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Symmetry and combinatorics in the 5 expansion for QED
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Combinatorics and symmetry are used to solve calculational problems in applying the 5-expansion
method to QED. Adequate Feynman rules are used to simplify previous calculations and Ward identi-
ties are obtained. In the case with no external fermions an equivalence to the conventional loop expan-
sion is established, both through the use of path integrals and through explicit calculations of the
effective vertices. The Ward identities are reduced in this case to the conventional ones implied by gauge
in variance.

PACS number(s): 11.15.Tk, 12.20.Ds

I. INTRODUCTION

The 5 expansion [1] is an analytical calculational
scheme which provides a nonperturbative approach to
nonlinear theories. A dimensionless parameter 5 is intro-
duced that interpolates between a linear theory at 5=0
and the nonlinear theory at 5= 1 which is the one to be
studied. 5 is treated as a small parameter and perturba-
tive techniques are used to calculate physical quantities
as power series in 5.

In a recent series of papers the 5 expansion was applied
to gauge theories [2—4]. The Lagrangian for QED in the
5 expansion is

's

Xs @En= ,'(F„„)+—M—P
M

Xs @En= 4 (F& ) +MPP+5MQ ln

+O(5 ) (1.2)

Since this is a nonpolynomial Langrangian a provisional
Lagrangian was introduced [1,3]:

XN= ,'(F„,) +M/—p—+5M/ (1.3)

This Lagrangian defines vertices and diagrams and the
Green's functions of QED [5=1 in Eq. (1.1)] are calcu-
lated in two steps. In step (a) ordinary Feynman pertur-
bation theory is used to obtain Green's functions from
the provisional Lagrangian in Eq. (1.3}while N is regard-
ed as a positive integer. In step (b) the Green's functions
of the first step are differentiated with respect to N and
then N is set to zero. N is regarded here as a real number
[5] and higher orders in 5 require generalizations of this
procedure [1].

In this paper it is shown that symmetry and several

M is a parameter with mass dimension. At 5=0 one has
a free theory with an infinitely heavy fermion and at 5= 1

conventional QED. Expanding Eq. (1.1) to first order in
5 gives

combinatoric results can help to overcome many of the
difficulties in treating the Lagrangian X~ in perturbation
theory for arbitrary N. In Sec. II we introduce an im-
proved combinatorial approach in order to calculate the
free energy for a one-dimensional model. In Sec. III the
combinatorial approach is adjusted to deal with space-
time dimensions d ~ 2 which present additional technical
problems since Dirac y matrices are involved in the cal-
culations and infinities are encountered. Diagrammatics
for the 5 expansion for QED (QEDs) in the combinatori-
al approach are presented, and applied to the Schwinger
model (2-dimensional QED} [6]. The photon propagator
is calculated to order e and first order in 5. In Sec. IV
path integrals are used to establish the equivalence be-
tween QEDs and the conventional perturbative expansion
in the coupling constant, for Green's functions with no
external fermions [7]. In Sec. V we show that, due to the
closed fermionic loop in this case, the effective Lagrang-
ian obtains a "cyclic symmetry" which implies the
effective Lagrangian contains an explicit factor N, name-
ly, X,tt=NL, tt. This is important since in the 5 expan-
sion one differentiates the results with respect to N and
then sets N to zero so (t}i"dN }~„~,tt=L, tt(N=O). The
photon propagator in the Schwinger model is calculated
to first order in 5 and order e . It is explicitly shown that
L(N=0) reduces in this case to conventional perturba-
tion theory, reinforcing the conclusion of Sec. IV. In the
conventional loop expansion for QED a major role is
played by symmetries presented in the form of Ward
identities [6]. In Sec. VI analogous identities for QEDs
are obtained.

II. A NEW COMBINATORIAL APPROACH APPLIED
TO THE CALCULATION OF THE FREE ENERGY

IN A ONE-DIMENSIONAL MODEL

Bender et al. [2] used the 5 expansion to calculate the
free energy of a quantum-mechanical system defined by
the vacuum partition function:

f2)&2)&2)&exp( —f dt's&),
0

(2.1)
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The free energy E is defined by 2

&~=—,'P + P M—Pg 5—M' ~P[d, g—P(t))~y .

1 Z(g)
T Z(g =0} (2.2} (2.3)

[8, gP—(t)] P(t) will be written now as a sum over
powers of g. In order to calculate

This one-dimensional problem is used here as our first ex-
ample in order to introduce a new combinatorial ap-
proach which gives promptly the results of Ref. [2].

In step (a) one calculates the ground-state free energy
EN of the system defined by the provisional Lagrangian

(2.4)

we define 1V operators 2);, i =1,. . . ,N. All are equal to
[8, gP(—t)] but differ by their location in the chain
operating on P. Equation (2.4) can be written as

N 1
p(t))&p(t)= y (

—g)i —y y ' ' g B(N k Ik'])pi, k 42, t, 0x, k, 4,~ i, y—,.
k—

,
A, =O k =ok =0

1 2 k~=0

(2.5)

where

(2.6)

The scalar field were arbitrarily labeled p, , i = 1, . . . , A, . In order to sum over all difFerent ways of labeling the field»n a
given term one has to divide by A.!. The sums over k; were taken to infinity although clearly g, ,k; N A, since—
B(y. ,k. )N —g)=0 as will be seen below. B(N, A, , Ik,. ]) is the combinatorial weight of each term in the sum. It
counts the number of ways to distribute N operators 2);, i =1,. . . ,N into X+ I cells marked by p&, $2, . . . , pi and p, the
number of operators in each cell being k, + I, kz+ I, . . ., k&+ I and N —A, —g, k, , respectively. The first operator
(the one with the smallest index) placed in the cell labeled pj give ( —gp~ ). All the others give derivatives acting on it.
All the operators placed in the cell labeled p give derivatives acting on g. Distributing the operators in this manner we

indeed get immediately Eq. (2.5) with

B(N, A, , [k;] )= Nt

(ki+1)!(k2+1)! (k +1)! N —
A,
—g k !

i=1

N

A+ gk;

gk, +k !
i=1

g(k;+ I)!
i=1

(2.7)

We will show that this result shortens considerably the derivation of Eq. (2.32) in Ref. [2]. The interaction term of
the provisional Langrangian

I = 5M' f d—t f(t)[B, gP(t)] P(t—)
0

(2.8)

is most easily calculated in momentum space (in fact, energy space):

1!(t)= g g(p„)e ", @(p„)=—f g(t)e ", p„=—(2n —1),T 0
n

P(t)= g P(l, )e ', P(l, )=—f P(t)e ', I, =—2s .T 0 T

DifFerentiating with respect to t, using Jodt e" ""=T5(a —b) and Eqs. (2.5), (2.7) we get



45 SYMMETRY AND COMBINATORICS IN THE 5 EXPANSION FOR QED 3715

jv

IN= 6—M' T g (&)
A. 0

n= —ooS S . . . S = —oo1' 2''' A,

p.——y l, . e(p. )4(l, , )4(l,, ) '

j=1

OO N

k), k2, . . .,k~=0 ~ k. +g
i=1

Tk, +X ~

(N —k —gk)
j=1

~ 1I 2. . . I A, .
P-n $) $2 Sg

P(k;+1)!
i=1

(2.10)

This is a sum over vertices with two fermion legs and I, bosons (Fig. 1). In order to calculate the free energy Ez one has
to sum over Feynman diagrams (Fig. 2) obtained from these vertices by contracting P with g and pairs of (I) s in all pos-
sible ways. %'e mill first evaluate the contributions of these contractions to the diagrams. The diferent ways to con-
tract E pairs from A, =2K bosonic fields give (2K)!/I(.'!2 identical terms. In every one of these terms the indices are
renamed so P(l, ) is contracted with $(l, ) j= 1,. . .,1(.'. In the expression for Ez each contraction of bosonic fields

