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We use the sewing procedure in the operator formalism to construct the N-point g-loop vertex V&.~
for the (b,c) system in superstring theory. After computing explicitly the lowest picture-changed states,

we saturate V&.~ with them showing that the reparametrization ghost contribution to g-loop superstring

amplitudes is just the same as in bosonic string theory.

PACS number(s): 11.17.+y

I. INTRODUCTION

One of the problems still open in string theory is to
check its finiteness at any order of perturbation theory.
In fact, many technical problems arise in writing out ex-
plicitly string amplitudes in the various formalisms pro-
posed and developed for this purpose [1—14]. Recently,
some interesting progress has been made in this direction
[15].

A very straightforward approach in constructing mul-
tiloop amplitudes is based on the definition of a single
global bralike operator Vz.~, the N-point g-loop vertex
[5—8]. This latter encodes all the information about the
g-loop scattering amplitudes involving N arbitrary physi-
cal particles; in fact, Vz. can be considered as the "gen-
erating functional" for those amplitudes since they are
simply derived by saturating V& g with the X physical
states corresponding to the N particles. The starting
point for constructing Vz.z is the X-string vertex V&.0
[4], which has the important property of reproducing the
tree-level scattering amplitudes involving N physical par-
ticles, when it is saturated with the corresponding states.
Indeed, Vz.~ is constructed by starting with the
(N+2g )-string vertex and sewing together 2g legs, after
the insertion of a suitable Becchi-Rouet-Stora-Tyutin-
(BRST-)invariant propagator.

In superstring theory Vz. can be obtained, in princi-
ple, by the product of N-point g-loop vertices defined for
each independent conformal sector of the theory: string
coordinates, the (b, c) system of the reparametrization
ghosts, and its supersymmetric partner, i.e., the (P, y)
system.

In [14], Vz.s for the (b, c) system has been constructed
for g =2 in its more general operator form necessary for
computing superstring scattering amplitudes involving
picture-changed states [16]. In superstring theory, in
fact, to each physical state one can associate infinitely
many vertices, differing from each other for values of the
total ghost number q+q', q [q'] being the eigenvalue of

the ghost number associated with the (b, c ) [(P,y)] sys-
tem. Therefore, in order to saturate Vz. with such
states, it is preliminary to compute explicitly picture-
changed vertices and to examine their content in the
ghost coordinates [17].

In this paper we generalize to g-loop amplitudes the
partial result for g =2 obtained in [14].

After constructing Vz.s for the (b, c ) system through
the above-mentioned sewing procedure, we saturate it
with suitable picture-changed states. In so doing we con-
clude that the reparametrization ghost contribution to g-
loop superstring amplitudes is just the same as in bosonic
string theory.

The paper is organized as follows.
In Sec. II we compute the lowest picture-changing ver-

tices: It turns out that their part with a (b, c) ghost num-
ber q = 1, which is the only one to give a nonzero contri-
bution to amplitudes, defines a primary field with the
conformal dimension 5=0 having the same form
c(z)V(z) as the vertex operators in the bosonic string.
The only difference is that, in the superstring case, the
field V(z) contains not only the orbital degrees of free-
dom, but also the superghost ones.

In Sec. III we use the sewing procedure in the operator
formalism to construct VN. ~.

In Sec. IV we saturate V&. with suitable picture-
changed states, showing that it gives for superstring am-
plitudes the same g-loop contribution as in the bosonic
string. We want to remark that use limited to picture-
changed vertices up to q+q'=3 restricts the number X
of the external states to be )(g —1). However, this re-
striction vanishes if one assumes the above-mentioned
property of the part with q =1 of picture-changed ver-
tices valid in general.

II. PICTURE-CHANGED VERTICES

In this section we closely follow Ref. [17],summarizing
the main results.
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V(z, 8)= Vo(z) +8 V, (z) . (2.1)

The integral of (2.1) over superspace is required to be
conformally invariant; therefore it must be a superconfor-
mal field with the conformal weight 5=

—,'. The two com-
ponents of the supervertex operator corresponding, for
instance, to the tachyon and photon states are given by

In superstring theory the orbital degrees of freedom of
a physical state are carried by a supervertex operator that
we will denote by

V + —o(z) =c (z )5 [r(z ) ]Vo(z) (2.7)

It is a BRST-invariant and primary field with dimension
5=0. It is customary to proceed through the bosoniza-
tion formalism [16],where

The BRST invariance ensures that the result is in-
dependent from the particular vertex of the set that has
been used.

