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Effect of topology on the thermodynamic limit for a string gas
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We discuss the thermodynamic limit for a gas of strings at high energy densities. This is defined by

studying the statistical properties of the gas in a compact space and taking the size of the space to
infinity keeping the energy density finite. We obtain a behavior that is different from earlier treatments

where the gas is considered at the same energy density but living in a noncompact space. In particular
we show that the gas is not dominated by a single energetic string above the Hagedorn energy density,

but instead the number of energetic strings is lnR /&a' where R is the radius of the universe and c' the

slope parameter. The reason for the thermodynamic behavior being sensitive to topology is the existence

of winding modes that can sense the large-scale structure of the space.

PACS number(s): 11.17.+y, 05.20.—y, 98.80.Cq

I. INTRODUCTION

In the case of a gas of point particles one does not ex-
pect the thermal properties of the gas to depend upon the
topology of the box in which it lives, provided the size of
the box is suSciently large. Effects sensitive to the large-
scale structure of the box (or finite-size effects) are typi-
cally surface effects subleading in magnitude to the bulk
or volume effects in the therrnodynarnic limit. In this
limit quantities like the entropy and specific heat, etc. ,
are extensive quantities.

One does not expect this to continue being the case for
a string gas because strings have extension and individual
strings could be sensitive to the large-scale structure of
the space in which the gas lives. In fact, it has been
known for a long time that, for an ideal gas of strings at
energy densities high compared to the typical energy den-
sity in string theory (called the Hagedorn energy density
and constructed out of the single dimensional parameter
a'), a single energetic string can capture most of the ener-

gy of the system [1,2] (see also [3,4]). This result holds if
the space in which the gas lives has at least three non-
compact spatial dimensions (d ~ 3; d denotes the number
of noncompact spatial dimensions). Introducing a
volume V of the noncompact space as a bookkeeping de-
vice (in the thermodynamic limit the volume is taken to
infinity) one finds that the system is not extensive, e.g.,
the specific heat is not proportional to the volume (and is,
in fact, negative).

The single energetic string that dominates the system
also occupies a large size. In fact, the extension in space
of the wave function of a string of large energy e is pro-
portional to &e [3], and for a string that captures a
significant fraction of the total energy (i.e., e cc V), this ex-
tension is of the order ofL, where L denotes the linear

size of the system. Thus, in the thermodynamic limit a
single string acquires a spread infinitely greater than the
size of the system itself. This means that mere bookkeep-

ing of the size of the system is not enough; we must con-
sider ab initio the effect of the size of the system on sta-
tistical properties of the system.

This and other reasons have motivated the study of an
ideal string gas in compact spaces [S,6,4,7—10]. This
space has no noncompact dimensions (d =0); all dimen-
sions have a finite size and one starts with the full density
of states explicitly including the states sensitive to the
size of the space, for instance, the winding modes in the
case where the space has the toroidal topology. In the
noncompact studies mentioned earlier, such states are ex-
cluded in the bookkeeping. The statistical properties of
this system turn out to be quite different from the non-
compact case. E.g., the energy of the system is distribut-
ed uniformly among strings of all energies [4] and the
specific heat can be positive.

However, up to now the studies of the compact case
are valid only when the size of the space is itself small, of
the order of &a' (and the total energy is much larger
than I /&a' so that the energy density is above the
Hagedorn energy density). In this situation the string
modes sensitive to the size of the system (e.g. , winding
modes) are, of course, excited because, at this radius,
these modes cost just as much energy as the ordinary
modes. Thus, one does not know whether the difference
between the results in this case and the noncornpact
space is a reflection of a characteristic pattern of excita-
tion of size-sensitive modes in a string gas, or is a feature
specific to the small-radius case.

In order to better understand the interplay between the
size of the system and the modes excited in it above
Hagedorn energy densities, and also to faithfully compare
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with the noncompact case it is necessary to consider the
gas in a compact ~sace, but allow the size of the space to
be large (R »&a'), keeping the energy density above
the Hagedorn energy density. This defines the proper
thermodynamic limit for the system. Compactness of the
space means that we are forced to include modes sensitive
to the large-scale structure of the space in the density of
states, and the large radius means that we are letting such
modes cost a lot of energy. The question is whether in
this case the extended string modes are still excited at
Hagedorn energy densities, and if so, how they affect the
statistical properties of the gas. Is the picture obtained in
the noncompact studies which excluded some of these
modes from the density of states but ended up with a very
energetic string still valid? This is the question we ad-
dress in this paper. We study explicitly the example of a
toroidal compactification.

Our conclusion is that, in the thermodynamic limit, the
system is inherently stringy and different from a point-
particle system in that it is sensitive to the large-scale
structure of the space. In this limit it differs from both
the compact, small-radius case and the noncompact case,
but the behavior of modes at the upper end of the energy
spectrum is more like the compact, small-radius case
than the noncompact case. In particular, winding modes
continue to be excited above Hagedorn energy densities
when the number of expanding radii (denoted d) is
greater than or equal to three, there are a large number of
energetic strings present in the thermodynamic limit (not
just one) and the thermal properties such as the specific
heat of the gas are different from the noncompact case at
the same energy density.