Sj K+j
gives a factor of

j K+j j K+j K+J

substituting

(2.11)

S . = —oo $ . = —Ooj K+j

1 1

s.= —ao S +mj j
(2.12)

and defining r =k.+k»+, which counts the number of derivatives (momenta factors) on the bosonic loop (thus

,k = g» &r ), we get, for Eq. (2.11),

Since

J

„„=oT l,~+m' (r, +2)!X X— Tj+2J
( 1)»+j

kK+. +1
K+j

(2.13)

K+2
g ( —1)" k+1 =1+(—1)",

k=0

only even r contribute. Finally, contracting P with f gives the fermion propagator P( —p„)f(p„)= (1/T)(1/M ). Thus,

N/2 2K oo N
E(v = —5M'

, It!,g r, +2I(.'
K

K

g rj+2E !
j=1
K

g (r +2)!
j=1

1 ((P„)

II= OD

N 2» —g r. —
1j=1 ( il, ) '

j
„TI,+m

(2.14)

[In Eq. (2.14), and from here on, g' denotes a sum on even integers only. ]
This concludes step (a) (namely, the calculation of the free energy using the vacuum partition function built with the

provisional Lagrangian X~). Equation (2.14) agrees with Eq. (2.32) in Ref. [2]. Step (b) of the calculation,
differentiating with respect to N and setting N to zero is described in Appendix A. One finally gets
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p(p) N-2K-X r

X k) r lI--- r)

l

J

FIG. 1. g~ vertex in the one-dimensional model of QEDs. A
tick symbolizes time differentiation or momentum in momen-
tum space {energy factors l, or p„on boson or fermion lines, re-
spectively).

FIG. 2. g diagram for the free energy in the one-
dimensional model of QEDs (A, =2K). This figure is obtained
from Fig. 1 by closing the loops. The fermion propagator in
momentum space is (1/T)(1/M). The boson propagator in
momentum space is (1/T) [1/(1'+ m ') ].

F~ =—g (1—2 )(2K —1)!!
dN ~ T, K

K

+O(5')
m

g T
Sm 64m

6T2
+ +O(5 )

192m
(2.15)

where (2K —1)!!—:(2K —1)(2K—3) 3 X 1 and g(2K ) is Riemann's zeta function.
A further simplification in the derivation of Eq. (2.14) is obtained by using the combinatorial approach directly for

the contracted graphs. Instead of distributing the N operators 2), , i =1,. . . ,N into A, +1 cells labeled P, j=1,. . . , A,

and P, they are distributed now into K+1 cells (K =A, /2) labeled by pairs of contracted fields: (Pg);, 1 =1,. . .,K and

(pp}. The number of operators in each cell is r;+2 and N A, gx, r;—res—pectively. r; is the number of derivatives

operating on any of the two fields constituting the contracted pair (PP};. Contracted pairs g( —p)P(p) and

P(ls )P( —ls ), 1=1,. . .,K contribute g„" „(1/T}(1/M) and gs „(I/T)[1/(ls +m )], respectively Eac.h

derivative operating on f(p), $(1), or P( —1) give (ip), (il ), and ( il ), —respectively. There are now only K arbitrary la-

bels and thus one has to divide by K.. The number of different ways to distribute the N operators into these cells is

N!
K

(r, +2)!(r2+2)! (rx+2)! N A, gr;——
i=1

K
r, +2K

i=1

K
r, +2K !

i=1
K

g (r; +2)!
(2.16)

combinatorial approach. This enables one to obtain
promptly the results of Ref. [3] and improve the
efficiency of the calculation rules.

The Lagrangian for QED in the 5 expansion is given by
Eq. (1.1) for any spacetime dimension d and the pro-
visional Lagrangian is given by Eq. (1.3):

4(F„) +M//+5M—' Q(i8 e/I ) f . —(3.1)

(i8 eA ) P—will be written now as a sum over powers of
e.

A. The combinatorial approach
in the presence of y matricesIII. THE COMBINATORIAL APPROACH APPLIED

TO THE CALCULATION OF THE PHOTON
PROPAGATOR IN THE SCHWINGER MODEL

%hen the space-time dimension is d ~ 2 the covariant
derivative contains a y matrix and Eq. (2.4) is replaced by

which is the factor appearing in Eq. (2.14). Note that in a
given cell the first operator (S; with the smallest index)
must be (

—g)P(l). The second field in the contracted
pair, (

—g)P( —1), must come from the last operator (2);
with the largest index), otherwise there would be at least
one derivative operating on both P(l) and P( 1) and the-
two resulting contributions to the graph will cancel. All
the intermediate 2); must therefore be r derivatives
operating on P(l), so we shall have (il )" multiplying the
propagator. Since odd r; cause cancellation in pairs be-

r. r.
tween l, ' and I, - ' one should sum only over even r's.

J
Putting all this together gives immediately Eq. (2.14).

In the second paper [3] which established the rules for
applying the 5 expansion to gauge theories, the photon
propagator in two-dimensional QED (to first order in 5
and second order in e) has been calculated. We present
here a different strategy for this calculation based on our

%;=0,1,. . . ,d —1,
(3.2)

(3.3)
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2), ' is the ith operator in the chain operating on P:

N

(8+gA) P= g g Iz . (3.5)

Following the one-dimensional example, I& can be writ-

D—:2)~"2)~":,' .2) . . 2),'2), ', 2) —= (8 '+gA ') .

(3.4)

ten as a sum of terms where in every term each operator
2),. (i= 1, . . .,N) gives only one contribution. This con-
tribution can be either a derivative operating on one of
the fields or a new scalar field A .

Iz can be expressed in momentum space where the
momentum of the fermionic field is labeled by p and the
momentum of the scalar field A~. by lj (j=1, . . ., A, ). Ar-
bitrary labeling the scalar fields by j and summing over
different labels is corrected by a 1/k! factor.

Similarly to Eq. (2.5) we have here

~ N —A,
l kl 1 0 k2 10 k~ 10 (N g yk) 2 1

a(N, X, [k, ] )

X[1, ll Il Aa, (ll) l2 1, 1, Ap(1, )]
1 '2

X [1 '''lA lA( Ago( A) Pa q
p ~p ~f(p)], (3.6)

where a;,P;, . . ., g, and a; are all Lorentz indices. In complete analogy with the one-dimensional case, getting Eq. (3.6)
from Eqs. (3.2)—(3.4) is basically the distribution of N operators 2); into A, +1 cells, but here each term carries with it a
chain of y matrices. Since y matrices do not commute this chain retains the original order of the N operators 2);,
i =1,. . . ,N. In Eq. (3.6} the summation indices v; were renamed into a;,P;, . . . ,g; or cr; according to the specific con-
tribution of 2);. To get 8 we have to sum over all possible orders of appearance of a given set of fields and momenta,
namely, over different chains of y matrices. One gets

k 1 0 ~k ~1~0 ~k~ ~1~0 (~—g —yk ) 2 1

B(N, A, , [kj ] }

Q [XJ= IX+ all permutations of indices that keep the order between

indices marked with the same greek letters. (If m )n a

must be to the left of a„, P to the left of P„, etc. ) J . (3.8)

Q maps a product of N matrices y", each labeled by one
Lorentz index, into one matrix B labeled by N indices.
Note that the number of terms in Eq. (3.7) for a given set
of parameters (N, 1(,, I k J ) is

N!
A. A,

N A, gk) !g (—kj. +—1)!
j=1 j=1

(3.9)

(3.10}

P is defined by the same rule as Q in Eq. (3.8) but maps a

In the one-dimensional case when I =1 all these terms
were identical and the factor in Eq. (3.9) showed up ex-
plicitly in Eq. (2.7). Here these terms differ by the order-
ing of the y matrices.