The vertex operator with vanishing total ghost number
is given by

V'(z)= e'"'"".
V$ = e.f(z)e'"

V', (z) =:ik P(z)e'"'"".

V~((z)=:[e Bx(z)+ik rti(z)e li(z)]e'"

lWz)=:e &":Bg(z), r(z)= ri(z):e~": .

In this formalism the vertex (2.7) can be written as
2.2

V +q o(z) =c(z):e ~":Vo(z) .

b(z)= g b„z ", c(z)= g c„z
nEZ nCZ

P(z)= g P„z-"-'", r(z)= y r„z-""~',
nEZ nEZ

(2.3)

(2.4)

with k =1 for the tachyon and with e.k =0 and k =0
for the photon. In a BRST-invariant formalism, the
reparametrization ghosts (b, c) and the superconformal
ones (P, r ) must be properly included in the definition of
the vertex operators.

The fields b, c and P, r are functions only of z and ad-
mit the holomorphic expansions'

We want here to observe that one could also adopt the
formalism in which the (P, r ) system is not bosonized
[18],thus having a possibility of checking the expressions
of the picture-changed vertices computed in the two cases
[17]. In comparing those expressions in both formalisms,
one obtains interesting bosonization rules, which we have
listed in Table I. Here we have put 5'= 55[P(z) ]/BP(z).

In the following we will limit ourselves to show our re-
sults only in the bosonization formalism.

We can construct the vertex with q+q'=1, by using
the picture-changing operation [16]

where the oscillators b„,c„and P„,r„satisfy, respective-
ly, the canonical relations

V~+~, (z) = [QBRsT g(z) V~+@ =o(z)],

with

(2.8)

[b„,c ] =5„, I b„,b ]
= [c„,c j =0,

[P. r. ]=5.+,o [P. P ]=[r. r ]=o.
(2.5)

(2.6)

It turns out that for each physical state one can associ-
ate an infinite set of vertex operators corresponding to
different values of the total ghost number q +q', q and q'
being the eigenvalues of the U(1) ghost-number currents
associated, respectively, with the (b, c) and (P, r ) systems.
Indeed, it is possible to transform BRST-invariant vertex
operators to new ones carrying the same orbital degrees
of freedom but a different eigenvalue of the total ghost
number. This transformation is performed by the
picture changing op-eration [16].

Since both ghost-number currents are anomalous, in
order to have nonzero results in the computation of the
vacuum expectation values of vertices corresponding to
string scattering amplitudes, one can use any vertex of
the set, provided that the sums of the ghost numbers q;
and q associated with the vertex labeled by i match the
vacuum charge of the (b, c) and (P, r) systems, respec-
tively. In particular, in the superstring case one must re-
quire

gq;=3, gq =2(g —1) .

QBRST 0 JBRST(

JBRsT —C(Z)[T~„„,(Z)+ —,
'

Tsh&&„(Z)]

,'D [ C(Z) [D—C—(Z) ]8(Z) ],

(2.9)

(2.10)

After the integration over 8, we are left with

QBRST QBRST +QBRST +QBRST

where

(2.11)

Q'g" = f . [—c(z)L(z) —c(z)Bc(z)b(z)

—
—,
' BP(z )Bc(z)

+c(z)(—,
' [[B(t(z)] +() (t, (z)]

+:ri(z)5$(z):)),
Q(g=o) ( f z ~(z).eg(z). G(z)

where Z:—(z, 8), dZ —=dz d8/2rri, D =()e+85„
T,«„(Z)=—,'G(z)+8L(z), T h„, is the energy-
mornentum tensor relative to the ghost system [16], and
C(Z) and B(Z) are the ghost superfields

C(Z) =c(z)+8r(z), 8(Z) =P(z)+8b(z) .

~We write here definitions for the holomorphic sector of the
theory only; similar expressions hold for the antiholomorphic
sector.

Q(q,=„-')= —
—,
' (fr . a~(z)q(z):e'~(':b(z) .dz

The commutator in Eq. (2.8) can be more easily cornput-
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TABLE I. Bosonization rules for some quantities appearing in the expressions of the lowest picture-
changed vertices.

p(z)

H[p(z)]
~[y( )]
y'(z)

&"[p(z) ]

.e —P(z).g(z)
f(z)

.e —P(i).

