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Fixed sources in light-front dynamics and Wilson s model of coupling-constant renormalization
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We construct a fixed source model of nonperturbative coupling-constant renormalization in light-front

dynamics as a limit of a theory of heavy fermionic sources when the fermion mass becomes very large.
We begin with the canonical light-front Hamiltonian for Yukawa quantum field theory. We introduce
cutoffs and consider the limit when the fermion mass is much larger than the momentum cutoffs. We
then derive an effective Hamiltonian in the Fock space spanned by sectors with only one fermion and ar-

bitrarily many bosons. The total momentum of the dressed fermionic source is separated from the inter-

nal dynamics of the system. The effective Hamiltonian for the internal dynamics is shown to be

equivalent to the original fixed source model Hamiltonian considered by Wilson. Wilson s nonperturba-
tive renormalization-group analysis applies to the light-front version of the model. The new feature of
the light-front model is the appearance of manifest boost invariance, which allows one to study a heavy

fermion source with arbitrary momentum. We discuss the generalization of the renormalization-group

analysis to the case where the fermion mass is comparable to the boson mass.

PACS number(sj: 11.10.Gh, 11.10.Ef, 11.10.Qr, 11.10.St

I. INTRODUCTION

Despite the great successes of the constituent quark
model, Feynman's parton model, and perturbative QCD,
adequate theoretical understanding of hadronic bound-
state dynamics has not been achieved using QCD. Avail-

able models are not unified in a theory that allows accu-
rate predictions for strong-interaction phenomena at ha-

dronic scales. The major problem in understanding the
nonperturbative dynamics of hadrons is that it seems to
be unavoidable that one has to first solve for the vacuum
state of QCD and only then is it possible to study had-

rons as small excitations on top of the vacuum. One is

stuck with a prohibitively complicated problem before
being able to even think about deriving the simplest pic-
ture of hadrons and describing data from first principles.
Fortunately, there is an alternative approach to QCD,
based on light-front dynamics [1]. The light-front formu-
lation of QCD is quite difFerent from the customary
equal-time formulation and involves new kinds of singu-
larities. The nontrivial structure of the vacuum seems to
be built into the theory in a qualitatively different way
than in equal-time dynamics [2]. We may escape the
necessity of constructing the vacuum, but we still need to
understand how the vacuum affects hadronic structure.
Wilson has suggested that if the severe singularities in
canonical light-front QCD are properly renormalized,
they may lead to an understanding of confinement and
chiral-symmetry breaking. This suggests a new approach
to computing hadronic structure that deserves investiga-
tion.

The primary tool for investigating the singular behav-
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ior of quantum field theories is the renormalization

group. However, light-front quantum field theory poses
unusual renormalization problems that have received lit-
tle attention. Wilson has pointed out that power count-
ing on the light-front differs from equal-time power
counting because transverse and longitudinal dimensions
count differently, and new kinds of singular nonlocal in-

teractions are allowed in renormalized light-front Hamil-
tonians. Even when one considers very much simplified
bound-state problems using approximate Hamiltonian di-
agonalization, one discovers singularities that induce
strong counterterms. These counterterms themselves

may be a substantial part of observed strong interactions.
Before this possibility can be explored with any rigor, we
must first establish a nonperturbative renormalization
theory for light-front Hamiltonians. Surprisingly little is
known about nonperturbative renormalization theory for
quantum fields on the light front. We have not found a
single example of renormalization-group analysis for
light-front Hamiltonians in the literature.

In this article we analyze a light-front version of an ele-

mentary model of coupling-constant renormalization that
was originally studied by Wilson almost three decades
ago using equal-time dynamics [3]. Our aim is to show

how a similar example is constructed on the light front.
Even though the model is rather unrealistic, it is instruc-
tive to see the full analysis and to appreciate the pro-
cedure required to find a renormalized Hamiltonian that
can be used to calculate physical observables. Thus, al-

though Wilson's model is not useful phenomenologically,
it serves as a simple ground for the deve1opment of
Hamiltonian-based renormalization-group analyses. We
construct an analogous light-front model for this same

purpose, as a preliminary step in the development of the
light-front renormalization group.

