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Self-consistent compactification at finite temperature on R XS XS
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The self-consistency equations resulting from the Einstein equations for a space-time of the form
R XS XS, with the vacuum-averaged energy-momentum tensor of a minimally coupled scalar field as
the source, are solved using a one-loop finite-temperature calculation of this tensor. Solutions for low
temperature are found to exist for large and small values of the radius ratio and also for the ratio close to
1/&2. For the ratio equal to 1/&2 a zero-temperature solution is found. There is a maximum tempera-
ture for the ratio larger than this.

PACS number(s): 11.10.Kk, 03.70.+k, 04.20.Jb

I. INTRODUCTION

This calculation is a further example of the one carried
out in [1] where solutions of the Einstein equations for
static space-times of the form R XS XS were found, us-
ing the vacuum-averaged energy-momentum tensor of a
minimally coupled scalar field at finite temperature as the
source. The self-consistency equations were solved exact-
ly up to numerical procedures and it was found that aside
from a symmetric solution that existed at all tempera-
tures, solutions did not exist for ratios of the sphere radii
between certain values. The calculation in this paper
uses a space-time of the form R XS XS to investigate
how the behavior changes when the symmetry between
the spatial sections is removed. The method used is tech-
nically similar to that in the previous paper.

A Kaluza-Klein solution would have the radius of S
being small while that of S was large. We investigate all
possibilities. It is important to carry out a full analysis
and, since these calculations are somewhat involved, the
system considered has to be an idealized one for simplici-
ty. The choice of dimensions for the spheres was intend-
ed to produce a tractable case that nevertheless was not
too simple. The space-time dimension has been kept odd
to avoid the problem of divergences.

One of the earliest papers on the effect of finite temper-
ature in compactification was Ref. [2], using a space-time
of the form M XS'. Subsequent calculations include
that of Randjbar-Daemi et al. [3] who studied self-
consistency at finite temperature with time dependence
for space-times of the form R XS XS", calculating the
effective action in the static approximation. They used
approximate forms for both the zero- and finite-
temperature parts. Yoshimura [4] and Acceta and Kolb
[5] discuss the same case with similar approximations.

Calculations of the stability of various classical back-
grounds against deformation produced by quantum Auc-
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tuations have been done by Shiraishi [6] and Okada [7] at
low and zero temperatures, respectively; Szy&owski and
Szczysny study the stability of solutions with static mi-
crosp aces for a space-time of the form Friedmann-
Robertson-Walker XS XS in a low-temperature ap-
proximation [8]. Szczysny, SzydEowski, and Biesada in-
vestigate mixmaster models R XM XB (where M is Bi-
anchi type IX) at high temperature [9]. Compactification
using a nonlinear sigma model as the scalar field has been
studied by Chakraborty and Parthasarathy [10].

Other work in this area includes the use of Epstein zeta
functions by Shi and Li to calculate the vacuum energies
of p-brane models [11], and Odintsov's use of zeta-
function techniques to calculate Casimir energies of p-
branes [12].

II. FIELD THEORY ON S XS

The system considered in this paper is that of a gravi-
tational field and a minimally coupled massless scalar
field. The effective action for these fields is expanded to
zeroth order and one loop, respectively; thus the effective
scalar field will obey the classical equations of motion and
will be taken to be zero. The effective gravitational field

obeys the Einstein equations but with a source term con-
sisting of a classical energy-momentum tensor evaluated
at the effective field (and so zero here) and a one-loop
quantum correction which will depend on the effective
metric of the space-time.

In this paper the space-time will be restricted to the
form R XS XS, with maximally symmetric spheres, so
that the only parameters in the metric are the radii of the
spheres. Since the calculations are at finite temperature
we must work with a finite-temperature effective action
or alternatively the free energy I' for the scalar field,
which for an ultrastatic space-time are the same thing up
to a sign [13]. The effective action thus depends on the
sphere radii and the temperature, and these may be
varied to produce the effective field equations. This is
done in Sec. III.

In this section we calculate the zeta function on the
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spatial section of the chosen space-time. From this the
zero temperature vacuum energy can be found as [13,14]

The zero-temperature free energy I'0 is equal to Eo and
the finite-temperature quantities can both be expressed as
the sum of the zero-temperature values and a finite-
temperature correction, and so it remains to calculate
this. This is discussed at the end of this section.