Taking N to be even (generalization to odd N is easy), it
is useful to define

product of N/2 unit matrices ( lg""}each labeled by two
Lorentz indices into one unit matrix B, labeled by N in-
dices. With an adequate correction term, labeled B2, that
will be calculated and added later, one can replace B in
Eq. (3.6) by 8, and get a simple sum of scalar products
among fields and momenta. B, has the same number of
terms as B. It is formally obtained from B by dividing
each chain of y matrices into subsequent pairs and re-
placing every pair by the metric tensor: namely,
y y"—+1g"". To every pair of y matrices so defined cor-
responds a pair of operators 2)'s. There are three cases.
(1) If this pair is (1, 1; } or (p p„) the identity //=a

V P
justifies the replacement and no correction term B2 is
needed. (2) If the pair contains two operators belonging
to different fields, there exists in B a term with the order
inside this pair reversed but otherwise identical. The re-
placement is justified now by the identity
y'y +y "y'=g'"+g '. (3) Only if the pair is (1;A, ) is a
correction term needed. We therefore have
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' ' G(a&a~)l must contain G(a&ao) or/and G(p„po), etc. ],
where

y'y' —g', (~,b)=(a„ao) or (p&,po), etc. ,
G(a, b)—:'

g', otherwise.

These results can be used to write the interaction term of the provisional Lagrangian in momentum space:

(3.11)

(3.12)

N A, ~k
5M' g(p')( —1) g, g (B,+B2)

A, =O kl . k~ =0

o
1

X[1, 1( 1, A~ (l, )][1~ 12 l~ Ap (l~)]
ak a2 a1 0 ~k

1 2

X[1~ l~ l~ A& (l~)][p .p p, p(p)] .
(N —

A, — g k. )

(3.13)

B& and Bz were defined above. This is a sum of vertices
with one incoming and one outgoing fermions and A, bo-
sons (Fig. 3).

For a given A, , one has sums over k, j= 1, . . . , A, and
internal sums included in B, and Bz. Each term in this
sum can be represented diagrammatically. An example
for diagramatic representation of a single term is given in
Fig. 4. We put kj ticks on the line representing
j= 1, . . . , A, and N —A.—g~,k ticks on the incoming
fermion line. Each tick that represented a time derivative
in the one-dimensional case, represents here d-
dimensional momentum and carries a space-time index.
In B& and Bz one sums over the different ways to con-
tract these indices. Diag ramatically, this can be

I

represented by N/2 thin lines that form scalar products
from the fields and momenta they connect. The question
of how many different terms in B& or B2 give the same
contribution reduces again to a combinatorial question of
the distribution of these thin lines.

We will discuss now the effective vertices for diagrams
with no external fermions. Closing the fermionic loop in
the vertex of Fig. 3 gives the "octopus" diagram in Fig.
5(a). As a result of closing the fermionic loop we have (a)
momentum conservation at the vertex gives

1, +1&+ . 1&=0, (b) there is a trace over B, and (c)

there is an integral over the fermion momentum p. The
integration over p and the identity [3]

ff(p )p „p p ddp=

dr—
2

2~tzI- d+h
2

f f(p2)(p2)h/2dd p[ (3.14)

where P stands for all permutations of indices, enables us
to replace in each term of Eq. (3.13) the mixed scalar

products (such as g p 1 and g p A } with powers
0

of p multiplied by scalar products of bosonic fields and
their momenta, namely

I

Diagrammatically (see Fig. 6 for an example}, the re-
placement in Eq. (3.15) can be viewed as "isolating" the
loop: removing all thin lines that connect the loop to the
bosonic lines, reconnecting ticks in the loop with each
other and forming new pairs from their partners in all

possible ways.
B. Calculation of the photon propagator

in the Schwinger model

dr-
(p

2
)

II /2p [g
I 2 g

h I h

2" /' r "+"
2 (3.15)

The photon propagator to first order in 5 is given by a
sum of diagrams with one vertex and two uncontracted
boson legs, given in Fig 7. To order e it is the octopus
diagram with two bosonic legs. The relevant interaction
term is given by Eq. (3.13) with A. =2:

2 QO 00 ~k
&M' "P(p'), g y (B,+B,}

[, . 1, 1, A~ (1, )][1~ . 12 12 Ap (l~)][p . .p p P(p)] .
1 '2

(3.16)
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g(p') g(p) 4(p')g (p) (aj

A($1 )

A(4)
A( ji)

FIG. 3. e vertex in d-dimensional QEDq, denoted as

SMe G&' ' (p, l„l„.. . , l~).

The relevant diagram (first in Fig. 7) is obtained by clos-
ing the fermionic loop. Following Sec. III A one finds
the following.

(a) Since I 1+l z =0, there will be a cancellation between
any two terms in B2 obtained from each other by one re-
placement l&~lz. The only terms that survive are those
where the replacement is not allowed because l; can never
appear to the right of A(l, ): In B, these have k2=0
k& =r with all a, j=1,. . .,r between ao on their right
and po on their left or k1=0 k2 = r and all p, j =1,. . ., r
between po on their right and ao on their left. We drop
the 1/2! and take only the first case. In Bz the relevant
terms have k2 = 1 and k

&

=r —1 with all the a,
j=2, . . . , r —1 between (a,ao) on their right and (p&, po)
on their left. 1/2. is likewise dropped. As in the one-
dimensional case (Sec. II) the double sum over k, and k2
was replaced by one sum over r.

(b) There is a trace over B, and B2. Since
Tr(r'r" —lg' )=0, all nonvanishing chains of Bz must
contain

(b)

'( 0+PI+ EI

4(L) )

FIG. 5. (a) An "octopus" diagram of order e~ for QEDs is
obtained from closing the fermionic loop in Fig. 3. (b) A fer-
mion loop with A, attached bosons in conventional perturbation
theory for QED [6].

g
crcl'

I I

TrI(r"r" lg"")—(r 'r" ig ' ')—
I

1(10101100)(317) A(gp)

g
OgO)

~g'I~a~ A(SI )

gli eo

(c) There is an integral over the fermion momentum p.
The contraction of P(p) with f(p) gives the fermion prop-
agator I/M.

Finally, the e octopus diagram in Fig. 5(a) reduces to

FIG. 6. Closing the fermionic loop and reconnecting ticks in
the example of Fig. 4. (g g ' ~d 'g 'g ).

g(p)

O(e )

+ 0 ~ ~ +

~ y \
I

O(e")

O(ee) O(e4) O(ex)

FIG. 4. An example for the diagrams summed in the com-
binatorial approach in order to get the vertex of Fig. 3. Con-
tractions of Lorentz indices are represented by thin lines. In
this example, A, =2; k, =4; kI=2; N —A, —g. ,kJ. =N —g and
one element of B1 is drawn, namely,

N —8 N —9. . . 4 3 24 3~2 21 ~1 1 1~0
g g g g

FIG. 7. (a) The photon propagator in QED& to first order in
5. (The diagram of order e has (A, —2)/2 bosonic loops. ) (b)
Diagrams proportional to S that contribute to the photon prop-
agator in conventional perturbation theory for QED with 5 fer-
mion species. (The diagram of order e" has (A, —2)/2 internal
bosonic lines. )
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oo

gM
—N 2~ ~ p

(2m )

XTr[B,'" ' ' ' "+' ' ' ' '(r)A ( —1)l . I A (1)

(3.18)

Note that in the B, term Po was renamed a„+,
(N —2 —r) 2 1 r+1 r r —1 0« ~ & N —2—r N —3—r. . . 2 1 r+1 r. . . 3 2 1 0 (3.19)

B 2' ' "' ' ' " ' (r ) =I' [G(crz 2 „crh( 3 „) G(a2o &)G(PA)G(a„(,a„2) G(a3a2)G(a&ao)

~(P(Po) and (a(ao) are kept as pairs to the left and right of other a' s) . (3.20)

Notice, although the sum over r was formally written
from zero to infinity 8, differs from zero only for
0&r ~N —2 and 8 for 2+r ~N —2. Furthermore the
sum is only over even r's since for odd r's the integral
over p vanishes.