In Sec. II we describe our construction of the light-
front Hamiltonian for scalar bosons coupled to a single
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very heavy fermionic source. The reader may consider it
profitable to consult Ref. [4] for a broad discussion of this

type of problem. In Sec. III we sketch briefly how to ob-
tain Wilson s results in light-front renormalization
theory. We do not need to repeat Wilson's discussion,
which is best presented in his original articles [3,5]. We
conclude with some remarks on how to approach more

realistic examples of renormalized Hamiltonians for ap-
plications to hadronic bound states.

II. FIXED SOURCE LIGHT-FRONT HAMILTONIAN

In this section we derive the light-front Hamiltonian
for a very heavy fermionic source in its rest frame. The
canonical Hamiltonian for Yukawa theory is

m'+ 2+ i 2I,= Z f [d'p] +,' b,',b„+f [d'q]"+,'
+g g [d pi] f [d q] g f [d p2]2(2n. ) 5 (P„„„d—P,„„;h;i„,d)u~ i I'u~ i b~ & (a~+a~)b~ &

1 2

+ [seagull terms with operators b, b, a, and a]
+ [terms that change fermion number or involve antifermions] . (2.1)

The subscripts A, are spin and/or isospin indices and I' is
a spin and/or isospin matrix. We will suppress isospin
indices in our initial discussion, since they are not explic-
itly required in the derivation of the fixed source model
and are easily inserted later when required. For our ini-
tial analysis it is sufficient to focus on the case I =1. The
creation and annihilation operators commute or anticom-
mute to 2(2m ) p+5 (p —p')5 „and

f [d'p] =f "dp' fd'p' (2.2)

The fermion spinors are given by

uzi„= [A (m+a p )+A+p+]u&,1

mp+
(2 3)

where u& denotes the Dirac spinor of a fermion at
rest, normalized to uu =2m, and A*=

—,'(1+a ).

created(annihilated) rePreSentS tOtal mOmentum Of PartiCleS
created (annihilated) in a single vertex.

The seagull terms and the terms involving antifermions
will turn out not to be important in our discussion of a
fixed fermionic source, so we do not provide details.

Now we want to consider the limit in which the fer-
mion mass tends to infinity, in order to discuss fixed
source dynamics. However, the momentum integrals in
the canonical Hamiltonian extend to infinity and must be
replaced by limits of integrals over select finite ranges of
momenta. We must carefully define how the mass and
momentum limits are ordered.

The simplest way to consider the infinite ferrnion mass
limit is to specify that the ratio of the fermion mass to the
range of the momentum integrals becomes infinite. The

fermion mass then becomes the dominant scale in the
Hamiltonian. Transverse momenta of all particles, and
longitudinal mornenta of bosons are negligible in compar-
ison to m in the fermion rest frame. The bare fermion
longitudinal momentum deviates from the fermion mass
by relatively small amounts in the physical fermion rest
frame. With these severe restrictions on the rnomenturn
integrals in the Hamiltonian one is able to discuss fixed
source dynamics. However, taken literally, these restric-
tions would require us to limit the total momentum of the
system. In an equal-time analysis one is forced to simul-
taneously limit both total and relative momenta in order
to obtain the fixed source Hamiltonian. We will see that
in light-front coordinates it is possible to exactly separate
the total momentum of the dressed source from its inter-
nal dynamics. Therefore, we require only relative mo-
menta to be negligible in comparison to the ferrnion
mass, and can allow arbitrary motion of the source.

The seagull terms and the terms involving creation or
annihilation of fermion-antiferrnion pairs are suppressed
by one inverse power of the fermion mass. Since we have
chosen to discuss the fermion source we can completely
disregard antifermions.

Thus we arrive at a Hamiltonian that contains only the
first three terms of Eq. (2.1), with integrals over relative
momenta restricted to ranges small in comparison to the
fermion mass. Eigenstates of different fermion number
are widely separated in the spectrum because of the large
ferrnion mass. We consider the effective Harniltonian in
the one-fermion sector.