The zeta function on the spatial section can be defined
formally in terms of the Green's function of the relevant
operator, but it is easier here to go to the resulting eigen-
value form. The zeta function of an operator (in this case

V—5/a V—z/b where a and b are the radii of the 5-

sphere and the 3-sphere, respectively, and Tz is the La-
placian on a unit A sphere) is given by

g(s) =g' 1

k(a)'

where A,(a) are the eigenvalues (aE A where A is some
index set) and the prime means omit from the sum
[a~A(a)=0]. The eigenvalues and degeneracies of the
Laplacians in this case are

operator eigen values degeneracies
—

V~ m (m +4) —,', (m +1)(m +2) (m +3)
—Vs n(n+2) (n+1)~

where m, n =0, 1, . . . . So g(s) can be expressed as

g(s) = g' —,', (m + 1)(m +2) (m +3)(n + 1) +
m, n =0 8 b2

S

(3)

A redefinition of m and n is helpful:

M =m +2, X=n+1 (4)

This can be related to the modified Epstein zeta func-
tion [15]

in terms of which the zeta function becomes

00 M2
g(s)= g" —,', (M —1)M N

2
+ +c

M=O a2 b2
N=O

S

(5)

where the double prime means that the zero mode term
(M, N) = (2, 1) is omitted, and c =—4/a 2 —1/b .

«»= X"' (xrx) '
M= —00

N = —ao

where coxrz=(M /a +N /b +c )' and the triple
prime means omitting the terms (~M~ &2,N),
(M, )N~ &1), and ((M~, )N()=(2, 1). g(s) can now be
found in terms of Z(s) and its derivatives:

g(s)= 12Z(s) — 7
z

+121 a a
48 a(1/a ) a(1/b )

Z(s —1)
(s —1)

a a a a Z(s —2)
a(1/a') a(1/a') a(1/u') a(1/b') (s —1)(s —2)

a a a Z(s —3)
a(1/a ) a(1/a ) a(1/b ) (s —1)(s —2)(s —3)

Z(s) can be analytically continued using the incomplete gamma and Bessel functions I'(s, x), y(s, x), and E,(x,y ) [1]:an
expression for g(s) can thus be obtained:

3 oo

g(s)= g"' m. (M —1)M N I'(s, ~co )
481 (s) '

M = —oo

N = —oo

t'

a b n. 3 2

E + ab+ (Na—b+Mab) E4—s

~2 Sb 5+ M2 7b 3+ 3~2~2' 5b 5

4 2

2
M4 9b 3+3 2M2~2g 7b5 g ~3M4~2g 9b 5~

2

3 5 3 m.ab 48~+—a b y(s —4, ~c)— y(s —3,mc)—
8

' 4 s
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The arguments of the incomplete Bessel functions are always [m(M~a+N~b~ ), n c ], and an asterisk means omitting the
(M, N) =(0,0) term.

The expression for Eo is thus
r

1
OO

Eo(a, b) = —
4

g"' ~ (M 1—)M N I ( ,'—, m—mM&)
192m.

ab~ 3 7T'

4 7/2 8
E + —ab+ (Nab+Mab)

2 9/2

—~.Va b'+ —~Ma b +~'MXa b
2 5

2 11/2

2

+ M a9b +3~ M2Pf a b ~ —m M iy2a9
2 1&/2 7T 15/2

ma b+ ab y(—9/2,—nc) — y( 7/2, nc—)+96m
8

' 4
(9)

(M —1)M N AM~ +—
~ 12 (e™1) P

N=1
(10)

r)F' "
1 (M —1)M N (M 4)—= —X"

Ba M=212 a3N (e'-MN 1)
N=1 MN

A typographical error in [1] should be pointed out here.
In Eq. (9) of [1]the parentheses in the denominator of the
fraction are incorrectly placed around Pc@ „—1. They
should enclose exp' „—l.

The trace condition can be derived from these two ex-
pressions and the equivalent one for BF'/Bb. Because of
the dependence of the free energy on the scale length in
the presence of a zero mode there is an anomalous contri-
bution to the trace [1,17]:

As before an expression for dEO/da can be found but will

not be written out. The apparently incorrect scaling di-
mension of the last term in Eq. (9) is due to the introduc-
tion of a length scale in the continuation of Z(s). The
other terms in this equation also possess incorrect scaling
but the overall expression has the correct dimensions.

The algorithms used to calculate these quantities are
those of [16] for the I, y, and K, functions, which were
the ones used in [1).