Another motivation for this work comes from cosmol-
ogy. According to the standard model of cosmology, the
energy density p in the universe has evolved in time as

p —t and the radius of the universe R as R —t' in the
radiation-dominated era and as R -t in the matter-
dominated era. Extrapolating these in time from their
present estimated values (e.g. , assuming that the size of
the universe today is 3000 Mps) backwards up to Planck
time 10 ' GeV ', one finds that, at that time, the ener-

gy density of the universe was the Planck energy density
while the radius of the universe was of the order of 10
times the Planck length. Thus, we have a large (and pos-
sibly compact) universe at very high energy density.
(Roughly speaking, since the present energy in the
universe is much greater than the Planck mass, if all of it
was compressed into a volume of Planck size, the energy
density would be much greater than the Planck energy
density. Conversely, therefore, if all this energy was
compressed into a space with Planck energy density, that
space must have a size much larger than the Planck ra-
dius. Assuming an adiabatic expansion gives the factor
of 10 .) This estimate is, of course, based on the original
standard model without inAation. In fact, the appearance
of such a large radius at early times is another way of
stating the horizon problem of the standard model which
inflation solves by restoring the size of the universe at
Planck time to be about Planck size. Nevertheless, it is
interesting that the energy densities and sizes we consider
in this paper are quite conceivable in the early universe.

In the context of strings, a cosmological scenario for
the very early universe based on R ~1/R duality and the
existence of winding modes was proposed in [5]. Our re-
sults for the energy and winding-number distribution are
relevant for this sce aario.

In the next section we review known results about the
string gas in a space that is compact and small, or non-
compact. In Sec. III we consider the gas in a compact
space with large radius. We discuss the density of states
and the distribution of energy and winding number
among individual strings and compare with results in the
noncompact space. The latter discussion pertains to the
case when d & 3 (actually, for any d & 2). The cases
d=1,2 are described in Sec. IV. Section V summarizes
the main conclusions.

II. REVIEW OF KNOWN RESULTS
FOR A STRING GAS

The quantities we will be interested in are the single-
string density of states f (e)=—+,5(e —e, ), where e, is
the energy of the single-string state a, and the micro-
canonical distribution function or the total density of
states Q(E)=g 5(E E), wh—ere E is the energy of
the state a of the whole system. Q(E) gives the entropy,
temperature, pressure, and specific heat of the gas. In ad-
dition, we are interested in knowing how the energy of
the gas is distributed among individual strings. This is
described by the function 2)(e;E), defined such that
2)(F:,E)de equals the average number of strings in the gas
with individual energies between e and a+de when the
total energy in the gas is E, and given by the simple for-
mula [4],

2)(e;E)= f (E)Q(E —e) .
1

(2. 1)

se

egf(c; E) ial fotloff -e ~~

FIG. 1. Energy distribution for a gas of point particles.

In principle, the single-string density of states if known
for all e determines the total density of states and hence
the distribution of energy among individual strings. For
example for an ideal gas of pointlike objects f(e) varies
as a positive power of e, and hence 2)(e;E ) as a function
of e at fixed E rises like a power of e, peaks at an energy
e=e-E/N (where N is the average number of particles
in the gas), and decays exponentially (for explicit fortnu-
las see, e.g., [7]). This is shown in Fig. 1 where ES(e;E)
is plotted against E [eS(e;E)d e equals the average energy
carried by particles in the energy range e to a+de in a
gas of total energy E].
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FIG. 2. Energy distribution for a string gas in compact space
(d =0) of radius -&a'. mo F-Fj

A. String gas in a compact and small space

FIG. 3. Energy distribution for a string gas in noncompact
space (d ~ 3).

For a string gas in a space all of whose dimensions are
compact (d =0) and small (R -v a'), the corresponding
energy distribution is flat [4] (see Fig. 2) implying that the
total energy of the gas is shared equally among strings of
all energies. This follows from the leading-order expres-
sions for f(e) [8,5] and Q(E) [5,6]:

f(e)=e ' /e, (2.2)

Q(E)=Poe ' (2.3)

valid for e, E&mo-1/&a'. Here Po is the inverse
Hagedorn temperature, Po=(2&a')' (+cot+'ti/ co„),
where (col, co„) is (2,2), (2,1), and (1,1), respectively, for the
closed bosonic, heterotic, and type-II strings; and A,o is a
constant. Consequently,

2)(e;E)= 1/e (2.4)

for mo & e(E —mo, and hence e2)(e;E) is constant and
unity as shown in Fig. 2.