In a general permutation in B& or B2 out of N/2, g's
there are h mixed pairs g . [0~ h ~ min
( r +2, N r —2); h i—s even since r is even]. Equation
(3.15) can be used to replace

2
—h/2kt

f
h

2

N
2

r+h+2
2

r+h+2
2

h
2h (3.22)

terms (the number of different ways to form pairs from
ha' s).

For given r and h the number of permutations in B&(r)
1S

dr—
2

2
—h/2(p2)h/2pIgaa. . . aaI

d+h
2

Each permutation gives a sum over

(3.21)

Namely, out of N/2 g's choose (N 2 r —h—)/2—to be
g . Out of (r+2+h)/2 g's with a choose h mixed
pairs. Each mixed pair can be g(oa) or g(ao ) giving a
combinatorial factor of 2". The order among the a's and
among the o's is kept. For r =0 and for each of these
permutations, all the terms obtained by (3.21) are identi-
cal. Thus each permutation gives

dI
d 2

5M e f (2n )
I

—
h( 2)(N 2)/2TrlgPvA—

h
t

2

(3.23)

For r ~ 2 each permutation gives a sum of

2
—h/2

l

t
h

2

d5M e f (2m )
2 "( )' "' (1 )'" '/ Trll"1"A A

I
h

2
d+h

2

aa0 era„+1terms. Each permutation that does not contain both g
' and g

" ' gives

dr—
2

(3.24)

o.a0

cuba

but perrnutations in which both g
' and g

'+' appear give in addition
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r-
d [d/2] —h 2p 2

d+hI
( 2)(N —2 —r)/2(12)(r —2)/2(12 pv 1/ll v) g

h!
g

!h

2

(3.25)

since under the action of (3.21), ao and a„+, form a pair
in one out every (h —1) terms. The number of permuta-
tions in B,(r ~ 2) when ao and a„+i are paired with (r's,

aao ~~r+i
namely both g

' and g
'+' appear, is

4h(h —1) 2

(r+h+2)(r+h ) r+h +2
2

r+h+2
2

2" (3.26)

because from (r +2+ h ) l2 g's the first one must be (o ao)
and the last one must be (o a„+i ). One must therefore re-
place

r+h+2
2

h

in (3.22) by

r+h+2
2

h —2

The number of permutations in B2(r) is

4h(r+1}
(r+h+2)(r+h )

N
2

r+h+2
2

r+h+2
2

h
2h

(3.27)

Using Eqs. (3.17) and (3.21}each permutation gives here

Here, from (r+2+h )/2 g's the first one must be (aiao)
and the last one must be (1)3)PO), so one must replace

r+h+2
2

h

in (3.22) by

r+h+2
2

r-
dd 2

5M e J d+hI

h!
2 h( 2)(N —2 —r—)/2(12)(r —2)/2Tr(12 Pv 1@iv)/I

h
1

2

(3.28)

Finally, the octopus diagram of Eq. (3.18) is given by summing over all the permutations.
For r = 0 we get

gM Ne2 7 —
(122)(N

—2)/2 2d/2 ' g' ~(N r 0 h ) gpvg
dd

(2m. ) II =02

For r &2 we get

dd
gM Ne2 P

(
—2)(N —2 —r)/2 2d/2(12)(r —2)/2g

(2~) |L1, V

(3.29)

g' co(N, r, h ) l&l "+ g' co(N, r, h) (1 g"" 1"1")—

where

+ Q' 1 — co(N, r, h ) (1 g""—1"1"} . ,(r+h+2)(r+h )
(3.30)

co(N, r, h ) =
2

r+h+2
2

r+h+2
2

h

r—
2

h, d+h
2

"
2

(3.31}
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[m&0 only for 0 r +N —2 and 0 h min (r+2, N —r —2)].
One should now differentiate Eqs. (3.29) and (3.30) with respect to N and then set N to zero. Since co(N=0) =0 the

differentiation must operate on w. In Appendix 8 we prove [5]
00

g' co(N, r, h ) =0,
N=o, d=2 A =0

(3.32)

r
r

r
t

a 00 4hr r

o (r+h+2)(r+h) ' ' 2 (&+I)'~(N, r, h ) (3.33)

otice that all the nonvanishing terms are explicitly gauge invariant except for the term with r =0 that is set to zero b

gauge-invariant renormalization (see Appendix B). We get for d =2 the e octopus diagram

t — 1

l"I 00 2 2 dd
Pv A A yi . . . . (i2)rl2 I

( 2)( —r —2)/2

2 (r+ I )! (2n )

(3.34)

This has to be multiplied by a factor of 2 which is a sym-

metry factor for having two ways to choose which of the
octopus legs is the incoming and the outgoing photon.
After some calculations (see Appendix C) we get, from
Eq. (3.34) for 5=1,

(the fermion propagator now being iaaf, etc.) give the
same result [7].

The simplest way to show the equivalence is using path
integrals. Green's functions with no external fermionic
fields are derived from

lI lv ez
gpv

12 7T
(3.35)

Xexp i f d x[X(A„,Q, Q)+J~A„]
This is indeed the photon propagator in the Schwinger
model [3,6]. (4.1)

IV. THE RELATION TO CONVENTIONAL
PERTURBATION THEORY

The 6 expansion for QED uses

X=Xs=M' sgglsg '(F )2— (4.2)

In ordinary perturbation theory in QED, the photon
propagator for the Schwinger model to order e is calcu-
lated from the first diagram in Fig. 7(b). In Sec. III we
calculated the octopus diagram of order e [the first dia-
gram in Fig. 7(a)] in the 5 expansion, and reproduced in
two dimensions the conventional perturbation theory re-
sult multiplied by 6. This is an example of a general
equivalence that will be discussed now. The octopus dia-
gram of Fig. 5(a) and the diagram of Fig. 5(b) which is a
diagram in conventional QED with 5 fermion species
have in common one fermion loop with A, attached bo-
sons and a factor of 5e . In the following we will argue
that they are equivalent. Namely, an octopus diagram
calculated within the 5 expansion (the fermion propaga-
tor being 1/M, etc.) and the corresponding diagram cal-
culated within conventional QED with 5 fermion species

Integrating out the fermionic fields gives

Z,s s(J„)=f2)A„det(g) )

Xexp i f d x[ ,'(F„,)2+Jl'A—„—]

(4.3)

5
X=XQEo= g $$$ F—(4.4)

The generating functional for Careen's functions with no
external fermions is here

On the other hand, in QED with 5 massless fermion
species one has

Z„o, (J„)=fnA„gee, X)g, exp i fd x g g, Qg, ,'(F„„)+J"A„——

5=f2)A„+ f2)g;2)g, exp i fd"xg Jig,
i=1

.exp i f d "x[——'(F„) +J"A„] (4.5)
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teger. The only common acceptable 5 is 5=1 where
indeed the 5 expansion is conventional QED. We can
treat the equivalence as a formal one, enabling us to ob-
tain results in QED from calculations performed in
QEDs.

FIG. 8. The equivalence between octopus diagrams in QEDs
and diagrams obtained from conventional perturbation theory
for QED with 5 fermion species when there are no external fer-
mions (here, to first order in 5). QEDs. vertex~5, each
boson~e; QED with 5 fermions: fermion loop —+5, vertex —+e.