The remaining finite temperature parts of the free and
vacuum energies can be calculated from the following
mode sums [1,13]:

III. SELF-CONSISTENCY FOR S XS .

The Lagrangian for the system under consideration is

L = f (R 2A)goo d(—vol) F=LG F—. —1

16mG
(12)

R is the Ricci scalar on S XS, A is the cosmological
constant, d(vol) the spatial volume element, and F the
free energy of the scalar field. Using the total free ener-
gy, F —I.G, a finite-temperature action can be defined,

lnZ = (F LG )p— — (13)

and a, b, and P varied in (13) to produce the self-
consistency equations. This gives

E= Q5a Q3b (R —2A),
16mG

BF ~5~, , 6o 3oa a b
Ba 16~G a 2 b

(14)

(15)

A= 7R—1 8G
18 ~4a'b3@

(16)

where the values of m and Q5 and 2m for 0& have been
used. The self-consistency equations now become

(where Q„ is the area of a unit radius 3 sphere). There
is a corresponding expression for bBF/Bb which will not
be written out here. A can be found from the trace con-
dition (11).

BE BF 1 4a'b' Z
4G 9 9P

(17)
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E(a, b,P)— 1

BF 5
(a, b, P)

3a2+ 10b2

15a 2 —40' 2
(18)

2

a —A —P, (a,P)
20

16G a2

and the trace condition is

(24)

Alternatively, (18) can be expressed in terms of dF/db,
but again this will not be written out here.

From the field theory expressions for Eo and the finite
temperature corrections in terms of the eigenvalues some
scaling relations can be derived:

bE(a, b, P)=E —,1,—a

ay.
a +3/, +g, =0.

Ba

After variation ofX these produce

a = 2[2', (1,A,, )+p, (1,Ag)]
5m

and

(25)

(26)

b (a, b,p)=, (a', l, kb), =,gb,
dF BF

and employing these in (18) we find

(19)

10 4', (1,A,, )+3/, (1,A,, )
A, =

3a2 2q, (1,A,, )+P, (1,A,, )

For zero temperature this gives

ao=
2 Y/ (1 00 ) rl (1 Oo ) —4.28X 10

186 4

5m

(27)

(28)

E(a', 1,Ab)— 1

b

, (a', l, kb)—dF, 5

3a +10=a'
15a

' —40
(20)

This equation agrees with that found by Candelas and
Weinberg [18]. The value for g, (1, 0o ) is taken from [19],
and agrees with the value found using the method of cal-
culating zeta functions adopted here.

where a'=a/b and A, b =p/b. Solutions of this equation
in the form of values of Aband a' , (or of the correspond-
ing equation involving BF/Bb in the form of values of A,,
and b' where b'=b/a and A,,=P/a) can now be found
numerically, evaluating the left-hand side from the field
theory expressions. These can then be used in the scaled
version of (17):

m a'b 10E(a', 1,Ab)=, +3 +
18G

(21)

to find b and hence to rescale a' and A, b to a and P [or by
using the b' version of (21}to find a, to rescale b' and A,,
to b and p]. The results of this somewhat lengthy pro-
cedure will be described later but we will first look at the
specific cases of R XS XR and R XR XS as these re-
quire treatment ab initio and also provide a check on the
numerical solutions by "linking up" with them as the ra-
dius ratio goes to infinity.

IV. LIMITING CASES

A. Replacing S3 by R 3

The free and vacuum energies must now be expressed
as densities, defined by

g, (a,P}= lim ' ', P, (a, b,P}= lim
E(ah, ) . F(ah, )

b ~ 2m b b ~ 2m'b

(22)

B. ReplacingS byR

Pb(1, A, b)=b Pb(b, P), (29)

2rlb(1, Ab)+5pb(1, Ab )
Ab=

4rjb(1, Ab )+5pb( l, kb }

r]b(1,Ab)=b 'gb(b, P), (30)

and for zero temperature

ho= rib(l, ~ ), rib(1, 00 ) =7.09X106G
(31)

The expression for the free energy of the field when one
of the spheres is replaced by R„ is given in Appendix A 1

below: this expression is used to calculate the variation of
a and b with p for each of the cases and the results are
plotted in Figs. 1 and 2. The behavior here is qualitative-

9-

7

The calculation for R XR XS proceeds similarly and
gives

b — [4gb( l, kb )+5$b( l, kb )],26

and with scaling relations (from those for E and F) I

'o k I

2 6 I 10

g (1,A, )=a rl, (a,P), P (1,A, )=a P (a,P) . (23)

The Lagrangian density becomes

a

FICx. 1. The variation of temperature with radius for
RXS XR .
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FIG. 2. The variation of temperature with radius for
R XR'XS'.

ly the same as in the case R XS XR, with a maximum
temperature found in both the above geometries for par-
ticular values of the radius of the remaining sphere. In
the R XS XR case the maximum temperature is
T=0 904 and occurs at a =0 5036 ' . In the
R XR XS case the relevant quantities are T=0.964
and b =0.4126 '

The values for ao and bo found in this section agree
with those found by calculating a or b from (21) using the
numerical solutions as b' or a' becomes large. For a' and
b'=30 the values agree to three decimal places, and at
the same time the temperature is going to zero, thus
"linking" with the limiting solutions.