—Bg(z)g(z):e ~(z):
—:e'~":aq(z)q(z)

y(z)
~[p(z)l
5 [P(z)l
y( )p(z)

8[p(z)]ap(z)

g(z):e~":
.e P(i).

g(z) e'&".
a(()(z)
—ag(z)

y(z)&[p(z)]
y(z)&'[p(z)]
ay(z) p(z)

——,' a'8[p(z)] +:ap(z)8[p(z)]y(z):

—,'q(z)a(:e'~":)+aq(z):e'~":
--,'a' n(z)~(z):e'4'('): —

31 an(z)n(z)a(:e3~('):)

—,
' [ay(z) ]'+:~(z)apz):

—:ayz)q(z)eq(':

ed in the following way: ~q+q'=1) = lim V + . ,(z)~vacuum) .
z~o

(2.17)

where

dz
w OPc(z) Vq+q —0( w ),

z N
(2.12}

dz .
OPc( w }=

2
~ JBRST(z+(w)

27Tl

=o(;;-"(w)+o,";"(w)+o';;-"(w)
and

o,",="(.) =—.(.)apz},

(2.13)

(2.14)

O(q =0) (Z) ( .e $(z).G(Z}PC (2.15)

O'Pqc= "(z)= ,'a[TI(z):e—~":b(z)]+,'aq}(z):e ~—":b(z)

The computation of Eq. (2.12) gives

Vq+q. , (z) =c(z) V((z) —
—,'g(z):e~":V0(z) . (2.16)

The state including the insertion of one picture-
changing operator is obtained from Vq+q &

through

We want here to observe that both Vq+q 0 and

Vq+q &
are BRST-invariant and primary fields with the

conformal dimension 5=0.
It is relevant to stress that the content of the

reparametrization ghosts is limited for these vertices to
the only field c(z}. This is a peculiar feature of BRST-
invariant vertex operators associated with physical states
in bosonic string theory, where they are indeed primary
fields with dimension b, =0 having the form c(z)V(z).
Hence this form for the picture-changed vertices is
preserved also in superstring theory, with the only
difference that in this case the field V(z) contains not only
the orbital degrees of freedom, like in the bosonic string,
but also the superghost ones. This peculiarity also holds
for successive states.

Starting from the vertex Vq+q. » one can construct
analogously Vq+q 2 We obtain

V +q'=2(z) Vq+ '=2(z)+ Vq+q'=2( }+Vq+q'=2 (z}

with

V'q=." (z) =c(z):e&":V,,(z)+ ,'c(z)a (:e—~":)V (z)+c(z)a(:e~":)av (z)

+c(z):ag(z )qI(z)e ~":Vo(z) ,'a'c(z):e ~":V——(z),

V'q+ . '2(z)= ,'a rje ~":V,(z)—+aqI(z)a(:e ~:)V,(z)+ 4q}(z):e —~":[a(t)(z)] V, (z)

+—,'qI(z):e ('":a P(z)v((z)+ —,'q}(z}a (:e ~".)V, (z)+—4qI(z)a(:e ~":)V2(z)

+ ,'TI(z):e ~"V&—(z)+,'ql(z).:e ~"::ab—(z)c(z):V((z)

+—,
' [a[7}(z):e4":]+aql(z):e ('":]:b(z)c(z):V((z),

V(q+=, (2)(z) = ——)a3g(z)g(z):e ~":b(z)V()(z) ,'a qI(z)—qI(—z)a(:e ~":)b(z)V()(z)

—aqI(z)q}(z)[:e ~":[ag(z)] + ):e'~":aP(z)—]b(z)V()(z)

,'a ri(z)vg(z):e ~":ab(—z—)v (z) —) aqj(z)qI(z)a(:e ~('):)ab(z)v (z)

—
—,'aq( )q(z):e'q":a2b( ) V, ( ) .