Integrating out now the fermionic fields gives

zeff QED( Jp }

=f2)A„[detg] exp i Jd"x[ ,'(F„—,—) +J"Az

(4.6)

Since det($ )=(detS) Green's functions with only bo-
sonic external fields calculated with Eq. (4.3) equal those
calculated with Eq. (4.6). Expanding in powers of 5 and e
one gets the equality between the diagrams of Figs. 5(a}
and 5(b} and of Figs. 7(a) and 7(b). The general
equivalence, for first order in 5, is diagramatic ally
represented in Fig. 8. Note, however, that this exact
equivalence is restricted to Green's functions with no
external fermions.

Some care must be taken as to the interpretation of this
equivalence [5]. 5 is a continuous parameter 0 ~5 ~ 1 in
QEDs while for QED with 5 fermions species 5 is an in-

V. VERTICES AND DIAGRAMS IN QEDB
IN THE SYMMETRY APPROACH

XA(l ) (11+i', +1, ) 'A(l, )(P+E )
'

XA(l&)P 'g(p) . (5.1)

The sum is over all integers n. j=O, . . . , A, provided
gi~=oni =N A, . We w—ill also sum over all permutations
of the indices 1,2, . . ., A, and therefore have to divide by
A,f. In the combinatorial approach we have written Eq.
(5.1) as a sum given in Sec. III by Eqs. (3.5) and (3.6).
Though that form was useful for calculations, the form in
Eq. (5.1) that will be treated now enables a better look at
the symmetries of the theory.

A general vertex of order e (Fig. 3) is obtained from
Eqs. (3.1) and (5.1):

In this section we will reinforce the equivalence estab-
lished in Sec. IV by using the fact that in QEDs one does
not need the full N dependence but rather the value of the
first derivative with respect to N at N=O. We will there-
fore take a different look at the interaction term
f(i B eA—

) f. In momentum space it is a sum over ele-
ments of the form

( —1)~e g(p')(le+Et+ +1'») '

5~$(p')f(p)A, (1») A„(12)A, (l, )G»' ' (p, l„l~, . . , 1»}, . (5.2}

where

(p, lt, 12, ,1»)=, [g»' ' + all permutations of 1, . . . , A, J,
N=O

(5.3)

1 2 A,

n07 ~ ~ 0 jn& =0
5 N —~—g n, V+~&+ +~») 'y ' (Il+I't+E2) 'y '(Il+t, )"') "'Il '.

j=O

(5.4)

The octopus diagrams of order e [Fig 5(a)] are the effective vertices for QEDs with no external fermions. Closing
the fermionic loop one has (as explained in Sec. III A)

5A„(l») . . A„(1~)A (1, )F»' ' (lt, l~, . . . ,l»}, (5.5}

d' e~ aF»' ' (1„12,. . ., 1»)=f, [f»' "+ all permutations of 1, . . . , A, I,(2~)' A,! dN „,
where

(5.6)

f»' ' '(lt 12. . . 1»)=
m I ) ~ ~ )mg 0

5 N A. gm (m»+—1)—T„[P "y" (Iif+E, +E2) 'y '(Ii+1', ) 'y '] .
a=1

(5.7)

In the derivation of Eq. (5.7) from Eq. (5.4}we used I, +lz+ +I» =0 and the fact that the trace allows cyclic per-
mutations, and renamed summation indices m =n a = 1, . . ., A,

—1; m» =n»+ no. (m»+ 1 ) different terms in f»
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(those with the same value for m z
=no+ n & but different n 0 =0, 1,2, . . . , m & ) are shown to be identical by cyclic permu-

tations.
We will show now that F& contains sets of N terms which are N cyclic permutations of the same term up to a shift in

the loop momentum p and are therefore identical. (In Appendix D it is shown that for A. (d the equality holds for the
most divergent part and for A, ~ d it is exact. ) We call this the "cyclic symmetry" of the effective Lagrangian in QEDs
with no external fermions. In order to get F from f one has to sum in Eq. (5.6) over all permutations of the indices
1, . . . , A, . We will first sum the cyclic permutations:

{fz' +all cyclic permutations of the indices 1,. . ., A, J
r

m ),m2, . . ., m~ =0 a=O

X[/ 'y ' (lf+Ef+E2) 'y '(p+l, ) 'y '(m„+1)

+P 'y ' (P+E, +1, ) 'y '(gf+j', ) 'y '(m, +1)

+g/ 'y ' (gf+j' +E~) 'y '(/+3'3) 'y '(m2+1)

(5 8)

Apart from the factors (mi, + I ) for the kth line all the lines in Eq. (5.8) are cyclic permutations (under the trace of the
matrices) of the first line with the loop momentum shift p+ l, + l2+ . . +lk, ~p. A single shift properly arranges all

the line because the elements to the left of y ' equal the elements to its right plus I, . Summing all A, lines in Eq. (5.8) we
have g&, (mi, +1)=N identical elements:

{fz' ~+all cyclic permutations of the indices 1, . . . , A, I

00

=N g 5 N —A,
—gm Tr[P y

" (gf+l'&) 'y ') . (5.9)
m]y ~ ~ ~ pm' 0

This is an important result, since we can use

a
[NX(N ) ]=X(N =0) .

BN N=o

Thus, after taking the derivative with respect to N and setting N to zero, we get, for the octopus diagram of Fig. 5(a),

5 N A, gm— —
a=1

XTr[P y (gf+j', +fz) 'y '(P+f, ) 'y ']+ noncyclic permutations of 1,. . ., A,
N=O

(5.10)

Note that Eqs. (5.9) and (5.10) are exact for A, & d but for A, (d they apply only to the most divergent part (see Appendix
D).

In Sec. IV we have established the equivalence between the octopus diagram in Fig. 5(a) and the diagram in Fig. 5(b).
Conventional perturbation theory of QED gives for the diagram in Fig. 5(b) [3,6]

—5A (l~) . A„(1~)A„(l,)I2 1 (2~)d gt

X {Tr[gf 'y (gf+l'&+fz) 'y '(gf+f&) 'y ']+noncyclic permutations of I, . . . , AI . (5.11)

(In both cases, when calculating Green's functions, the symmetry factor cancels A, !.) The main difference between Eq.
(5.10) and Eq. (5.11) is that instead of m = —1, a= 1,. . . , A. in conventional QED we obtained for the 5 expansion
A, —1 sums over all positive integer values of m, a= 1, . . . , A, provided g~, m =N ANote that f—or ,N.

=O the 6
function in Eq. (5.10) is consistent with m = —1 for each a, but this calls for a more rigorous treatment [8]. In Appen-
dix E we give a complete calculation of Eq. (5.10) for A, =4 and indeed get Eq. (5.11). We prove there that
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m4, m3, m2, m1=0
5(N 4—m—

&

—m2 —m3 —m4)

XTr[p 'y '(Jt(+E, +j', +j', ) 'y '(p+E, +g, ) 'y '(p+j't) 'y ']
N=O

= —Tr[p y '(p+l&+E2+E&) 'y '(p+j'&+1, ) 'y '(p+E, ) 'y '] . (5.12)

This result completes the calculation of the photon propagator in the Schwinger model to order e . Since the right-
hand-side (RHS) of Eq. (5.12) is shown to be zero in the context of conventional perturbation theory for QED for d =2
[6], the octopus diagram to order e equals zero for d =2 and thus the contribution of order e to the photon propaga-
tor vanishes. The significance of Eq. (5.12) goes beyond the context of this particular calculation —it reinforces the ob-
servation that was made in Sec. IV concerning the equivalence of QEDs to conventional perturbation theory in QED
for Green's functions with no external fermions.

VI. %'AID IDENTITIES AND GAUGE INVARIANCK

In analogy to the well-known Feynman identity for conventional QED [6], we write an identity that can play a simi-
lar role for the 5 expansion. In Appendix F we prove that

g (p+E) 'Ep '= g [(p+E)' p] . —
n1=0 no=0

(6.1)

The amputated Green's function Gz' ' (p, l t, . . ., lz) was given in Sec. V [Eqs. (5.2)—(5.4)]. In analogy with the
Ward identities in conventional perturbative QED [6], we want to write the contraction of Gz with the momentum of
one of the bosons, as a sum of Gz t's. Using Eq. (6.1) this can be easily done. In Appendix G we prove the main re-
sult of this section, the Ward identities for QED&..