V. RESULTS

The results obtained from solving the self-consistency
equations (20) and (21) are plotted in Fig. 3. The plot is
of temperature (=P ') against r =(b' 1)I(b'+1—).
There are four limiting regions: r ~—1, r ~ 1,
r~ —0. 17 (a'~&2), and r~ —0.27 (a'~1.737). As
the solutions approach these limits the values of (a, b)
tend respectively to (ac, bc), (ac, ac ), (ac, Oc ), and (0,0),
where ao and bo are the self-consistent radii at zero tem-
perature calculated in Secs. IV A and IV B. Figure 4 is a
plot against r of A, b in the left half and A,, in the right half
of the figure. Two different variables are used so as to
afford a better comparison between the two halves of the
graph.

To give some idea of where Fig. 4 comes from Figs.
5 —10 reproduce plots of the left- and right-hand sides of
(20) against a' for various values of Ab The beh, a.vior of
the b'&1 solutions is fairly straight forward and this is
reflected in the simple behavior of the right-hand side of

FIG. 4. Solutions of first self-consistency equation [(19)or its
equivalent in terms of dF/db'] plotted as Ab against r (left), k,
against r (right). The curve delimiting physical solutions (above
the curve a and b are negative) is also shown.

Fig. 4. The solutions calculated from (20), however, have
a more complex behavior. The story is roughly as fol-
lows.

There are two solutions for A, b
—+ ~, one of which is at

infinity (Fig. 5), and these persist as A,
& decreases (Figs. 6

and 7) until the two branches converge in Fig. 8, at
a' = 1.69 and A, b

——5.47. There is then a range of A, values
for which there is no solution for any a' for which the
central branch of the curve of the left-hand side of (20) in
Fig. 8 passes between the two branches of the right-hand
side before a solution appears at a'=1. 19 and A.b =3.97
in Fig. 9. This then splits and one of the solutions goes
below a'=1 (Fig. 10); the other drops to A.b=0 while
a'~&2, the limit described in Sec. V A 3.

As in [1] there is still a region of ratio values for which
there is no solution, but now the symmetry present in the
former case has (not surprisingly) disappeared. However
there is still a zero-temperature solution for a finite value
of the radius ratio, corresponding to the symmetric
branch of the solution in the R XS XS case, and the
left-hand branch of the solution here (when S is the
internal space) also qualitatively resembles the solutions
in [1],although the functional dependence of T on r, even
in the approximate case, is different.

The precise shape of the right-hand branch of the
curve in Fig. 3 means that as T varies the number of solu-
tions changes, from three at low values of T to four at a
critical value, then to five, back to four again, then three
and finally to just one for high enough values of the tem-
perature. While no deep significance is to be attached to
these facts, it does show that the solution sets can have a

4-

I I I 1 I I

2-
f'

a
t0
I

0-2-

FIG. 3. Solutions of the self-consistency equations plotted as
temperature against r.

6 8 10a'

FIG. 5. Plot of the left- and right-hand sides of Eq. (19)
against a' for A, b

= Oo showing how the solutions change as A.&

varies.
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$ =5.5 X =5.41

100-

a
t

p -100-I

r

t
j 0
0

—200 . 2
a

-100-
I

1 1.2 1.4, 1.6a'

FIG. 6. Same as Fig. 5 for kb =5.5.
FIG. 8. Same as Fig. 5 for A.b

=5.48.

A. Approximate solutions

The expression in Appendix A2 applies when rT for
one of the spheres is large. The procedure adopted in this
section is to use this expression to solve the self-
consistency equations with the restrictions that rT and A,

are large, the reasons for the second condition being (1)
that it simplifies the solution greatly and (2) that the ex-
act solutions show that when A, is large the radius ratio is
too, which is the condition we are actually interested in
from a physical point of view.