The one-fermion eigenstates of our Hamiltonian have
the following general form implied by light-front sym-
metries:

$ f [d p]f [d qI ]" f [d q„] (2'. ) P 5 (P —p —q, —"-—q„)pq"'(y„g(„. . . ,y, g(j-)~pgq, ...q )
n=0 a.
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where

~p q, " q„&=b,t at, "at„~o& . (2.5)

p„+=x„P+,

P =X P K K
l Pl l l

Pn n~ (2.9)

+ gp+ (2.6)

P+ and P are components of the total light-front three-
momentum of the fermion eigenstate. The relative mo-
menta, which are the arguments of the Fock-space wave
functions P'"' are defined as

where

~n =1 j'i "' 1n . (2.10)

The effective Hamiltonian for the fixed ferrnionic
source is obtained by projecting the equation

(2 7)

P»+M2
H~PX&= (2.11)

so that the bare fermion momentum in the nth sector is on the one-fermion Fock-space sectors

P +M
(p q&" q„~H~PA, &=2(2n) P+5 (P p —

q~
——"—q„) P&" (y&, tc&, . . . ,y„,ir'„), (2.12)

and evaluating explicitly the fermionic part of the Hamiltonian matrix elements for large m, leaving the bosonic part
untouched. Iis the physical fermion mass. One obtains

(P )+M („) l
p+ 4a" (yi i ' ' ' yn~ n)

= g f [d'k', ] f[d"'k,']gP',.',(y'„~", , . . . , y„',~'„)
1=0 o'

X q) "qn
(p„) +m 5-+P- 5"

+ O, bosons
5'n

+g f [d'ql
Q Q, Q Q

&n ~ p„+q, a' &n tT p„—q, t7'

at+ a++ + q + +

(2.13)

In fact, for the fixed source Harniltonian, there are only
three terms on the right-hand side of this equation that
survive: the free energy term with P'"' and two interac-
tion terms, one with P'"+" and one with P'"

We are not forced to assume that P+ differs little from
M and that P /M is negligible, as one has to do in the
equal-time analysis. Here, we can handle P+ and P ex-
actly, even in the large fermion mass limit, and separate
the center-of-mass motion of the dressed fermionic source
from its internal dynamics. This is done by expressing
boson momenta in terms of the relative momenta in Eqs.
(2.6) and (2.7). P and P drop out of the eigenvalue
equation for the physical fermion mass M, as they clear-
ly shou1d. The light-front symmetries provide the oppor-
tunity to separate the "fixed source" motion from the dy-
namics of its bosonic cloud. Because of these symmetries
one can obtain the boost-invariant results by considering
only the special case P+ =M and P =0.

One may notice at this point that boost invariance is
usually violated by the introduction of rnornentum

cutoffs. Demanding that individual momenta of all parti-
cles be much smaller than the bare fermion mass prevents
the ferrnion from moving with large velocity and implies
that there cannot be boost invariance in the Hamiltonian
spectrum. Fortunately, in the light-front form of dynam-
ics we are not forced to impose cutoffs on the individual
momenta of all particles. In fact, we want to stress that
the light-front Hamiltonian can and should be construct-
ed with cutoffs imposed on relative momenta, because it
is these that are small in comparison to the fermion mass,
and we can only maintain explicit boost invariance with
these variables. Thus, we should also stress that it is de-
ceptive to discuss a "fixed source" in light-front dynamics
because our source can move with arbitrary velocity, and
to be useful our model must allow this possibility. So far
we have not specified the way cutoffs are imposed. We
will discuss this point in more detail later.