12 A.

lj Gg ' (p~ /„. . . , I, . . ., lq)
V.j

1 2 j—1 j+1 A, 1 2
' —1 '+1 A,(p~+ II, ~t, , I~ t, Ij+ t, ~ ~, t~) ——G~ ~ (p~, t ~, ~ ~, IJ —t, tj+ t

(6.2)
Diagrammatic representation of Eq. (6.2) is given in Fig. 9.

In the special case, described in previous sections, when there are no external fermions the effective vertex (the oc-
topus) is given by Eqs. (5.5)—(5.7). The amputated Green's functions in this case are

d

(l„l2, . . ., lq)= f TrG ' ' '(p, l„l,. . . , l ) .
(2n )

Using Eq. (6.2), the contraction of an octopus with 1 gives

v1
~ ~ ~ ~ ~ ~ d

~ ~ ~ ~ ~ ~

(2~)' 7

e d P VV, Vj,Vj+,
(py It ~g —t IJ+t ~ ~ Iz) ~

(2n )

(6.3)

(6.4)

P Pl

r
I ~J

r
/ I

r I

/

r /

/

/

r/
r /

/

2

4
fj.]

FIG. 9. Ward identities for amputated vertices in QEDs. The double arrow on the I line indicates contraction with the boson s
momentum.
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pf
/

5 ~j+1

FIG. 10. Gauge invariance of the "octopus" diagram. (The

A, line, denoted with a double arrow, is contracted with the
boson's momentum I, )

duced by using these rules. %'ard identities are formulat-
ed for the first time in the 5 expansion, reflecting the sym-
metry of the system to all orders in e [see, e.g., Eq. (6.2)
and Fig. (9)].

The relation between the expansion in 5 of QED with
one fermion species [Eq. (4.2)] and QED with 5 fermion
species [Eq. (4.4)] has been demonstrated using a path in-

tegral in Sec. IV and explicit calculation to first order in 6
and all orders in e. This gives an appealing presentation
of the 5 expansion as an expansion around 5=0 fermion
species in case of Green's functions with no external fer-
mion lines. This equivalence to conventional perturba-
tion theory is clearly demonstrated here.

The calculation rules, Ward identities, and the above
observations are appropriate tools for future calculations
in QED in four dimensions using the 5-expansion calcula-
tion method.

This is zero provided one can make a finite shift in the
loop momentum (see discussion in Appendix D):

'(Ii ~ ~

J
(6 5)

VII. CONCLUSIONS

Diagramatic representation of Eq. (6.5) is given in Fig.
10. Equation (6.5) has a well-known meaning: it
expresses the gauge invariance of the octopus diagrams.
In conventional QED gauge invariance of diagrams with
one fermionic loop and A, attached bosons was discussed
in a similar way in Ref. [6].

ACKNOWLEDGMENTS

Many useful discussions with M. Moshe are greatly ac-
knowledged. This work was supported in part by the
Fund for Basic Research administered by the Israel
Academy of Sciences and Humanities.

APPENDIX A: DERIVATION OF E FROM EN
IN THE ONE-DIMENSIONAL MODEL [2]

In Sec. IIB, Ez the ground-state energy for a one-
dirnensional model with the provisional Lagrangian was
calculated [Eq. (2.14)]. Substituting Eq. (2.9) into Eq.
(2.14) and taking the sum over E up to infinity, since

Symmetry and several combinatorial results were used
in this paper in order to formulate new and improved
rules for the 5 expansion and its application to QED. Re-
cent results in the application of the 5 expansion to sys-

tems with local gauge symmetry are promptly repro- gives

2E+
N=0 when I( & —,
2

oo 2K
gM1 —N y g

N —2K

]y ~ ~ ~ yfgo
K

g ran+2K

K

g rj+2K !

K

ff (r +2)!

iv —zx —g,
TM

77
1 +m

T

(2SJ) ' (Al)

In order to find the ground-state energy E of the one-dimensional model in the 5 expansion to first order in 6, one has to
differentiate (Al} with respect to N and set N to zero using the identity [5]

8 N' ( —1)
BN . . a

(A2}

a oo g2K
E~=

BN ~ o TK ) K.

'K

sl~. . . , Sg =0 J =1
2

2&8j +m

(A3)
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X (s ~J, «)= g (2n —1)
f (,. . ., Pg —0

1

g rj +2K

g rj+2K !
K 2g.

g(r +2)!
(A4)

X«vanishes unless all sj are zero [2]. For sj =0 we are left with the rI =0 term only:

Xh(s. =0~. , «)= g (2n —1) p«(2K —1)!

pg
= oo

2K
(A5)

Substituting Eq. (A5) into Eq. (A3) and using g„" „(2n —1) =2(1—2 )g(2K) where g is Riemann's zeta func-
tion, one gets Eq. (2.15):

E= 5 ~ (
—1) (1 2 P«)(2K I )() g(2K) g T

TK, SC m
(A6)

APPENDIX B: THE OCTOPUS DIAGRAM OF ORDER e 2

The first step in the 5-expansion method for calculating the octopus diagram of order e gives Eq. (3.29) and (3.30).
The second step consists of d/dN ~ht o There. are only two kinds of terms to differentiate and the differentation of both
is given in this appendix, proving Eqs. (3.32) and (3.33).

First we prove

where

g' to(N, r, h ) =0,
N=o, d=2 A =0

(Bl)

to(N, r, h )=

N
2

r+h+2
2

r+h+2
2

h
h!

! rh

2

dr—
2

d+h
2

(B2)

Substituting Eq. (A2},

a r+2 d r+2 1(N r h) —
( 1) /2r y ( 1)h/2

N N=o h=o 2 h=o (r+h+2)

r+h+2
2

h

h! 1

h
( r d+h

2
'

2

1)m+lr(D } y m
( 1)~ (rn +a—1 }!

m! 2 o .a . (D+a —1)! (B3)

where D=d/2, a=h/2 —and m =—(r+2)/2 are all integers. Using the beta function [5] B(x,y)=I'(x)I (y}I
I'(x+y ) =fodt t" '(1 —t }r ' we get

m m
( 1)~ r(m+a)

r(D+a)
m m

( —1) B(m+a;D —m)rD —m. o
a

m m
( —1) fdx x '(1 —x)I (D —m)

1 f dxx '(1—x)m ' g (x —1)
a=0

1 f dx x '(1 —x)I (D —m} o

1

I'(D —m }
B(D,m}

r(D)r(m)
r(D —m ) I (D+m )

(B4)

If m ~ D ~ 1 (r & d —2 ~ 0}this is zero. (For d =2 it is zero for all r ~ 0 but for d =4 it is zero only for r ~ 2.) Thus we
have proven Eq. (Bl) for d =2. Notice that at r =0 the expression in Eq. (B3), which vanishes at d =2, multiplies a log-
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arithmic divergent integral. The product is set to zero by gauge invariance [3].
Next we prove

a 4hr r
co(X, r, h )

BX „(r+h+2)(r +h) ' ' 2

! — l
r r
2 2

(r+ 1 }!
(B5)

Substituting again Eq. (A2),

a 4hr
dN ~ o q~o (r+h+2)(r+h )

V+2
=( —I)"~ I —r g' ( —1)"

2 6=0

r+h+2
4h 2

(r+h+2) (r+h)
h!

h, d+h
2

'
2

r

1
" "

p (n+P)! 1

n! ~q P (D+P}!(n+P+2)
(B6)

where P—:h/2 —1, n = r/2 an—d D —=d/2 are all integers. We will now use 1/(n+P+2)= f o dt e ""+~+ '. For

n+a&0,

( 1 )p
(n +P) 1

(D+P)! (n+P+2)

n —D

n —D

n n
x f dt(xe ')"+ g (

—xe ')~
0 po .p

x f dz z"+'(1—z)"
x =1 0

'n —D
1dz. "+'(1 .)"—

x =1 0

=—(
—1)" (n D+1)!—1 „D n fn!