It can be proved that the vertex V + . 2 is BRST invariant.
The vertex V&&2 in (2.18) is defined as the finite part of the operator-product expansion (OPE):

(2.18)

(2.19}

(2.20)

V()(w)
G(z) V, (w) = +

(z —w)

av, (w)

z w
+ V5&2(w)+
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and satisfies

5 V()(w) a V()(w) 5 V5/2(w) av5/2(w )
L(z) V5/2(w)= — 4+2 3

+— + +regular part .
(z —w) (z —w) 2 (z —w)

Furthermore, the vertices V2 and V3 in Eq. (2.19) are defined by the OPE

Vi(w)
G(z) Vo(w) = + V2(w)+ V3(w)(z —w )+

and, respectively, satisfy

aV (w)V, (w) Vz(w)
L(z)V2(w)=2

3
+2

z
+

(z —w) (z —w)

7 Vi(w } V2(w) V3(w)
L(z)V3(w)= — +3

3
+3

2
+

2 (z —w) (z —w) (z —w)

+ ~ ~ ~

aV3(w) + ~ ~ ~

Z W

V +, 2 can be rewritten in such a way that the term proportional to a c(z) in Eq. (2.18) can be canceled and substi-
tuted by terms containing only c (z) [17]. By exploiting the BRST invariance of the vertex, this can be achieved by add-
ing to it the commutator with Qi)„sT of a suitable conformal field with dimension b, =0 and with q+q' =1, as follows:

V (q= )
( )

—V(q= ~) (z) [Q(gl) .e(()( ).aV (z)]

where

[Q(,q=„",:e~":aV, (z) ]= —
—,'a'c(z):e~":V (z) —c(z)a[:e4":aV (z)],

finally obtaining

V'+q=. '2(z) =c(z}[:e~":V5/2+ —,'a (:e~":)Vo(z)+2a(:e('":)aVo(z)+:ag(z )ri(z)e~":Vo(z)+:e~":a Vo(z)] .

Analogously, one has

V,'='q, =. =",(z)= V,'q+=, ,'=', (z—) [Q',g»', .e—"'.aV, (z)]

=a rl(z):e ~"V, (z}.+ ', ari(z)—a(:e ~":)V, (z) +'rI(z):e ~":[ Pa(z)] Vi(z)+ ,'ri(z):e~"—:a(()(z) Vi( )

(2.21)

(2.22)

(2.23)

+ —,'ri(z)a (:e ~":)V((z)+—,
' r(i)z (a:e ~":) V(2z) +,'ari(z):e ~—'*'av, (z)+ ,'. rl(z)a(:e —~":)av((z)

+ ,'qI(z):e ~"—:va(2z) +'ri(z):e ~'*' :ab(z)c(z).:V)(z)+—,'[a[ri(z):e ~":]+aq}(z):e~".I:b(z)c(z):V)(z) .

(2.24)

V'q= ', (z)= —,'a c(z)c(z)ag(z):e&".V (z) . (2.25)

However V'+ . '
3 can be written itself as the commutator

of a conformal field with QBR», since

In the same way one can get the expression for V('q'$q z').

The vertex Vq*+ 2 results to be primary with dirnen-
sion 6=0. Once again, we find the same structure
c (z) V(z) as the vertex operators in bosonic string theory.

This property holds also for the vertex Vq+ q 3.
Without giving the complicated structure of the vertex,
we will limit ourselves to show the essential steps leading
to this result.

In computing V +q 3 we are faced, first of all, with
the problem of the existence of a term with q =2, we will
denote by V'+ . '3, deriving from the application of
0pc ', defined in Eq. (2.14), on the term

e(z):apz}Z(z)e ~( ):V,(z),
in Eq. (2.23). Indeed, this yields

[Qsasr, —3c(w)a('(w):e~' '.aV()(w)]

=
—,'a c(w)c(w)ag(w}:e~' '. Vo(w) .

The elimination of V'+=. '
3 from the expression of

V + . 3 is therefore straightforward.
The part with q = 1, V'+ "

3, is generated by the appli-
cation of Opqc ', defined by Eq. (2.15), on Vq"+qq. 'z and
from the application of Opc "on V*+ . 2. As regards
the former, it generates only terms proportional to c (z),
as one can see froin Eq. (2.23); for the latter we can say
the same when it acts on the terms in Eq. (2.24) contain-
ing:b(z)c(z): or:ab(z)c(z):. The other terms in (2.24)
generate different pieces containing a c(z), a c(z), and
a c(z); these can be eliminated by adding to Vqq+q —3 the
commutator with QnRsT of all the possible conformal
fields with 6=0 and q+q'=2 that can be constructed
with the field:e ~": and the matter fields V, (z}, V2(z),
and V3(z).