B. String gas in noncompact space

On the other hand, for a string gas in a space with at
least three dimensions noncompact (d & 3), at high ener-

gy densities a single energetic string captures most of the
energy of the gas [1—4]. This conclusion follows if the
expression

Poe

f(e) =cV (2.5)

for the single-strin~ density of states is assumed to hold
for all e&mo-&a'. Here c is a constant -a " and
V is the volume (to be taken to infinity in the thermo-
dynamic limit) of the d noncompact dimensions. Equa-
tion (2.5) implies that the leading behavior of Q(E) is
given by

poE+ yo V

Q(E) =cV
Ed/2+ 1

(2.6)

for energy densities greater than the Hagedorn energy
density po-a ' +"~, i.e., for E&poV. (yo-a d~2 is a
constant with dimensions of a number density. } From
these expressions the energy distribution function can be
analyzed. The result, depicted in Fig. 3 is that, at an en-
ergy density p (=E/V) greater than th—e Hagedorn energy

density po [(p—po)/po & 1, to be precise], a single very en-

ergetic string captures most of the energy (about E —poV)
of the system (the peak between E E, and—E in Fig. 3 is
due to this string); the remainder of the energy, poV, is
shared by mostly low-energy strings which constitute a
gas whose pressure, temperature (close to 1/Po}, and
number density (close to yo) are almost independent of
the total energy. (For details see [4].) From (2.6) it also
follows that the system has negative specific heat.

III. THE STRING GAS
IN COMPACT BUT LARGE SPACE

We would like to compute the large-radius corrections
to the density of states when the space is compact. To do
this we will employ the singularity structure of the
thermal free energy I (P) [6], in particular, the fact that
I'(P) has radius-dependent singularities that move to-
wards the Hagedorn singularity Po as the radius becomes
much larger than v'a'.

A. Radius-dependent singularities of the thermal free energy

Both f(e) and Q(E) can be obtained as inverse Laplace
transforms from I (P):

f(e)= f e~'I'(P),
C 277l

Q(E)= f . e~'Z(P),
C 2&l

(3.1)

(3.2)

where Z(P)=e '~' is the thermal partition function and
the contour C is chosen to the right of all singularities of
I (P). This contour can be distorted to C, (see Fig. 4)
since the rightmost singularities all lie on the real axis.
The dominant contribution to the density of states at
high energy comes from the horizontal part of C&, the
part that sees the singularities.

The Hagedorn singularity Po is independent of the ra-
dius but Pt, P2, etc. , depend upon the radius of the space
in which the gas lives in a manner described below. Each
singularity contributes a term proportional to e ' in

f (e); hence, for fixed radius at sufficiently large e, succes-
sive terms are exponentially suppressed, and the leading
contribution (2.2) comes by considering the effect of only
the rightmost singularity Po. As the radius becomes
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FIG. 4. Deformation of contour in the complex P plane for
determining the density of state from the inverse Laplace trans-
form. The new contour, C&, "sees" the effect of the Hagedorn
singularity Pp as well as the subleading radius-dependent singu-
larities P&, P2, etc.

P (2+a')1/2[ [1 L(n /R )2)1/2

+[2—
—,'(n/R ) ]' (3.6)

For simplicity we will consider the case of all R; equal,
the generalization to unequal R, is straightforward.

B. The single-string density of states

Every P„ is a logarithmic branch point of I (P) where a
branch cut originates and extends towards the negative
real axis. In the computation of f(e) from the inverse
Laplace transform of I (P) the contour C& picks up the
discontinuity of the integrand across every cut. The con-
tribution of a single term in (3.5) to the discontinuity of
the integrand factor e~'I (P) is 2mie~'g„8(P„—P), where
0(x) is the step function, unity for x positive and vanish-

ing for x negative. Hence,

d

1 —
—,
' g (n, /R;)

i=1
p = ( 2%2a i

)
1/2

large, P&, P2, etc. , move up closer to Pp and for a fixed e,
at sufficiently large radius the effect of all of them has to
be included. This will give us the desired correction.
Similar considerations hold for Q(E).

Our considerations will be restricted to the toroidal
geometry for space: d out of D spatial dimensions expand
to circles of radii R, , i =1, . . . , d and the remaining
D —d small dimensions are assumed to be circles of ra-
dius -&a'. We denote R;—:R;/&a'. To be specific we

consider the heterotic string, the conclusions hold for
closed bosonic and type-II strings as well. The free ener-

gy has a logarithmic singularity for every
n = (n „n2, . . . , nd ), n; being integers subject to the con-

straint —,
' gd, (n; /R, )'& 1. The singularity associated

with n is denoted P„and its location is

1/2

P„e

f (e)=gg„
n

(3.7)

up to a correction of the order of e '. The n =0 term
is precisely (2.2); the others are radius-dependent correc-
tions.

Now consider (3.7) for large radius R »&a'. Since
the difference Pp

—f3, is of order a' /R for large
enough energies (e»R a ) the correction terms are
still exponentially suppressed compared to the leading
term and f(e) is still given by (2.2). However, for
e «R o. , the corrections are comparable to the lead-

ing term and must be taken into account. For large R
one can replace the sum over n by an integral, expand P„
in powers of R ', and use the fact that g„-n ', the
area of a d —1 dimensional sphere of radius n. The resul-
tant Gaussian integration gives (2.5) with V=(2nR)
and d replacing d. Thus,

d

+ 2 —
—,
' g (n;/R, )

i =1
(3.3)

Pee'f(e)=c'R, mp &e«R a
e

(3.8a)

For n=0 one recovers rip and for nonzero n one has

f3„&f3p Thus, the fr.ee energy is given by

Poe
e e))R a (3.8b)

I (P)= —g ln +A,(P), (3.4)

where the sum goes over all the singularities mentioned
above and /(. (P) is a regular function of P in the vicinity of
these singularities. A, (P) depends upon the other singular-
ities of I (P) further to the left of the P„described above.
For a derivation of this form of the free energy see [6,7].