2 (2n + 1)!
(B7)

where we have substituted z =xe ' and used

(n +P)! /(D+ P)!=(8 /B x)" ~„,x~+" [5]. (n =D im-

plies no derivative. ) Substituting this into Eq. (B6) one

gets, for r & d &0,

8 ", 4hr
aX ~ (r+a+2)(r+a }

(3.34) by a symmetry factor 2 gives

j'Pl V —g~ woeP V

r
oo

C=4 g' ~ - ~ (I2)r/2 / p
( 2)( —r —2)/2

o 2 (r+1)! (2m )
J",P

(Cl)

!
2

=( —1)
- r —————+1!d/2 d r r

2 2 2 2 (r+1}!

For d =2 this completes the proof of Eq. (B5).

APPENDIX C: THE PHOTON PROPAGATOR
IN THE SCHWINGKR MODEL (COMPLETED)

(B8)

(C2)

d p=2np dp where p =—Qp~", I:—Ql„l&. Each term
(r 2) in (C2) gives an integral that is infrared divergent.
However, if one performs the sum over r first, one obtains
a convergent integral [3]. Taking r/2=n, (I/p)=z one

gets

In this appendix the calculation of the photon propaga-
tor in the Schwinger model is completed. The relevant
diagram, namely the octopus diagram of order e was
calculated in Sec. III B [Eq. (3.34)]. Multiplying Eq.

4 dz " z„n!n!
z "n

2m. o z „o (2n+1)!
(C3)

Using again the beta function n!n!/(2n + 1 )!
= fox "(1—x )"dx [5] and taking y =x(1—x )z~ —1,
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C=—f f dx g n[x(1 —x)z ]"
0 Z 0

2

z z x 1 —x x —ln 1 —x 1 —x z
8[x(1—x }z']'

1 fid f~dy 1

7T 0 —1 y 7T
(C4)

Substituting C back into (C1) one gets

2 l"lv

5 —g"" A„A„. (C5)
m

f(even m, A, =2,N)=-
~=0 2

2
'

2

(m + 1)!

For 5=1 this is indeed the photon propagator in two-
dimensional QED [Eq. (3.35}].

The infrared divergences in the general case might be
overcome by first performing the sum over m, as was
done in Appendix C. If the sum

APPENDIX D: DISCUSSION OF THE SHIFT
IN THE LOOP MOMENTUM INTEGRATION

y~m —i —m f(m, A, ,N) (D3)

In the proof of the cyclic symmetry in Sec. V and in

the verification of gauge invariance in Sec. VI an assump-
tion was made that one can shift the loop momentum p.
In the following we will discuss the legitimacy of this
shift taking into account ultraviolet and infrared diver-

gences.
Each one of the integrals summed over is of the form

[Eqs. (5.6) and (5.7)]

eonverges in the limit of small p to -p' where z & A,
—d

there are no IR divergences, and the shift was indeed
proper. (For the previous example z=2 [Eq. (C4)] and
this condition is indeed satisfied. ) For higher Green's
functions (A, &d+z) or for eases where the sum over m
does not converge, IR divergences are unavoidable and
should be treated, as they are usuaBy treated in quantum
field theory, by taking into account the experimental lim-
it as an IR cutoff.

» ~=0, ,=0

d p5 N A. gm——f (2m ) 2. Ultraviolet divergences

Tr[P "g . . (P+J', +Ez) 'A, (P+Ei) 'Ai

(D 1)

1. Infrared divergences

Equation (Dl) has been calculated in this paper and in
Ref. [3] for d =2 and A, =2. IR divergences were treated
by summing over [mj J before integrating the momentum
(see Appendix C and Ref. [3]). Increasing d can only help
to soften the infrared divergences. In order to discuss the
effect of increasing A, one can study a simplified from of
Eq. (D 1):namely

gN)f P ~m N i m——
BN N 0

' '
(2~)d

=f d gl p f(m A N). (D2)
(2n. )" dN

The highest power of p in Eq. (Dl) is p . For the
two-point function calculated in Sec. III the relevant
term is given by Eq. (3.29). The leading UV divergences
are taken care of by 8/BN~& 0 as was shown in Ref. [3]
in the discussion preceding Eq. (4.9) there [5]. Setting N
to zero before inteIerating gives for large p an integrand
proportional to p . As long as A, & d there are no ultra-
violet divergences (for A, =d there is a logarithmic diver-
gence which still allows a shift in p). Since for d =2 this
condition is always satisfied, a shift in the loop momen-
tum gives the exact results. For d & 2 this is also true for
high Green's functions but not for 1ow ones. For A, & d
UV divergences appear and a regularization scheme is
needed. One can show that if an UV cutoff is used then
for lower Green's functions in higher dimension the shift
in the loop momentum results in adding a less divergent
part to the integral. Thus, the equations that were prov-
en by using the shift [Eqs. (5.9), (5.10), and (6.5)] hold in
these cases only to the leading divergent order.

The derivative must act on f since f(m, A, ,N=O)=0 be-
cause f is basically, as was explained in Secs. II and III, a
combinatorial weight for distributing W objects. Note
that the continuation of N from the integers to the real
axis is used here for regularization [5]. In the case of the
two-point function it has been shown in Appendix C that,
for d=2 [Eq. (C2)],

APPENDIX E: ORDER e OF THE PHOTON
PROPAGATOR (AN EXAMPLE FOR THE

EQUIVALENCE TO CONVENTIONAL
PERTURBATION THEORY)

In this appendix Eq. (5.12) is proven by calculating Eq.
(5.10) for A, =4. We want to calculate
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4 N —4—m3N —4—m3 —
m2

X X X
4 m3 m2 ml v4 m3 v3 m2 v2 m

& v&

Tr(40 r 43 r 42 ) 41
m3 =0 m =0

2 m) =0
N=O

There are 2 =8 possibilities for the parities of m 3, m 2, and m, (N is even). We numbered them by i, and treated each3=
one of them separately. All eight sums are of the same form with difterent parameters A;,B;,C;,D; and F;. Table I
gives for each choice of parity (e stands for even, o for odd) the relevant parameters (mo =N 4 —m—

3
—m2 —m, ), and

we get

8

Z = g TrF~(qo )
'

C,.

[m 3/2] =O [m
&
/2]=0

2 [m3/2] B,. —[m3/2] 2 [m2/21 A,.—[m3/2] —[m2/2]
q2

qo [m, /2]=O 90

fm& /2)

2
(E2)

A,. +1

S2(z,y ) — S~
1 x 1 —x x x

To calculate Eq. (El) we have to calculate eight sums of the form S3(z,y, x ) for C;,8;, and A; given in Table I where

C 8 —c A. —b —cl 1 l

S3(z,y, x)—:g z' g yb g x'= (E3
c=o b=o a=o

C,. B.—c

S2(z,y)= g z' g y =
c=o b=o

C,- C,.+1
S)(z)= g z'=

1 —z

B,.+1

s, (z) — S,y
' z

1 —y
'

1 —y
'

y
(E4)

(E5)

When N is set to zero [5], the results are

Si(z)= .

for C, = —2,

1 11+— for C, = —3,
z z

(E6)

Sz(z,y) = 0

for C; 8,
—2 —2

—2 —3

(E7)