1. The large-a ' case

For large aT, E, and F can be expanded:

E (a', 1, )(& ) =A(ib )a' +S(Az )a'

F(a', l, lb ) =8(ib )a' +2&(A& )a'

(32)

(33)

For large A, b and large a' the self-consistency equation
can be solved and gives

more complex behavior that might at first be thought and
hints that in a dynamic model unexpected behavior could
show up. For R XS XS the number of solutions for a
given temperature was three and did not change as T
varied.

A (&q ) —C ( A b ) = 12(z (6)A t, , where gz (6)= l.01734,

A(~)= g'( —3)=m'X7. 09X10 '1

768

&(~)=— g'( —2)=(5m'/6)X7. 57X10 '.5

384

So

a' =8.764X10 XA,b . (35)

Since a' and A, & are large, b =bo which is given by (31).
Using this we have bo =bog ', where bo =0.2016.

2. The large-b' case

E and Fcan be expanded similarly to the above case:

E (1,b', A,, ) =A'(A, , )b'+8'(Ab )b',

F( l, b', A,, )=C"(A,, )b' +2)'(A, )b' . ,

Now the self-consistency equation gives

27A'( oo ) —20$'( oo )

30[A'(A, , ) —C'(A, , ) ]

(36)

(37)

(38)

and using the expression in the appendix but with d =5,
n =3 we get A'(A, , )

—C'(I,, )=8'�(4)A, , where

g~ (4)= 1.08232,

3QA ( oo ) —2S( oo )

5[A (A, b )
—C (A,g ) ]

(34)

A'(oo)= — g'( —2)=2m X4.28X10
32 '

g'( oo ) = —,
'

gs(
—1 ) = —m X 1.11X 10

Inserting these values gives
From the expression in the Appendix with d =3, n =5,

b' =3.563X10 (39)

g ~5.49
b

I I I I I I I I I

200-
4-

I

c3

t

p

100-

-100-

2-
r
c3 0 ~

t
I

0-2

-200-
I I I

1 1.2 14 . 16
3

1.8
I I

3

FIG. 7. Same as Fig. 5 for A, b
=5.49. FIG. 9. Same as Fig. 5 for A,b=4.
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4-

F(a', l, k, b ) = —2&m.a '5(z(9)I ( —,
'

)A, &
9, (42)

2-
a

j 0

0
-2-

E(a', l, kb)= 8F—(a', l, lb) . (43)

2 ~ 3a'
I I I

5

Substituting these into the self-consistency relation (20)
gives a solution for A.b in terms of a:

FIG. 10. Same as Fig. 5 for A, b
=3.

&I,
=27&~(@(9)I ( —', )a '(2 —a '

) . (44)

Now a =ao which is given by (28). Using this we have
ap=apG ', where ap-—0.2859. The approximate forms
calculated here agree with the numerical solutions in the
regions where the approximations apply.

It is necessary to have a value for 6 in order to calcu-
late explicit numbers for ap and bp. If the Lagrangian in
nine space-time dimensions is compared to the Einstein-
Hilbert Lagrangian in four dimensions (here we are talk-
ing about the large b' case) then the coefficient of R4, the
Ricci scalar in four dimensions, will be 1/16m. G where G
is the "observed" four dimensional Newton's constant.
(The renormalization of the gravitational coupling con-
stant by one-loop effects in Kaluza-Klein space-times has
been examined in Ref. [20].) From this comparison we
get

So as a'~&2 from above, Ab ~0 as can be seen in Fig. 4.
This value is confirmed to 7 places of decimals by the ex-
act solutions. Using the approximate expression for
E (a', 1,A, b ), (43), in (21) gives

26 1

3m. Aba' (2—a' )

(45)

and so b —+ ~ as a'~&2 and a =ha'~ ao as well. When
(44) is used to substitute for A, b, and using T= I/bk, b we

obtain

ao 4Xl'(A, , )
(40)

At zero temperature, which because I,, is large is all

that is necessary to the accuracy here, this gives

ao/G=0. 02. In order to give a numerical value to G we

will take 6 to have its observed value which means that

ap 0. 14Lp =2. 3 X 10 cm. Then b =4 X 10 crn

T=6 K, and in units with G =1, we find G =0.007.
The effective four-dimensional cosmological constant can
also be found, and in this case has a value = 10 m
which is within observational limits.

