron from
P-space into Q-space and back into P-space, as was
displayed diagrammatically in Fig. 3. In principle one
should calculate the resolvent G(w) in Q-space. But
since one should be consistent with the positronium sec-
tor, particularly Eq. (2.7), the inversion of the Hamiltoni-
an in Q-space is trivial, i.e.,
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1 mi+k? k2 |7
G(w)=——2= w— ; - ; (A2)
0—M;, x 1—
The effective interaction is therefore
1
W(w)= dx'd%k{e|V]ey)(ey|V]e)——-
S%‘,fb i(elVley)(ey|V] ;3
ey
2 "2
— a r 320 1 mF(l_‘x)
> fDdx R —
k?
L _1_2+1
(1—x') | x'
X~—1 7
o—M;,

with the domain of integration D given by covariant
Fock-space regularization, i.e.,

mi+k? kP

’

x 1—x

- <A’+m}. (A3)

Using the same model as above in Eq. (2.7), one gets,
finally, with 0 =0w*=m2,

__« ' 3217 2 1
W=——+-| dx'dk| | —————
277.2 fD 1 (1_x/)2 x'
2m}
mi(1—x")2+k? |’
and (A4)

a 2 1

C=—— | dx'd’k |+ ,

207 o254 (1—x")?  1—=x’

where W =W (w*). The contraction part C differs from
the expressions in Table IX by the regularization, i.e, by
restricting the domain of integration. The instantaneous
photon part of the contractions [ ~2/(1—x')?] is then
canceled exactly by the vertex loop. The instantaneous
fermion part [~1/(1—x')] does not cancel completely,
and will contribute a logarithmically diverging piece.
The sum C +W=Am? can be understood as the “self-
mass (squared) correction” to the electron’s mass
squared. With a notation reflecting the origin of terms,
one obtains

2mE(1+1—x")
mi(1—x')?*+k}?
A2+m} A2

m} mE+A?

2__Q " a2’
Am —;;T—fbdx d’k]

(A5S)

Although the vertex loop and the contractions are qua-
dratically divergent, the sum diverges only logarithmical-
ly with A, provided the vertex loop and the contractions
are regulated consistently. In deriving this result, use
was made of the identity
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2mi(1—x')

mi(1—x')*+k?

S ax'dx;

1 1

=fDdx'd2k'l - - |,

1—x X

which however holds only for the domain as defined by
Eq. (A3).

One should emphasize that the integral, Eq. (AS5),
agrees exactly with the perturbative and manifestly
gauge-invariant expressions to order a, as obtained from
the infinite-momentum frame [9] or from the Feynman
rules [9,16], when the regulator A exceeds all limits and
when the domain of integration becomes thus unlimited.
The contraction terms are obviously necessary to obtain a
gauge-invariant result.

The “in-medium electron regularization and renormal-
ization” in the positronium sector proceeds correspond-
ingly, as will be discussed shortly. The domain of in-
tegration is now given by

D: [m2(x—x")+(xk|—x'k,)?]— ! <A%.

x'(x —x")

With the symmetrized starting point energy w* as given
by Eq. (2.7), the effective self-mass (squared) correction
AM?*=C + W (0*) becomes

AM2=——2?72 J dx'dk

2m}

m2(x —x')?+(xk}|—x'k,)?

R S
xx'  x(x—x")

Substituting y=x'/x and [I=k|—yk, gives
AM?*=Am?/x. For the further procedure one has two
options:  Either one fixes the electron mass

m2=m2+Am? (with m,=511 keV), or one adjusts the
contraction terms C such that Am2?=0 (with my=511
keV). We have decided [9] for the latter: The contrac-
tion term C and the effective interaction W(w*) cancel
each other exactly.

APPENDIX B: THE MATRIX ELEMENTS
OF THE HAMILTONIAN

The matrix elements of the light-cone Hamiltonian
have been derived earlier and can be found in Refs.
[7,9,10]. For the sake of completeness, the explicit ex-
pressions are compiled in Tables VII-IX for the vertex
V, the contraction C, and the seagull interaction S, re-
spectively, to the extent they are needed in the present
context. They hold for the continuum [7], as opposed to
the discretized case [9]. The light-cone Hamiltonian
Hy=T+V+S+C is the sum of these three interac-
tions and of the free or “kinetic” energy:

2 2

mF+kl 2

k
(blb,+dld)+3 | — | o]
1 a X

aa, .
1
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The creation operators b, d; , and a; create plane-wave
states for the electrons, positrons, and photons, respec-
tively, characterized by the four kinematical quantum
numbers g =(x,k;,A), and the destruction operators b,
d,, and a, destroy them correspondingly. They obey the
usual (anti)commutation relations. Each single particle
carries thus a longitudinal-momentum fraction x, trans-
verse momentum k, and helicity A. The fermions have
mass my and kinetic energy (m2+k?)/x; the photons are
massless. The symbol qu denotes summation over the

entire range of the quantum numbers. In the continuum
limit sums are replaced by integrals, i.e., 34,—CL fd‘h»
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where

_ar*
T 16n°

L

and
1 + + o0
Jda.=3 [ax [ Tdk), [ Tdky,.
A=+1"0 —® —®
The normalization volume is denoted by Q=2L,(2L D4
and the total longitudinal momentum by P*. For nota-
tional reasons q is often suppressed, e.g., a; =a,, which

should not be particularly confusing.
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