1 I 1——1» —y
—3 —3

TABLE I. 2 =8 possibilities for the parities of m„mz, and m, in Eq. (El) (N is even) are numbered

by i, and treated separately. All eight sums are of the same form given in Eq. (E2) with different param-

eters A;,B;,C;,D;, and F;. (e stands for even, 0 for odd and mp =N —4—m3 —m2 —m&. )

m3 m& mp

V V V V

y 'y 'y 'y ' ——2
2——2
2
N——2
2
N——2
2——3
2
N——3
2——3
2——3
2

B;

N——2
2
N——2
2
N——3
2
N——3
2
N——3
2
N——3
2——3
2——3
2

——2
2——3
2
N——3
2——3
2——3
2——3
2——3
2
N——4
2

——2
2
N——3
2
N——3
2
N——3
2——3
2——3
2——3
2——4
2
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S3(z,y, x)=,
for A; 8,-

any —2
—3 —3 (E8)

xyz
Two examples of the explicit calculations will be given now. The other terms were obtained in a similar way:

1 1 1 1
S3(z,y, x )( A, = 3,B—; = —3)=

1 —xz1 —y

1 1 x 1

X21—xz y
X

X——1
y

1 1 1
S3(z,y, x )( A; = 4,8;—= —3)=

1 —xz1 —y y

1 1 x 1 x——1X31—xz y y
X

1 1 1 1 x-y 111
1 —xzy x1—x zx —y y xyz

We found that S3(z,y, x ) =0 for all i except i =8. The only sum that does not vanish, the sum over elements with odd
m, , m2 and m3, gives —(xyz) '. In Eq. (El),

X=
qO qO qO

and we get

Z= —(qo) Tr(Y '43Y '/AY 4i Y 4o)

g )I3 &3 (t2 &2 4 1 &) ~o &4 1 &3 1 &2 1 &) 1
'Y 'V 'Y

q3 q2 qf qo 43 6 4i 4o

If qo, q„q2, and q3 are now properly substituted the proof for Eq. (5.12) is completed.

APPENDIX F: AN ANALOG IN QEDB TO THE FEYNMAN IDENTITY

In conventional perturbation theory for QED the well-known Feynman identity

(p+E) 'Ep '=(p+E)

was obtained by rewriting 1 as (p+1)—p [6]. In QEDs we have (with a general weight function w)

g w(n, +no)(gf+1') 'JP '= g w(m) g (P+f) 'g)f

(E9)

n =On =0
1 0 m=0 n) =0

00 m= g w(m) g (gf+J')"(p+j' —p)lf
m=0 n=0

= g w(m) g [(p'+1')"+'lf " (/+1')"p —"+']

oo m+1 m= g w(m) g (P+f)"gf "+'—g (gf+j')"P
m=0 I=1 n=0

= g w(m)[(P+E) +' —p +']= gw(a —1)[(/+I') —P ], (F1)
m=0 a=O

where a =m + 1, but although m ~ 0 a is taken from zero since the a =0 term cancels. For w =—1 this is Eq. (6.1).

APPENDIX G: WARD IDENTITIES FOR QEDB
~ ~

The contraction of the amputated Green's function Gz' '
(p, 1„.. . , lz) with the momentum of one of the bosons

will be calculated now. In order to get the results in a simple form we label the incoming fermion momentum p&
=—lo
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and the outgoing fermion momentum p&=—I&+). We denote G&' ' "=G&' '
(Ip, l), 12, . . . , I~, I&+) ). Notice that

momentum conservation at the vertex gives lz+) = —g~ pl but although the outgoing fermion momentum is not an
independent variable it is written explicitly. From Eq. (5.4),

V)V2
'

Vg
l~. gx (lo, l), . . . , I), l)+) )=

J np, n), . . . , ng=0

jig

5 N —A.
—$ n; (Ep+E, + . +Eq)

i=0

Using Eq. (Fl),

xy . (E +E + . . +E, , +E')

XEJ(Eo+E)+ "+E-1} 'r ' ' r" Ep' . (Gl)

5 N —
A,
—g n, (Ep+E)+ +E, , +E ) 'E.(Eo+E, + +EJ, ) '

n. =O n. =0

= +5(N —I,—[n)+ +n +,+(a—I)+nj 2+ +no]}
a=0

x[(E +E, + +E, , +E, ) (E +E, + — +E, , ) ]

one gets

1 2 v
(lo I) I). I),+) }

J

$ 5(N —(A, —1) (n)„—+ +n~+)+a+n 2+ . . +np)}
n. +]=oa=o n. 2=0

(A. —1) sums

n =0
0

(&—1)+ 1 integers

x(E, +E, +E, ) 'y ' (E,+E, + +E, , +E, +E„,) '"y "'
X [(Eo+E)+ . +1~,+EJ )

—(Eo+E) + . +EJ, ) ]

Xy ' '(J'p+E, + +Ei 2) ' '
y 'Ep'

\ ~ ~ ~ ~

=g~ )
' ' ' '+' "(lp,l„.. . , I. ~,(l,+I ), I +),IJ+~, . . . , 1),lq+, )

'(lo I) IJ 2, )(I,+-)+-, », +2 ). I).+) )

The notation we used (namely, p&
——lp and p&

——I),+)) enables us to write Eq. (G2) for contraction with any IJ,

j = 1, . . . , A, (including j=k and j = 1). Thus we have proven

ljg~(lp ~ ~ ~ IJ ) IJ IJ+) ~ ~ ~ l~+) )=g~ )(ip ~ ~ ~ (I~ )+IJ ) IJ+) ~ ~ ~ I)+) )

g). )(Io — I,-)(I,+)+I,»-.. I).+)»
where Lorentz indices were suppressed.

In order to get the Ward identities for Gz we use Eq. (5.3):

(lo 11 ~ IJ . I)I).+)).
J

%1) A2) Q A. )
Ii gp(lp, l~, ), . . . , 1~)).. . ) l~(), l)+)}! ~N w=o

(G3)

where ~ is any permutation of the indices 1, . . . , A.. Notice that 6 does not depend on the order of momenta but g
does: g(. . ., I), lz, . . . )Ag(. . . , Iz, l), . . . ). There always exist g for which m(g)=j. We rename the momenta

q), —=I,q&
—lo, q&

—=I&+, , q,. —=I&,.) for i = 1,2, . . . , g
—1 and q, = I&, +, ) for i =g, . . . , A,

—1. The summation over all the

perrnutations is done in two steps. In the first step, for a given ordering of all I; excluding I we sum over A, insertions of
I among them (q) is dotted into g& and we are still suppressing Lorentz indices):

q~[g~(q~ q~ q) . q~ )q;)+g~(q~ q) q~-q2 ' ql )—
+ (g~(q~ q) . . q, q~ q, +) . q~ ),q~!+ +g~(q~-q». q~ )q~ q;)]-

=g~ 1(qy+q~ -ql . q~ )q;) g~ 1(qy ql -. q~
—)q-;+q). ) «4-)
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where Eq. (G2) was used to cancel all but two terms, each of lower order than the contracted one. Substituting Eq. (G4)
into Eq. (G3) and returning to the notation with 1, we are left with the second step in g, namely, to sum over permuta-

tions of the indices 1, . . . , A, excluding j. We denote these permutations by m':

6 1' 2 j
J A,

1

1' 2 —1' '+1 A,

(p»j'» 1» ' ' » j»» A. ) ylgA. .—1 (p»j»+ j» 1»» lj —1»/j+1»»/A, )v ax N=O ~
1' 2 j—1' j+1 A, (pg»/]»» Ij —]»/j+]»» /()] (G5)

The RHS of Eq. (G5) is easy to recognize as Eq. (5.3) for (A,
—1) instead of /(, and we get the Ward identities [9]

/, Gj,(py /i

e e=—Gg, (p~+/j»/|». . . »/j, »/j+|». . . »/q»p~)
——Gq, (p~»/|». . . »/j, »/j+|». . . »/q, p~+/. ) . (G6)
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