3. The other limits

The other two limiting cases are different. The case
T—+DO is caused by the same effect that produced the
minimum value of r in [1]. Since

4G E(a', l, k, b ) —I/9A, b
b =

10a' +3a' (41)

which is a version of (21), then as
(Ea', 1,A, )

—bI/9A, & ~0, so b ~0 and T(

=1/blab)~

oo. ,

This effect can be see in Fig. 4, of solutions in the ratio vs
plane, which shows the contour E (a ', 1,A, b )

—1/
9i.b =0. At this limit a and b ~0 and a'~1.737.

The remaining limit can be derived analytically. It is
in a region where A, b is small and so a high temperature
expression for F(a', l, k,b) can be used. From [19] we
have

4 3/4
1T 1

(2 PP)f/4

2G 27&7rg~ (9)l'( —', )a'
(46)

which shows that T~O also.
So there exists a low or zero-temperature solution for a

finite value (&2) of the radius ratio, although the radii
themselves become very large as the limit is approached.

VI. CONCLUSIONS

The same limitations apply to this calculation as to the
one in [1], that is the lack of time dependence in the
metric. However the behavior is qualitatively different,
albeit in a region far removed from present reality. This
behavior shows interesting features which do not appear
in the approximations usually used in this type of calcula-
tion (for example those of high temperature and low cur-
vature), and as such merits some interest. The toy model
considered here can of course be generalized in many
ways. There is clearly no difficulty in extending this cal-
culation to R XS XS" although the numerical pro-
cedures become tedious. One or both of the spheres
could be distorted by squashing; the spatial section could
be made noncompact, replacing S" by H", the n-

dimensional hyperboloid, for example, as in [21,22]. The
most important extension would be to see if the results
found here in the static case had any effect on dynamical
Kaluza-Klein cosmologies [3—5]. The simplest pro-



45 SELF-CONSISTENT COMPACTIFICATION AT FINITE. . . 3685

cedure would be to use the static approximation and ap-

ply the results here directly. Better would be an adiabatic
expansion in powers of time derivatives (see for example

[23]) which can have significant effects on the effective ac-
tion and on questions of stability. The exact results
should certainly produce some efFect if the cosmology
concerned were to stray away from the region for which
the high-temperature and low curvature approximations
are valid. The other obvious possibility is to use other
fields: spin- —,

' [6,24], sigma models [10]or the gravitation-

al field [25—27] for which it would be interesting and
necessary to use the modified definition of the effective
action given by Vilkovisky [28] and DeWitt to ensure the
gauge independence of the results [29].
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temperature expansion for the traced zeta function on
that sphere. This in turn produces a "large-rT" expan-
sion for the free energy (where r is the radius of the
sphere) and this expansion can therefore be used to pro-
duce an approximation to the free energy when rT for
one of the spheres is ))1.

An expression for the free energy of the field for a man-
ifold of the form R XJN'=R XA,"XJK" when At"=R" is
given in [19]. We need a generalization of this to the case
where the curvature of A, " is small but nonzero.

In general the free energy for a manifold with an ul-
trastatic metric can be expressed in the form

1 L
—2(s —1)

F= L(—p) = i —lim tr, g, +,(s —1,p),s~l
(A 1)

where L is an arbitrary scaling length, t is the total num-
ber of spatial dimensions (8 here) and tr, g, +,(s,p) is the
covariant integration over the spatial part of the manifold
of the coincidence limit of the finite-temperature zeta
function on the whole space-time, i.e.,

APPENDIX A. APPROXIMATE FORMS
WHEN ONE OF THE SPHERES IS LARGE

The heat kernel for one of the spheres can be expanded
in a short-time asymptotic series which produces a high

tr, g, +,(s,p)= f d'x g' (x)g, +,(x,x,s,p) .

From [19]we have that

(A2)

2$
ei n.s/2

2 s 2l s p«,e, +,(s,p)= — f "d.+-'e (0I 4~.ip')[K—(.) d' )+ 'd— —g (2, )
P I(s) 0

t 0 p 0 2 R

=,X,+i(s,p)+, p, +,(s,p) (A3)

where

2l (s), F, +,(s,p)= —d0"

' 2$

4(»)

and also, by using the standard identity of the theta function, that

e isss/2 p —i oo

tr, g, +,(sP)=i f dr, g exp(im P /4r)[K, (r) —d0" ]+—d0" gR(2s) .
&(s) o (4~i')'" „' ' P ' 2~

(A4)

Because we are working on a product manifold we can factorize the heat kernel and the zero-mode degeneracies as

K, (~)=K„(~)K„(~), d'" =d0"'d'"' (A5)

,X,+,(s,P) can now be expressed as follows:

& m.s l2
,&,+l(s,p) =— f dr r' '83(0l 4sr~lp )[K„(—Kd —d'"')+d' '(K„—d0"')] . (A6)
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Now K„(~) can be expanded asymptotically for small ~ in the following series (which is also a small curvature expan-
sion):

K„(~)—(4' r)
1=0,1/2, 1,

(A7)

When this is substituted into (A6) and use made of the identity

f d~r' '[83(O~ir ) —1]—=m
' I (s/2)gt((s)

0
(A8)

then we obtain

tr, g, ,(s,P) =
1=0,1/2, 1, . . .