Hence Vq+q 0 Vq+q 1 Vq+q 2 and Vq+q 3 can be(q=1) (q =1) (q =1) (q =1)
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finally put in the form c(z)V(z).
This property plausibly remains true for higher

picture-changed vertices, since the procedure we have
followed is quite general and suitable to be extended, even
if more and more painful at each step.

III. N-POINT g-LOOP VERTEX
FOR THE (b, c) SYSTEM

The starting point for the construction of VN. g for the
(b, c) system is the vertex Vz. p [5]:

V,o= g (r&e=31)exp —g g g c„'"E„,(U V )b,'"
I,J=1 n =2i = —1
IPJ

1 N 1 N —3s+1 1

E (V)b,'' g g g b„''„(U V),
r= —1 I=1 s= —1 s=1 I=1 n= —1

(3.1)

with

e„(UE Vr ) =Ep„( Uz Vr )
—E,„(UE Vr ), (3.2)

where Uz=I'Vr '. In Eq. (3.1), I'(z)=1/z and the ma-

trix E„ is defined by

These formulas will be useful in computing the zero-
mode contribution to amplitudes.

The technique followed here for constructing VN. g is
the same as the one discussed in great detail in Ref. [8].
The main difference in our computation is the use of the
BRST-invariant twisted propagator [5]

(3.3)

with y(z)=(az+b)/(cz+d) and n, m = —2, —1, . . . , 00.
It is an infinite-dimensional representation of the projec-
tive group with conformal weight —1. Furthermore,
Vz (z) is a projective transformation corresponding to a
choice of local coordinates vanishing at the puncture zI.

The matrix E„defined in (3.3) provides an infinite-

dimensional representation of the projective group with
conformal weight —1 also when the two indices n, m are
either n, m ~2 or restricted to the zero-mode subspace,
i.e., —1&n, m 1. In particular, in this latter case, one
has

Pg (x) =(bp b
~ )P(x) =P(x)(bp b& ), —

where

P(x)=x 'Q(1 —x)~.Lo

The twist operator 0 and 8'are given by

L — /2n=e -'( —1) ' '

and

(3.6)

c2d2 2cd

E„(y)= bd ad+bc ac
1

ad —bc
2ad a2

(3.4) W=LO —L1 .

d(b —d))(y)=
ad —bc

ep(r ) [d(a —c )+c(b —d )]
1

ad —bc

e, (y)= c(a —c)
ad —bc

(3.5)

We want to observe that det E(y ) = 1 for any y. From
(3.4) one can straightforwardly compute e, (y), ep(y),
and e, ( y ), defined in (3.2):

The N-point g-loop vertex VN. g is obtained starting from

VN+2 .0, in which we will label the first N legs with an in-
dex I, running from 1 to N, while the remaining 2g legs
will be distinguished into g "odd" legs and g "even" legs,
labeled, respectively, by N+ 2p —1 and N+ 2p,
p=1, . . . , g being a loop index. After the insertion of the
propagator (3.6) on the "odd" leg N+2p 1, we identify-
the latter with the leg N+2p, following the notation of
Fig. 1, in such a way that g loops are formed. In the fol-
lowing, for the sake of simplicity, we omit N in labeling
both the "odd" and "even" legs.

VN. z is then defined
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P N+3 N+4 1V+2g —1

Erg &2g—1

N+2g
i

FIG. 1. Sewing procedure for the construction of the N-point g-loop vertex VN. g.

g

„,[V, , DP( )(b' " " b' ",—")],
p=1

(3.7)

according to

,„&q=3l lq=3&,„,
n —n~ n —n

(3.8)

where Tr~2„1 2„]means a trace in the Fock spaces of legs

2p —1 and 2p [8]. V~~+2s~.o is obtained from V(~~2s).0
by changing the vacuum and oscillators for the legs 2p,

In addition, the insertion of the propagator on the leg
2p —1 has the fo11owing effect:

V,„, V,„,=V,„,P(x), U,„, U,„,=f'(V„

By performing explicitly the trace in (3.7), we obtain

N N 0o 1

V;,= g' g (1—k )' P ( &q=3l) p g g g „'"E (U )E (V )b,'"
a n=2 I=1 I=1 n =2 r, s= —1

N 00 00

Xexp —g g' g g c„' 'E„(UIT )E;(Vq)bI '