Some of the singularities P„can coalesce, e.g. , if all the
expanding radii are equal (R; =R for all i), P„depends
only on the magnitude n of n and (3.4) reduces to

V2R i P—P
I (P) = —g g„ ln +/(, (P), (3.5)„=p" PP

where g„denotes the number of points in the lattice Z"
with the same magnitude n and

This shows that, when the radius of the compact space
expands, the single-string density of states as a function
of energy does not go over into the form (2.5) it has for a
noncompact space. It does so only for sufficiently low en-

ergies e&&R a . For high energies e))R a it
retains the form (2.2) that it has for a compact and small

space. This has an explanation in terms of the winding
modes which are frozen out at low energies when the ra-
dius is large and can be excited at sufficiently high ener-
gies (see [8] and below).

C. The total density of states Q(E)

We now turn to the question of how the total density
of states is modified by the expansion. Since the single-
string density of states changes, one expects Q(E) to be
modified as well. Naively one may expect that, as for the
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single-string density of states, for high energies one will
remain with the compact, small-radius result (2.3) and re-
cover the noncompact result (2.6) for low energies, the
crossover energy being given by R a . That turns
out not to be the case. We find that large-radius correc-
tions substantially modify Q(E) even at high energies.
However, for d ~ 3 and at suSciently high energies
(E»R a ' +", not just E»R a ), the leading
behavior of Q(E) is proportional to (2.3), and the propor-
tionality constant is a large radius-dependent quantity
that is independent of the energy. There is no domain of
energy and radius in which the form (2.6), obtained for a
noncompact space, appears.

Frotn (3.5) it follows that P„ is a pole of order g„of the
partition function Z(P):

p
'gn

z(P)=e '~'II (3.9)

n

Pp
gn

= exp[aR +O(R ', lnR)], (3.11)

where a is the positive number
1

a = —2 s- dx x 'lnh(x),
0

h(x)=1 — —[(1—x )' +(2—x )' ],1

1+&2
and sd is the volume of the unit (d —1)-dimensional
sphere. Equation (3.11) follows simply by exponentiating
the product; replacing the sum by an integral gives the
leading term

&2R Pp
—P—g g„ ln

n=1 0

&2'
S— dnn

C, can then be replaced by a sum of contours each encir-
cling one pole (see Fig. 5). Therefore, Q(E) can be
thought of as the sum of terms each coming from a con-
tour encircling a single singularity. The contribution 00
from the contour encircling Pp is

gn

(3.10)
n 0 n

where the product now excludes n =0. The crucial point
is the R dependence of the product. One finds

~&a~%~&o

FIG. 5. Contour deformation for the computation of Q(E).

A, (P)=R [A,p
—(P—Pp)op+0((P —

P()) )], (3.13)

where o 0 is positive and has dimensions of an energy den-

sity.
We now determine Q1, the contribution to Q(E) from

the contour encircling p, . Its form is needed in order to
determine under what conditions the leading term 00 is
dominant and also to determine the specific heat. In-
tegrating (3.9) around p„ it is clear that Q, will contain
derivatives of the integrand at p(, since p1 is a (g1=2d}-
order pole. Explicitly,

Pp P(E+k(P() Pp
gn

radius-dePendent singularities close to Pp Qp is simPly
the first term in the sum over contours encircling indivi-
dual singularities. We still need to consider the additive
contributions to Q(E) coming from the contours encir-
cling p„etc. In this sense the computation of the total
density of states is different from the single-string density
of states where subleading singularities produce purely
additive corrections.

The function A,(p) encodes information about other
singularities of Z(p), which lie in the complex p plane to
the left of the p„discussed here. There are infinitely

many radius-independent singularities [6] and each one of
them sees an accumulation of radius-dependent singulari-
ties (just like Pp) when the radius expands. Consequently,
for the same reason as discussed above, the function A, (p)
is also proportional to R, the expanded volume. Fur-
ther, since these singularities are poles and all of them are
to the left of pp, e '~) [and hence A,(p)] is a decreasing
function of p at pp. Consequently, close to pp we may
write

p()
—p„

X ln +O(R ') X [(E+&'(P))) ' ][1+0(R )] . (3.14)

Hence,

=aR +O(R ', lnR) .