Evaluating the spinor matrix elements and working in
the rest frame of the physical fermion we see that
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n'=n+1
MP~z"'(I, . . . , n )= g f [1']".[n']P~z" '(1', . . . , n')

n'=n —1

'2

X(I, . . . , II

m'+
p +(~;)+ g +2g f [d q](at+a )

1 —gy, . M
1

I
~ ~ ~ ) 7l

(2.14)

where we introduce an abbreviated notation for momentum variables, exhibiting only their subscripts. Note that we
have distributed M in this equation to facilitate the limiting procedure. For eigenvalues of the form

(2.15)

we assume that 8 Im « 1 and g;,y; &(1,both of which are easily shown to hold for low-lying eigenstates a posteriori
Equation (2.14) becomes

n'=n+1
Ey'"'(1, . . . , n ) = y f [1']" [n']y'" '(1', . . . , n')

n'=n —1

p2+ (~l )2
X(1, . . . , n~ g —y, m+

12 ' ym
+g f [d q](a +a ) ~1', . . . , n') . (2.16)

This immediately implies that the effective light-front
Hamiltonian for the fermionic source internal dynamics
1s

2+( l)2
H, tt= f [d q ] —q++ a ta +g(a t+ a )

2

(2.17)

where the momentum integration extends over a range of
momenta that is negligible in comparison to the fermion
mass. When the fermion mass becomes infinite we obtain
the effective Hamiltonian of Eq. (2.17) without restric-
tions on the boson momenta. Note that the light-front
energy is naturally replaced by the equal-time energy
(p++p )/2 when the fermion mass is large. In the rest
frame of the dressed source the transverse meson momen-
tum q coincides with the relative momentum ~ and the
longitudinal momentum q+ coincides with ym, because
the difference between m and P+ =M can be neglected in
the product yP+.

III. RENORMALIZATION GROUP
ON THE LIGHT FRONT

The fixed source light-front Hamiltonian of Eq. (2.17)
leads to divergent results and therefore requires re-
normalization. Wilson found a way to define a class of
renormalized Harniltonians that correspond to the
fixed source Hamiltonian in equal-time dynamics,
and discovered the necessity to formulate the
renormalization-group theory for quantum field Hamil-
tonians. His further work on the model produced the
first nonperturbative renorrnalization-group analysis of
coupling-constant renormalization [5].

In this section we briefly describe the situation on the

2+( l)2P( —
q + CE0,

2
(3.1)

Q( —'A"k ) +p (—q++1 2+( l)2
0 2 +

(Q(A"ko) +p, n )1,
where

Eo=+JM +ko

(3.2)

(3.3)

To show that the light-front problem is isomorphic to the
equal-time problem, we next change variables from q+
and q to k and k = ( k ', k ) which form the three-
vector k:

q+ =co„(k)+k

~„(k)=i p'+(k)',
d k[d'q]= :=[d k].

2'„(k)(2n. )

(3.4)

(3.5)

(3.6)

1S

Our Hamiltonian, Eq. (2.17), in terms of these variables

light front. We refer the reader to the two remarkable ar-
ticles by Wilson [3,5], which provide the entire motiva-
tion for this section.

In order to define Wilson's model on the light front we
need to introduce momentum ranges analogous to his
equal-time energy shells [3]. Since we have only one
unrestricted momentum integration to sample we can use
our previous experience [6] and introduce the following
regions of momenta:

r
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0=I [d k][cop(k)akai, +g(ak+ak)] .
shells of k

(3.&)

We can now step back to the initial theory, introduce
two kinds of bosons (operators a and b) and isospin ma-
trices ~+ and ~, change the normalization of the
creation and annihilation operators to match Wilson's
convention, and let our coupling g be Wilson's bare cou-
pling constant go. After these steps our light-front fixed
source Hamiltonian is identical with Wilson s model de-
scribed in [3]. The whole discussion of Refs. [3] and [5]
follows. In fact, this last step is a major one, but it is not
necessary to repeat the details here and we cannot im-

prove upon Wilson's original work. The construction of
a light-front version of Wilson's model of the coupling-
constant renormalization in quantum field theory is

completed. To our knowledge this allows one to com-
plete the first example of a nonperturbative
renormalization-group analysis in light-front dynamics.
Such an example provides a starting point for the study
of significantly more complicated renormalization prob-
lems in light-front quantum field theories of elementary
particles. On the basis of this model we can draw se-
veral conclusions concerning the renormalization-group
analysis of relativistic Hamiltonians in light-front dynam-
1cs.