I J=1 a n m=2i= —1

(3.9)

where, in the last line, T are elements of the Schottky group, generated by

S„=V2„,U2„,

k their multipliers, and g means that the identity is excluded if I=J. The quantity S~.s encloses the whole contri-
bution of zero modes; it can be rewritten as an integral over fermionic Grassmann variables P s, s = —1,0, 1, in one-to-
one correspondence with the oscillators b, [8]. The introduction for each Schottky generator S„ofa diagonalizing ma-
trix L„,such that

L„S„L„'=S„, E„,(S„)=k„'5

allows one to write SN.g as

N —1s+1 1

~N;g= II X X b'"e. (U v)d'
s=1 I=1 n= —1

where

r= —1 @=1 v=1 I=1 @=1 a rs = —1 nm =2

1 g g 1 2g —2 N g 1 oo

+;,=f g gdP', "'g8„g 8„g& p g g g g g „''E„(UT )E,(S„)E (L„')$
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with

1

5„= g e„(Ul„L„')p("), @=1,2, . . . ,g,
g 1

5„=E, ((V, )b(")+ g g F. (L„')(1—k'„)(t')(,"),
p=l s= —1

1b'= g [e„(U, L, ')k", P',"],

while the exponent S in (3.10) has the following structure
in terms of oscillators:

N oo 1

2)= g g g c(r)D b,(i)

I J=l n=2s= —1

where the quantity D„, results to be dependent on the
sewing procedure, so making the vertex not dual as an
operator, but as we will see shortly, the exponential of 2)
will never give a contribution when the vertex is saturat-
ed on physical states.

1

[e,(U, L, ' }(1—k", )P(,"],
1

b = g [e,(U, Ll ')(1—ki)()I)(„"—e„(U, Lz ')k2$( )],
1

[e„(U, L, '}(1—k", )P(„"

+e,(U, L2 ' }(—1 —kz)P(„)],
1

[e,( U, L, ' )(1—k', )P,'"
2g 3s= —1

+e, ( U, L z
' )(1 kz )(t),

' '+-
2g 3

IV. (b, c)-SYSTEM CONTRIBUTION
TO g-LOOP AMPLITUDES

In order to compute the reparametrization ghost con-
tribution to g-loop superstring amplitudes, we have to
saturate VN. on suitable picture-changed states, sinceN;g
the background anomaly for the superghost number must
be considered. In particular, for N-point g-loop ampli-
tudes, we have to insert N+2(g —1} picture-changing
operators. This follows from the following consideration.
Since the condition

N

g q =2(g —1)

1

b, s z= g [e,(U, L, ')(1—k', )P(,"
2g 2s= —1

+e, (U, L2 ' }(1—k2)()(),' '+
2g 2

+e, (U, Lz 'i )(1—ks i)$(s "] .

N —1 s+1 1

=EL g g g b„' 'e„(UE VI) 5e
s=l I=1 n= —1

(3.10)

where E is a constant and 5 is the only 5 function left out
by the integration over P's, having the form

N 1

b (I)~(I)

I=1s= —1

We note that d()v. , being the integral of the product of
3g+1 5 functions over 3g Grassmann variables, yields
just one 5 function; this, together with the other N —1

ones in S)v.s, provides the right number of 5 functions,
i.e., one for each external leg, as required by the symme-
try of VN. g.

We want to remark here that when we add the pth
loop we add three integration variables (I),("), s = —1,0, 1;
furthermore, three new 5 functions appear such that,
once integrated, we are left with one overall; they are one

extra5 ydl, " panda, "
We can observe that performing explicitly the integra-

tion over all the (t)'s will give to S)v. the form

must be satisfied, we can, for example, saturate V))(. with
N —2 states iq'=0) and with two states iq'=g —1;but
a state iq'=0) is equivalent to the insertion of one
picture-changing operator on an external state, while a
state iq'=g —1) is equivalent to the insertions of g
picture-changing operators, taking into account that the
lowest state has q'= —1.

The insertions of the picture-changing operators can be
accomplished in several ways, in principle all equivalent.
However, we will consider picture-changed physical
states up to q+q'=3, computed in Sec. III. Since the
number of picture-changing operators to be inserted must
be ~ 3N, the use limited to those vertices gives a restric-
tion on the values of N, which must be )(g —1). We
stress again that this restriction disappears if one assumes
as general the property of the part with q =1 of picture-
changed vertices to be written in the form c(z}V(z).