POE+A(I)0)+aR +O(R, 1nR)
(3.12)

Thus, Qp has the same form as (2.3), the total density
of states in a compact and small space, as far as its energy
dependence is concerned. However, by including the
effect of p„, it picks up a large multiplicative factor, the
exponential of the expanded volume. Note that, while
this factor arises because of the presence of subleading

The product can be analyzed as before and we find that
the ratio of the product in (3.14) and that in (3.10}is

II
n%1

gn
Pp

gn

.~p

= —exp[bR" +O(R, lnR )], (3.15)

where b =2' '
sd f pdx [x" '/h (x)] is a positive

number. Substituting (3.15) and (3.11) in (3.14) gives
Q, (E,R).

One can now compare 00 and 0, :
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~ Q, /Qo~ = exp[ —(Po —P, )(E—poR ")

+O(R", lnE, lnR )], (3.16)

where po=oo+. 2 b/Poa ~ is positive and defines a
Hagedorn energy density. Since Po

—P, ~a ~ /R, the
first term in the exponential dominates over the correc-
tions only when d & 2. In that case it follows from (3.16)
that, for 0, to be much smaller than Qo, we must have
E &poR, i.e., that the energy density in the expanded
universe be greater than the Hagedorn energy density.
We shall assume that

E —poR "&poR, d & 2, (3.17)

so that the total density of states for a string gas in a
large but compact space is given by (3.12) plus a small
correction (3.14):

Q(E, R) =00(E,R)+Q, (E,R)

PoE+aoR + O(R )

Oe
'

(3.18)

D. Comparison vt ith noncompact case,
energy distribution among individual strings

The result (3.18) is quite different from the total density
of states above the Hagedorn energy density obtained in
noncompact space, Eq. (2.6). In particular, (3.18) implies
that the temperature of the system is always less than the
Hagedorn temperature I/Po and approaches it from
below as the energy density goes to infinity whereas (2.6)
implies that, at Hagedorn energy density, the tempera-
ture of the gas is higher than the Hagedorn temperature
and approaches it from above in the infinite-energy-
density limit. Consequently, the specific heat of the gas
obtained from (2.6) is negative but from (3.18) is positive.
Note that in both cases the specific heat is not extensive.

In addition, the distribution of total energy of the gas
among individual strings is also difFerent in the two cases.
Since we know both f(e) and A(E) for the compact,
large-radius case, 2)(e ,E) is imm'ediately deduced from
(2.1}. The result is depicted in Fig. 6. The total energy
satisfies (3.17}, hence Q(E) is given by essentially (3.12).—PoeThus, 2)(e;E)=f(e)e ', where f(e) is given by (3.8a)
and (3.8b). For e«R a ', f(e) is given by (3.8a),
hence,

n(e-E)=c'R "e '""+" (3.19)

(l3OE) —(po —p()(E poR )—
X 1 — e

(2d —1)!

where ao=a+A, oa
Notice that this conclusion depends crucially on the

fact that the ratio (3.15) of the products is much smaller
bRthan each individual product. The ratio has only e

F7'+o(rY' ')
whereas each individual product contains e'~ + '

This is because Po and P, are very close, their difference
being of order a ~ /R . If the ratio had turned out to be
larger than it is, our conclusion that Qo dominates over
0& at finite energy densities would have broken down,
and (3.18) would be valid only at infinite energy densities.

Power- I aw
decay

- cV&
Number of

jI
(E-6)

energetic strings

area under flat
region (energy carried

mo R
3/2

FIG. 6, Energy distribution for a string gas in a compact
space of which three or more of the radii are much greater than
&a' (d ~3).

E —5
Nenergetic

VO,
(3.20)

This result for the number of energetic strings in the gas
is quite different from the noncompact case, where essen-
tially a single energetic string dominates. In the therrno-
dynamic limit the number of energetic strings becomes
infinite. This means that, even at large sizes, the string
gas is inherently sensitive to the large-scale structure of
space.

K. Distribution of ~inding number in the gas

It is of interest to ask how winding modes are distribut-
ed in the gas, how many strings there are with a given
winding number, and what are their energies. To do that
it is instructive to understand the difference between the
noncompact-space single-string density of states (2.5) and

This accounts for the first peak in Fig. 6 and the distribu-
tion in this energy range is like the noncompact case in
the same energy range. This is reasonable: low-energy
strings have little extension, they do not see the structure
of the space in the large and for them it does not rnatter
whether space is noncompact or large and compact.

For e »R a, Q(E) is still of the same form (3.12),
but f(e) is now given by (3.8b). Hence, one recovers
2)(e;E)= 1/e, the same result as for the compact space of
radius -&a', Eq. (2.4). The only difference is that, for
Q(E —e), since the validity of the formula (3.18) requires
the argument to be greater than poR, the flat region does
not go all the way up to E—mo as in the small-radius
case but only up to E b„where b, is—of the order of (and
greater than) poR . This explains the flat part of the
curve in Fig. 6. The fact that the behavior at the upper
end of the spectrum agrees with the small-radius case
means that the energetic strings contain excitations of the
winding modes. This type of behavior is also reasonable
because sufficiently energetic strings would stretch across
the space easily, irrespective of its radius. The result, in

particular, establishes the energy scale which separates
the two types of strings in the gas, namely, at
e-R' ' '"

The average number of energetic strings N,„„„„is
given by the integral of Xl(e;E) from an energy e, which
is o- R but much larger than R a, to E. Thus,
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the compact-space expressions (3.8a) and (3.8b) in terms
of the winding modes. For e&&R a, the two differ
and the ratio between them, (R a /e) /, is much
smaller than unity. There are many more states available
to an energetic string in a compact space than in a non-
compact space. It is not difficult to see that the extra
states in compact space are due to the winding modes.