Ct (4m ) trdgd+, (s n/—2+1,p)+do —g„(s, ~ ) .„~q I (s n l2+—1) (d) t
I' s

(A9)

The free energy is now given by (A 1). So we require

1. . 1F=—ilim
2 s 1 I =0, 1/2, 1,

C(")(4~) "~ tr g (s —1 n/2+—1P}+d( '—
g (s —1, 00)I (s —1 n /2—+1) (d) ~

I I ( 1) d d+i 0 n (A 10)

where the length scale L has been set equal to 1 for simplicity. Obviously we need «know

1.1. 1()„/p I (s —1 —n/2+1)g(1 / +1 p)
2 s —+1 $1 I' s —1

(A 1 1)

trd gd+ i(s,p) [which is given by (A3) or (A4) with t replaced by d] can be divided into three parts:
(i} The m =0 term in the sum in (A4), which is the zero-temperature part. This can be expressed in terms of

gd (—:trdgd ), the zeta function on At as follows [13]:

l I (s ——')
2

trdgd+, (s, ~ ) =trdgd+ i(s) = — gd(s —
—,
'

) .v'4 I (s)
(A12)

(ii) The tnAO terms, which give part of the finite-temperature correction. Call these gd+, (s,p).
(iii) The "Planckian" term in P '
Different values of 1 produce different poles in the various terms above. gd(s) has poles at s =(d —p)/2 where

p =0, 1, . . . , d —l, d + l, d +3, . . . [19]with residues

(A13}

and remainders Rd (s). The highest pole of gd (s —1 —
—,
' (n + 1 —21)} as s ~ 1 will thus be at 1 = (d

+n +1)/2=(t + 1)/2. For 1)(t +1)/2 the limits are all finite and the series can be left as it is For 1 ~ (.t +1)/2 we

wish to separate the finite part and find the residues.
When these limits are taken for the diff'erent ranges of 1 in (Al 1) and the expressions combined we find, after some

work, the following result for the free energy:
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(n —1)/2

1=0 s —1

(4~)
—(n + i)/2 '

(4 )
—n/2+, Al ——

2I {—,'(n+3 —21)) 2 21(—,'(n+2 —2l))

+(4~) "
do 'I [—,'(n +1—21}]gz(n +1—2l)

' 2l —n —1

P

(4~)
—( + )/ g(d)

n/2 (d +1)/2 An/2

——(4e )
" B (P)——n/2 (4n )

n/2 d' 'lnP

g(n) (4~}—(t+))/2C(d) + ir)1 (4~ (n+—i)/2
(n+1)/2 '

d/2 A(n+1)/2

-(4 ) ""B,„„„(P)+{4)-'"+""d,'" 1 +&2 ir 4n

(t + 1)/2
1g(n) (4~)

—(t +))/2g(d) +y( ) (2l 1))+
l =(n +2)/2 S

1+ (4n)'—"+"'I'{—,'(2l n —1—))Rd( —,'(21 n —1))—

——(4n) " I {—,'(2l —n))gd+, ( —,'(2l n),p)—
2l —n —1d (d)

+(4n } " I ( —,'(21 —n))g„(21 n)—
2~ ' " 2~

l =(t+2)/2
C((") —(4n. ) "I I (-,'(2l n —1))g—(-'(21 n —1—))

——(4m) " I ( —,'(21 —n))gd ~)(—,'(2l n),P)—
d()

+(4.)-" ~ r(, (2l „})4(21 „) P
2' 2

27

d(t) d(d)

2P s —1 2P

2l —n —1

(A14)

In this expression

( —1)('I )("+ ')mRd( ,'(n +1—2l)), —n —2leven, —

( —1}"2""+' "g'( '(n+1 —2l)), —n ——2l odd, (A15)

( —1}" "" 'g' { '(n —21),P—) —n —21 even,

( —1)" ""+' "ng ( ——'(n —2l),P) n —21 odd . (A16)