IV. CONCLUSION

The fixed source Harniltonian model of nonperturba-
tive coupling-constant renormalization, as constructed by
Wilson in equal-time dynamics, can be equally well con-
structed in light-front dynamics and identical results can
be obtained. The light-front construction is not merely a
change of variables, it is actually both nontrivial and in-

structive.
In the equal-time analysis one employs rnomenta

canonically conjugate to the equal-time spatial variables.
One can simply place the fixed source at the origin of the
coordinate system, and all boson coordinates are given
relative to this position. The light-front analysis is neces-
sarily more complicated, because a source fixed in light-
front space moves at the speed of light in equal-time
coordinates and has an infinite energy. To discover the
analogue of the fixed source Hamiltonian, we began with
the full Hamiltonian of the Yukawa quantum field theory
and studied the limit as the fermion mass was taken to
infinity. A similar type of analysis can be carried out in
equal-time coordinates. However, in the light-front
analysis the Poincare generators of boosts do not contain
interactions [1]and one is able to completely separate the
total momentum from the problem, while in an equal-
time analysis the boost operators contain interactions and
the separation of the total momentum from the problem
is not possible. In equal-time dynamics one is forced to
assume that this momentum is small in comparison to the
fermion mass in order to complete the analysis.

In the light-front model one automatically obtains a
theory of heavy sources that can move with arbitrary ve-
locity. The momentum k (q+ and q ) is explicitly con-
sidered as a relative momentum of a boson and the center
of mass of the dressed source. The motion of the dressed

source is separated from its internal dynamics.
For infinitely heavy fermions the distinction between

relative and absolute spatial coordinates is not significant.
However, for quarks (hadrons) coupled to gluons
(mesons) there is no reason to believe that the difference
does not matter. In order to understand relativistic
bound-state dynamics in QCD or nuclear physics with
nucleons and mesons, it is likely that one must under-
stand the relative motion of constituents over many
scales of momenta at once and it is not possible to employ
nonrelativistic sources everywhere.

Such a situation invites a nonperturbative
renormalization-group analysis and one must expect
several important new features to appear in a
renormalization-group analysis of relativistic Hamiltoni-
ans. In Wilson s original analysis the only interactions al-
lowed are between a nonrelativistic source and relativistic
bosons. In the light-front analysis one can see that it is
the negligible recoil of the source that selects the momen-
tum scales in Eqs. (3.1) and (3.2) as relevant to a
renormalization-group analysis. These scales imply a re-
lationship between the scaling of longitudinal and trans-
verse momenta that is not surprising for extremely mas-
sive sources. However, we know of no reason for this re-
lationship to hold for light sources and consider it an out-
standing problem to discover the principle that will allow
one to establish a set of scales appropriate for the study
of relativistic sources analogous to those employed by
Wilson for the study of a fixed source.

In the case of infinite fermion mass the key role is

played by the meson mass parameter p which is used in
how one samples longitudinal and transverse momenta in
the light-front renormalization-group analysis. The sam-

pling is patterned after equal-time sampling of a free bo-
son energy because the equal-time free boson energy is
naturally selected in the light-front Hamiltonian for the
internal dynamics of a heavy source, as displayed in Eq.
(2.17). When fermion and boson masses are comparable,
or when the bosons have self-interactions, the equal-time
free boson energy does not naturally arise in a light-front
analysis and a unique momentum sampling does not ex-
ist. Both fermion and boson masses need renormaliza-
tion. One is forced to formulate an analysis that samples
longitudinal and transverse relative momenta separately.

One is also forced to employ a Tamm-Dancoff restric-
tion on the number of particles as a practical limitation
on the analysis [7]. Such restrictions on the number
of particles become a new argument of the
renormalization-group transformation themselves. We
expect that a considerable effort over a period of time will
have to be devoted to the study of how the
renorrnalization-group transformation depends on the
Fock-space sectors considered before we will be able to
firmly connect renormalized light-front Hamiltonians for
QCD at hadronic scales with Feynman's parton model
and perturbative QCD.
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