The energy e of a string with winding number w;,
momentum m;/R;, and left and right oscillator level
numbers N and N is

and
I

N(e, m, w)= (e p)+1 . —

The degeneracy of oscillator states d)v at a fixed oscillator
level number N is given by the asymptotic formula for

large N, d)i -—(I/&2)N / e (for closed bosonic
strings).

Defining f(e, m, w) as the number density of states at
fixed momentum m and winding w [f(e, m, w)d e
= number of single-string states with fixed momentum m
and winding w and energy in the range e to e+de], we
have

af(e, m, w)=dz(, )d~(, )
N(em, w)

—( a~e(NN )
—2 /4 74me( )/+)()(/N )

4

Since N) 0, we have p (e, and we can expand v'N in
powers ofp /e . Then, to leading order at large e we get

f(e, m, w)= (2/(/a'e) —e ' e
E'

(3.21)

where a; =2m. '(/a'/eR; and 6; =2m.R; /ea / .
By definition f(e)= g~ ~ f(e, m, w) To determ. ine

f(e) in various energy ranges we follow Ref. [8]. If
a;, b; «1, we can replace the corresponding sum by an
integral. For the dimensions that stay small (R;—v a'),
this holds for all e))1/v'a'. For the d diinensions that
become large, it is true for the corresponding a; and we
replace the momentum sum by an integral. Performing
these integrations gives

Poe

f(e) =c'R „ge
W

(3.22)

where the sum is now only over winding numbers in the
large directions and b =2m.R /ea . R" is the familiar
volume factor coming from the sum over momentum
modes in the large directions. In the energy domain
a ' «e«R a we have b))1, hence only the

, (N+N 2)+—,' g —(p; +p; ),2=2
a' i=1

where p; =m;/R; —w;R;/a', p;=m;/R;+w;R;/a', and
the quantum numbers obey the constraint
N =N+ g, m;w;. Therefore, for a state with a given en-

ergy, momentum, and winding, we have

N(e, m, w)= (e —p )+1a

term with w =0 contributes to the sum, and we get (3.8a).
In the energy domain e &&R a we can integrate over
w to reproduce (3.8b). Thus, it is clear that in this
domain the increase in the single-string density of states
is caused by the contribution of winding states.

Equation (3.21) is peaked at m =w =0. The reason is
physically clear: the number of states is maximized by
putting all of the energy e into oscillator modes whose
number grows exponentially and expending as little as
possible into momentum and winding modes which grow
only like a power law. This explains the Gaussian
suppression and the dependence of a and b on energy and
radius [7]. This also means that the "spread" in the
winding number is of the order of b ' or that the
mean-square winding number ( w ) of a string of energy
e is of the order of ea /R .

Thus, low-energy strings (those under the first peak of
Fig. 6) have zero winding number, those with energy
-R a (near the beginning of the flat part of the
curve) have winding number of the order of unity, and
the most energetic strings at the upper end of the flat re-
gion have a mean-square winding number -R" . In
the flat region of Fig. 6, since the number of strings in en-
ergy range e to e+de is given by 2)(e;E)de, the mean-
square winding number carried by them is of the order of
(a /R )de, which, being independent of e, also gives a
flat distribution. That is, the mean-square winding num-
ber is also distributed uniformly among strings of all en-
ergies above e, .

If we take into account the conservation of winding
number and keep the total winding number of the gas
fixed, the form of Q(E) is modified. Since we have seen
that the typical extent of winding number for strings of
high energy is proportional to the square root of their en-

ergy, and since the distribution of strings at high energies
scales with the total energy of the system, each winding
number constraint will result in a factor of E ', as also
happens when all radii are small [4,9,10]. This would
mean that the overall specific heat of the system would be
negative, and some common properties (like the transi-
tivity of thermal equilibrium between systems) would not
be valid in this case. However, as observed in [4] for the
cases studied there, the distribution of strings at various
energies remained the same even though Q(E) changed.
We expect the same to hold here, i.e., the distribution to
be given by Fig. 6 even when the winding-number conser-
vation is imposed, especially for large R, where there is a
large number —lnR of strings among which the winding
number is effectively shared.