This is a generalization of Eq. (24) in [19].
The expressions for Bt(p) remain to be evaluated. The finite-temperature quantity gd+)(s, p) is given by

I ~s/2 g —1 QO

gd+, (s,p)=i'„ f "dr
)/2 g 'exp(irn p 14r)[Xd(~} do"'], —

(4~i')) /2 (A17)



3688 I. H. JERMYN 45

where the prime means omitting the m =0 term. By substituting an eigenvalue form for Kd the integral can be per-
formed to give a series of MacDonald Bessel functions which can then be given an integral representation. For
l ((n +2)/2 the sum over m can then be performed. This is the range we require in (A14). For I & (n +2)/2 the sum

cannot easily be performed. We find the following two expressions.

+& 2I (
2

1 )(1/2)(n —21)

B,(P)=2i y'D( )~(; ' f
(d) 1 m pu(, .d)x

CO. e

n+2l(
2

(A18}

and
21 —n —1

P (d)x P(d)z
dx e ' (p(e ', n + 1 —21, 1)(x2 —1 }(1/2)(2I—" 2) l & n /2, (A19)

1

where 4(w, s, u) =gk o(v +k) 'r" and v & 0. Unfor-
tunately 4(r, s, v) is hard to represent simply for s &0,
which is the range we are interested in.

The expression (A14) is utilized at two points in the
text: for the cases when one of the spheres (S") is re-
placed by R ", and for the approximate forms when the
ratio of the radii of the spheres becomes large.

1. The tt manifold becomesPat

I ( —,((n+ 1))
7T'"+"" (A20)

In this case the total free energy will diverge for the
simple reason that the space-time volume is infinite and
so it is necessary to look at densities on the Hat space. To
this end the trace over the Hat space-time can be "divided
out" of (A14) which will have the efFect of replacing the
integrated Minakshisundaram coeScients C&"' by the
unintegrated versions al'"' and of dividing the final terms
in (A14) by the volume of the n sphere. When the radius
of the n sphere is taken to infinity these will vanish, and
since R " has no boundary the half-odd-integer
coemcients will also disappear. For l & 0 and integer the
quantities aI'"' involve positive powers of the curvature
and will vanish when JK"=R",and so the only term that
will survive in the expansion (A14) is the l =0 term. If in
addition the total space-time dimension t +1 is odd the
quantities C[",+1 2I]&2 will vanish for integral l and in
particular for l =0; the term in C(, +, )/2 in (A14) is there-
fore zero. This leaves for the free energy density

(4~)
—(n+1)/2 I (4 )

—n/2

2 I ( —,'(n+3)) 2 1(1+n/2)

The vacuum energy density can now be evaluated from
21=()(P(I})/BP and the expression found is the same as
that in [19]. Specializing to the case where A is a d
sphere, and P becomes a function of rd, the radius of the
d sphere, and p, enables the dependence of rd on temper-
ature to be calculated from (26) and (29) [here Bo(p) is

evaluated by numerical integration], and it is this which
is plotted in Figs. 1 and 2. The zero-temperature values
of n are expressed in (A20) in terms of the zeta function
on the internal space, in this case a sphere. These values
can be calculated using the Epstein zeta function method
used in this paper or by an alternative method such as
that used in [19]. The values found by these two methods
agree.

2. The curvature of the n manifold is small

These are the cases considered in Sec. V A. Assuming

that ()JN"=0, th, e l = half-odd-integer terms will be zero
as CI'"' will vanish. The series in (A14) is taken to terms

linear in the curvature of Af" which means discarding
terms with l ) 1. The final term will have a logarithmic
dependence on the scale of A4". In the case of JK" being a
sphere the l =0 and l =1 terms in the series will depend
on r„as r„" and r„" which, for n )2 and r„ large, will

swamp the logarithm. The penultimate term does not
contribute to either the vacuum energy or ()F/B(radius)
which are the expressions appearing in the self-
consistency conditions, and will thus be omitted. If p is

also considered large {as in Sec. V A) then the terms in

BI(P) can be dropped and the final expression becomes
(for n odd)

(4 )
—(n +1)/2 I ( —,'(n +1})

"2 7T'"+""

(4 )
—(n+1)/2 I ( ,'(n —1))—

+C(n) g'( '(n —1})—d—' —'
g (n —1}P

2 I ( —'(n+1)) 4 ( +1)
2

With the appropriate values for d and n, the expressions in Sec. V A can be obtained.
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