Because of the structure of the N fermionic 5 functions
present in (3.10), the terms having q%1 in the picture-
changed states never contribute when VN. is saturated
with them.

As we have already observed, since the terms q=l
contain only the c(z} field, a picture-changed state corre-
sponds to a physical state iq =1 ) =c, iq =0), just as in
the bosonic string theory. Therefore this is equivalent to
the purely bosonic string case, where the vertex is sa-
turated on N physical states

i q = 1 ) .
Saturating V))(.s on N physical states iq =1) amounts

to evaluating the contribution coming from JN.g. The
terms which contribute are only those containing the os-
cillators b' '„ in particular, the exponential in (3.10) does
not give any contribution. Therefore we have to evaluate
the determinant of the NXN matrix built out of the
coeKcients of b' ', in the 5 functions:
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e, (UE V, )

e, (UE V, )

e —1( UE V2)

e —1( UE V2)

0

e l(UE V3)

0

0

0

0

e l(UE Vl) e l(UE V2) e l(UE V3) e l(UE V& l) e l(UE V&)

Because of the fact that e l( UE V, ) =0 for any r, it is easy to see that only the term A'", will contribute to the final re-

suit. This means that, in order to compute this quantity, we can set from the beginning to zero the coefficients of b,' '

with sA —1 or I+1. By so doing, computing the integration over all the variables p for 8lv. is drastically simplified.
Performing such an integration means in fact using 3d of the 3g+1 fermionic 5 functions and solving them suitably
with respect to the variables P.

By using the results

eo(U2„L„')=1, el(U2„L„')=0, e, (U, L„)=0,
we finally get

g
A''I=ED, (L Vl)(1 —k ') n (1—k„)

p=1

g
X n e (U L ) eo(—U, L„,)e, (U2„2L„ l ) e, (U, L„ l ).

Our aim is now to rewrite the result in terms of the variables z. We make use of the relations

E (LV) 2 2 g
— 1

g Z) Z2 Z2g i Z2g 1 kg

e l(U, L„ l)= 2p 2 2p —3 2p —2 1 2p —1

( k„ l
—co),

yp, kp )
—1 z2p &

—
z2p 2 z&

—
z2p

eo(U, L„,)=1,
—1 Z2p ) Z2p —3 1e, (U, L„:,)=z2„

2p —2 2p —1 7p —1kp —1

Z i
—

Z2p 2 Z2p 2 Z2p
e, (U, L„:,)=

Z) Z2p i Z2p 3 Z2p 2 Z2p

]kp $ 1

k 1
—1

where we use the notation

Z2p —1 Z2p
Vp

2p+ 1 2p

Z ] Z2p 3 Z2p 2 Z2p
CO=

Z ] Z2p ] Z2p 2 Z2p 3

We also note that, because of our definition of the sewed

legs in the tree vertex,

We add now the first N 15 functions, —and we evaluate
the determinant yielding the complete zero-mode contri-
bution to the string amplitudes:

N —1

e„.g ——n e, (UE V, +,~'",

~i =~N —]+i
i l'+2

i i+1
1 Z2 ZN ZN+ 1 (1)A

Z ) ZN+ ) ZN ZN+2
therefore, in terms of the z's, we rename

z;+. 1 zN+i and z;+2 zN+ +1

Then we have the following expression for A' ",:

Finally, we get

N;g
ZN ZN+ 1 Z2 2

ZN ZN+2 Z1
—

Z2g

A ( i) Z1 ZN+1 Z2 Z2g

Z) Z2 Zi Z2g

1 —k„z2„+)
—z2„

k„z2„—z2„

(4.1)

g 1 —k N zi zi+2

p=1
n Z2p+ 1 Z2p

p Z2p Z2p 1

(4.2)
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We may still rewrite this result in order to compare it
with the expression in [5]. By using

(Z2& 1 Z2& 2 )(Z2& Z2&+ 1 )a„—=—
(Z2& 1 Z2&+1 )(Z2& Z2& 2)

we have

2@+1 2p 1

z2p z2p ] ap

2; Zi+ 2 ~ ~+2 N+2g

i =br+) Zi Zi+] Z~ Z~+) ZN+2g Z2

This allows us to set, at the end,

ap &+2g ~ ~ +2~-,,=n(l-k. ) — " n '

@=1
(4.3)

which reproduces exactly the (b, c)-system contribution
to bosonic amplitudes in [5].
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