IV. THK STRING GAS IN A SPACE
WITH ONK OR TWO LARGE DIMENSIONS

When space has only one or two large spatial dirnen-
sions, d = 1 or 2, the situation is quite different. For d = 1
at finite energy densities the total energy is proportional
to R and that is not enough to excite string modes which
see the structure of the space. For a string to span the
whole space either it should have a nonzero winding
number, which, as seen earlier, requires its energy should
be at least -R, or, the spread of its oscillator wave
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function should be of the order R which again requires its
energy to be -R . When the total energy is of order R,
no individual string mode can have such energies. The
modes that are excited are much smaller than the size of
the space, which to them looks very large (effectively
noncompact) and hence one expects the compact, large-
radius results to be the same as the noncompact case.
For d =2 one might expect that at finite but large energy
densities since E ~ R modes that see the structure of the
space are excited. However, it turns out that d=2 is a
marginal case in which the system requires energies of
the order -R lnR (i.e., infinite energy densities in the
thermodynamic limit) to see such modes; at finite energy
densities such modes are, in fact, not excited. This is be-
cause, in the latter case while the total energy is -R,
this is distributed among many strings and no individual
string energy is able to cross the O(R ) threshold re-
quired for that string to stretch across the large dimen-
sions of space. Thus, in this case also at finite energy
densities the gas behaves as if space were noncompact.

In this section we first present the results for the non-
compact cases d =1,2 for finite but large energy densities
and then discuss why the conclusion is the same if we
consider the compact case with large radius (d = 1,2).

For d =1,2 we may use the canonical ensemble to dis-
cuss the statistical properties of the system at finite ener-

gy densities. This is because (i) there exists the prefactor
V in (2.5) which suppresses fiuctuations at the saddle
point in the Laplace transform connecting Q(E) and
Z (p), and (ii) the mean energy density ( p ) in the canoni-
cal ensemble diverges as popo which allows one to as-

sign a canonical temperature to the system for arbitrarily
large energy densities. [In the cases d =d =0 and d & 3
at large energy densities, condition (i) and condition (ii),
respectively, are violated. ]

Within the canonical ensemble, quantities scale with V
in the standard manner; specific heat is extensive, the
temperature depends on energy density, and 2)(e;E) is

f(e)e ~'. P differs from Po by a function of p, hence, en-

ergetic strings are exponentially suppressed. Explicit ex-
pressions for Q(E) and 2)(e;E) are given in [4]. To illus-
trate for d =2, using (2.5) in I (/3)= jo de f(e)e ~', we

have

r(p)=vf"";e" "'.
For P~/3(),

I (P) =R [c(P—P()) ln(P —P())mo

+C, —C2(P —PO)+ ], (4.1)

where the c's are dimensional constants involving a'.
Since

(E ) = — = V[ —c In(/3 —Po)mo+po+0(/3 —Po)],
ar(p}

we have

B
lnQ(E) =P=PO+ e ('~'+O(e '),

BE mo

whence

and

Q(E) =co exp V[PO/2 e—)' '+O(e ~ ')]

cVX)(e;E)=
2

e ", a =c3e
E'

(4.2)

(4.3)

where A. sets the scale of the crossover point. This gives
back (4. 1) but now only in the domain (to be called
domain 1} mo

' »p —po»(AR ) '. In the domain

p —
po &((kR )

' (domain 2), one gets instead

I (/3) = —ln[(p —po) /po]

+R [c, +(P—P())( —c21nR+c, )

+c4(p —p()) + . ] .

[This conclusion also follows from summing over singu-
larities in (3.5).] Thus, very close to /3O (domain 2) the free
energy sees a pure logarithmic singularity at Po, since
other singularities are relatively far away, whereas not so
close to P() (domain 1), the singularity is seen to be weaker
[that given by (4.1)] which is the smeared out effect of the
subleading singularities accumulating at Po.

The question is whether the modification of the free en-

ergy in domain 2 changes Q(E) at finite energy densities.
It is not dificult to see that it does not; in fact, for E & 0

where p=—p
—po. Thus, for any finite energy density we

have a positive extensive specific heat, and energetic
strings (strings carrying an appreciable fraction of the to-
tal energy) are exponentially suppressed. The situation is
similar in fact to the point-particle gas described by Fig.
1.

We now ask whether this picture is modified if we use,
instead of (2.5), the expressions (3.8a) and (3.8b) for f(e),
which takes into account winding-number modes. The
two expressions differ when e))R a . Since, for
d =1,2, strings with such large energies are not present
in the gas at finite energy densities, the system effectively
does not get a chance to sense the difference between (2.5)
and (3.8b). Thus, in the thermodynamic limit, we expect
the noncompact calculation to remain valid for arbitrari-
ly high (but finite) energy densities. This is unlike for
d ~3, where the naive noncompact calculation itself led
to a single-string capturing energy -R, which is well
into the range where f(e) crosses over to (3.8b}. There
the noncompact calculation itself told us to expect a
difference in the proper thermodynamic limit because
modes that sensed the difference between Eqs. (3.8a) and
(3.8b) and Eq. (2.5) were excited.

This conclusion can be verified by inverse Laplace
transforming Z(p) =e (~). It is not necessary to do this
for d =1; there, for any energy density p, the total energy
of the system is linear in R, so that the crossover in f(e)
at -R is inconsequential because no string can ever pos-
sess this much energy. For d=2, we have from (3.8a)
and (3.8b),

).R2 de (po —p)e ~ de (po p)~—
e

mo e2 )„R2 E.
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(R lnR} the same expression (4.2) holds since, for these
energies, the saddle point is still in domain 1 where (4.1)
is valid. Thus, we recover the noncompact picture for
finite energy densities, namely, that energetic strings are
exponentially suppressed. The effect of the modification
(4.4) in domain 2 becomes important only for energies
greater than 0 (R lnR) (infinite energy densities in the
thermodynamic limit) where the behavior becomes simi-
lar to the d ~ 3 case studied in the previous section.

V. CONCLUSIONS

To summarize, we have studied the ideal string gas in
the thermodynamic limit (space is compact but large, en-

ergy density is finite} and compared its behavior to that
obtained when space is treated to be noncompact to begin
with. We find certain things in common between the two
cases but they also differ in certain key respects at energy
densities greater than the Hagedorn energy density. The
common feature is that, in both cases the distribution of
low-energy strings is the same (compare Figs. 6 and 3).
Also, in both cases most of the energy of the gas is car-
ried by energetic strings. However, the distribution of
energy among energetic strings is different when the
number of large dimensions is greater than 2. While in
the noncompact case a single energetic string captures
most of the energy, we find that, in the proper thermo-
dynamic limit, the energy is uniformly distributed among
—lnR/&a' number of strings. This large number is due
to the existence of winding modes which are left out if
space is treated a priori as noncompact. We have shown
that the least energetic of these energetic strings has an

energy of the order R a . This also explains why the
energetic strings are not present when the number of
large dimensions is less than or equal to 2, because then
at finite energy densities the total system does not have
enough energy to excite them.

The winding modes stretch across the space and are
sensitive to the topology of the space. In addition, the
spread of the oscillator wave function of strings with en-

ergies -R a is also of the order of the radius of the
space. Hence, individual strings in the gas can see the
global structure of the space and their presence destroys
the extensivity of the gas.

The flat energy distribution among energetic strings in
the thermodynamic limit is similar to that in a space
which is compact and small with R -&u' (compare Figs.
6 and 2). Although we have only considered the case of
toroidal compactification here, from the physical argu-
ments about the string sizes that we have discussed, and
from the fact that the distribution for a compact sma11

space is universal and independent of the
compactification [7], we expect a similar picture to be
valid for the general case.

Our analysis of the string gas in a compact space
resolves a question about the behavior of the system as
energy is pumped into the string gas. At 1ow energy den-
sities (p «po) the gas behaves like a gas of point parti-
cles, since stringy modes are not excited. Its temperature
grows essentially like a power of the energy density. It
has been conjectured that as one pumps in more energy,
after a certain stage when the system approaches the

Hagedorn temperature, the energy goes into the creation
of a long string rather than into the gas of low-energy
strings [3,9,10]. However, this argument has been based
on the noncompact expressions for the density of string
states. In the high energy density domain (p»po) an
analysis based on the naive thermodynamic limit (which
treats space as noncompact from the outset) leads to the
temperature approaching the Hagedorn temperature
from above as p —+ ~. This is well known to follow from
(2.6) [1,2] and means that, as energy is pumped into the
system, at some intermediate energy densities the temper-
ature rises above the Hagedorn temperature and then
falls; clearly this behavior is quite unphysical. The calcu-
lation we have presented in this paper deals with the
compact system rigorously, and shows that the scenario
previously conjectured is qualitatively correct in that,
after a certain point, the energy does go into making very
energetic strings rather than low-energy strings, but with
the difference that the number of energetic strings is not 1

but depends logarithmically on the size of the universe.
In addition we find that the temperature also behaves
reasonably: it increases monotonically with energy and
approaches the Hagedorn temperature asymptotically
from below [from (3.18} it follows that
TH —T-(I/R ) exp( cE/R )—].

A. Duality

Finally it is worth mentioning that, while we have dis-
cussed the case R »&a' in this paper, the same analysis
goes through for R «&a'. The singularities P in (3.3)
are then quite far from the Hagedorn singularity, but
their place is taken by other singularities given by (3.3)
with R; replaced by 1/R;. In particular, the distribution
of Fig. 6 remains the same when R «&a' provided we
replace R ~1/R and interchange the roles of momentum
and winding. If we start from a large radius, pass
through the duality radius R = 1, and go on to smaller ra-
dii, the energy distribution among strings will start from
Fig. 6, pass through Fig. 2 at R —1 where the peak disap-
pears, and return to Fig. 6 at R ((1. At small radii the
low-energy peak is due to winding modes and the flat re-
gion contains momentum excitations.

Note that these distributions are only valid for
sufficiently high energy densities or "dual densities, " or,
if energy E is held fixed, only for radii in the range
(cv'a'E) '&R &cv'a'E, where c is a dimensionless
number of order unity. For radii outside this range the
total energy starts becoming insufficient for supporting
winding modes (if radius is too large) or momentum
modes (if radius is too small). In view of the cosmologi-
cal scenario of Ref. [5], it is of interest to investigate these
transition regions.
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