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General analytic solution of R? gravity with dynamical torsion in two dimensions
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Using light-cone variables, we show that R? gravity with dynamical torsion in two dimensions is
one of the rare field theories whose complete classical solution in closed form can be obtained. It fulfils
an invariant relation between the cosmological constant, the curvature scalar, and the scalar formed
by the torsion tensor. We conjecture that this relation, interpreted as a local conservation law, is
closely connected to the integrability of the theory. The solutions may possess a rich spectrum of
singularities in curvature and torsion. Special cases, including one with nonvanishing torsion, can be
used to elucidate some physical properties of the solution where by “physical” we imply the validity
of concepts from general relativity such as measurements of distances and times and of extremal

trajectories of a scalar test particle.
PACS number(s): 04.50.+h

I. INTRODUCTION

The main incentive for nearly all novel field-theoretical
ideas of the last two decades has heen the desire to ac-
commodate gravity as well in an otherwise increasingly
coherent picture of the basic laws of Nature, cast into a
renormalizable and perhaps even finite unified quantum
field theory. Unfortunately, efforts turned out to be in
vain in the case of supersymmetry and supergravity [1],
and the great expectations in a “theory of everything”
to emerge from superstrings [2], at least so far have not
found convincing physical justification.

On the other hand, the rich new insights into the
two-dimensional string world have motivated theoreti-
cal studies of gravity problems in lower dimensions. It
is well known that a direct transfer of four-dimensional
Einsteinian gravity with the Einstein-Hilbert (EH) action
and vanishing torsion to d = 2 leads to the appearance
of Weyl symmetry which, together with two-dimensional
diffeomorphisms, makes pure Einstein gravity topologi-
cal. Nontrivial actions only result from the interaction
with further fields [3]. Of course, a natural question to
ask is why a diffeomorphism-invariant theory in d = 2 as
such needs to be of the Einsteinian type at all.

Precisely the lack of renormalizability of gravity in four
dimensions has provoked numerous attempts to supple-
ment more complicated invariants than just the curva-
ture scalar R to the EH action [4]. However, e.g., adding
terms quadratic in the curvature, although mitigating the
renormalizability problem, induces “ghost” particles with
unwanted spins and, even worse, represented by higher-
order poles in the propagator.

The idea to take the vielbeins e® and the spin con-
nection w% as the basic variables of gravity is almost as
old as Einstein’s theory of gravity itself [5]. It somewhat
miraculously also leads from the EH action to vanish-
ing torsion and to the Einstein equations, expressed in
terms of the metric field g,,. Therefore, one way to at-
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tack the problem of renormalizability has been to use a
supplemented EH action, with e® and w9 playing a fun-
damental (instead of incidental) role. Maintaining still a
vanishing torsion, it has been shown some time ago that
even in four dimensions such a theory may become renor-
malizable, although ghosts survive [6]. This is still true
for nonvanishing torsion [7]. However, by taking only the
part with at most two derivatives, a nine-parameter ac-
tion can be shown to contain no ghosts and no tachyons
[8]; besides the graviton, only massive particles of spin
1 and 2 appear. Unfortunately, power-counting renor-
malizability being lost in this case is in agreement with
the well-known fact that unitarity and power-counting
renormalization exclude each other in d = 4 gravity. The
main technical problem in the analysis of such theories
is the proliferation of possible terms to be added to the
EH action.

Surprisingly enough, to the best of our knowledge, the
field theoretic “laboratory” of d = 2, which has played
such an important role in understanding quantum field
theory, has not been used in precisely this context until
very recently [9]. Also for theories with R? terms and
torsion the restriction to d = 2 results in a substantial
simplification of the problem. The most general action
leading to field equations for e, and w,*, with at most
two derivatives is simply

1

Line = T 4M? /dzx e( Rwab R,

+ M?*BT,, “T*, +4M*)), (1.1)

where instead of the two-forms of curvature R% = dw? +
w9 Aw®, and of torsion T¢ = de® +w? A e’ [a,b € {0,1}
are indices related to the tangential Lorentz space with
Minkowski metric diag(nss) = (1,—1)] already explicit
“world” components (p,v € {0,1})

R,%= (Ouwy — Oywy) €% =: Fuye, (1.2)
TI‘V *=0ue, + wﬂgabeub (ko)

with
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w,fly =t WueY,
0 -1
aby _

= 7)
have been introduced. M has mass dimension one, M2
and the cosmological constant are free parameters with
dimension two. The integration measure e in (1.1) is
expressed in terms of the determinant of the zweibein
e,. The EH term eR, a total divergence, is omitted.
The simplification in d = 2 stems essentially from the
fact that the curvature tensor R, % only possesses one

independent component so that

(1.3)

R;wabR‘wab = R? (1'4)
with
0 -1
Bry —
e=(1 7).
thus
eR = Fj, e | (1.5)

and the torsion has only two independent components

(1.6)

1 _
T = —ge ' T,
with the torsion scalar 7°2:

T,,°T*, = =2T°T, = T*. (L.7)
The action (1.1) with (1.4) and (1.7) closely resembles
an Abelian Yang-Mills theory in w, coupled to a non-
Abelian (noncompact) gauge theory of e,*. As ordinary
pure Yang-Mills theory in d = 2, (1.1) just misses the
two physical transverse degrees of freedom, present in
d = 4. This is reflected here in the absence of asymp-
totic states and of an S-matrix [10]. Still, the action
(1.1) has a highly nontrivial content, corresponding to
a “Coulomb”-like sector and is certainly relevant also if
further interactions with other fields are introduced. Al-
though by diffeomorphism and local Lorentz transforma-
tions

bzt = —€H(x),

_ b 1.8
be,? =v(z)e%e, (18)
from the original six degrees of freedom (e,?, w,) three
correspond to gauge transformations, the remaining
three give rise to nontrivial classical solutions. Choos-
ing in the conformal gauge

a _ _pga
e =e 6“

(1.9)

those variables to be w, and ¢, the integral of the field
equations has been given first in Ref. [9], up to the solu-
tion of a transcendental first-order differential equation.

Intuitively more appropriate for the separation of
“physical” degrees of freedom, however, in theories with
Yang-Mills structure seems the use of a light-cone (LC)
gauge.

As shown in Sec. II, in that gauge a complete analytic
solution without residual differential equation is possible.
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It depends on three arbitrary functions and implies a co-
variant relation between the curvature and torsion scalars
(1.5) and (1.7). One sector of the solution is character-
ized by constant curvature and vanishing torsion [9] (“de
Sitter” solution). It exists for A > 0 only.

After a preliminary discussion of the role of singulari-
ties from the requirement of a “physical” time and length,
in Sec. III special stationary and reflection-symmetric so-
lutions (with respect to LC coordinates) are given.

The transformation to conformal coordinates (Sec. IV)
makes the appearance of up to three singularities in these
coordinates possible, if the arbitrary functions are fixed
by appropriate boundary conditions. Two singularities of
curvature (and also in torsion) may lie in finite “physical”
distances. In the simple case of a de Sitter (deS) solution
the transformation to conformal coordinates is obtained
by elementary integrals and shows the salient points.

Section V is devoted to the study of selected extremals
as defined by the passage of a test particle with action

Liatter = "/d"c \/ gaﬂi'ai'ﬁ

which “feels” only the Christoffel part of the affine con-
nection.

(1.10)

II. SOLUTION IN THE LIGHT-CONE GAUGE

In the following, w, and e,* are expressed in LC com-
ponents (z* = 2%+ 2! =t + z)

wy = %(wo + wy),

(2.1)

e = 3(e” L e,%),

where now also a € {+, —}, corresponding to a metric

1/0 1
(nab) - 5 (1 0) :
Although our solution is nonperturbative we anyhow in-
troduce for convenience (m > 0)

a

e, =62+ 2L (2.2)
The LC gauge is characterized by
w+:<p+i:0, (2.3)

and we save indices below by introducing the abbrevia-
tions

((,U+,w_,<p++,<p_+,30+_,$0__) = (C)ywad)‘vwv@’w) .

(2.4)
The Lagrangian of (1.1) with (1.4) and (1.7) now reads
4 243 -
Liny = ~m(F+_)2 + ?T+_+T+_ —eA (25)
written in terms of
F+_ = 8+L4J - 8_(:.2, (26)
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- “m m m’ (27)
- m m (2'8)

The six equations of motion are obtained by varying the
fields (2.4). In the gauge @ = ¢ = ¢ = 0 they may be
expressed in terms of the gauge-fixed quantities

R -
€ g
+
T* =T, *| ,
&f (2.9)
T? = —%T+T‘,
e

eO:eng«:l—i-T—:-

and read

0+ R— M?Bej'T™ =0, (2.10)
04 (eg'T7) =0, (2.11)
(R* —4M?)) — 8M?%Be5'0, Tt =0, (2.12)
O_-R+ M?*p (T++651T‘%> =0, (2.13)

Y

m

(R® — 4M*)\) — 8M?Bey T~ 04
+8M?*Beg'd_ (eg'T™) =0, (2.14)
(R? =AM X)y — 8M?Bleg *THT™ ¢ + md_(e5 ' T™)

+melwTt)=0. (2.15
0

Starting with (2.11), Eqgs. (2.10) - (2.12) may be trivially
integrated for z+. We consider first the case d,e9 # 0
[ = mf(z=)z*, A =40/M2B?);

Ineg = In(1+ ¢/m) =¢ +g, (2.16)
2
w = Aﬁf‘:j" (C+h—1)+ml, (2.17)
_ M?feq 2
V=Gt (€ R =D 414
+T—T—;—C + sm. (2.18)

The arbitrary functions of z= (f,g,h,l,r,s) in (2.16) -
(2.18) are restricted by (2.13) - (2.15),

ff=mfr (2.19)
h =m(fs+1-r), (2.20)
(' =)y =(=r)[g' —m(fs+1)] (2.21)
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so that only three functions (e.g., f # 0,h and F') and
one constant Cy remain free:

_ I
el (2.22)
o= f! (ﬂ _ 1+r>, (2.23)
m
F .= 8U-r) _ f~texp(g — h). (2.24)
Co

It is convenient to introduce dimensionless scalars for the
curvature and for the torsion:

R=R/M?B=¢( +h,
T2 =T?/M*3.

(2.25)
(2.26)

The expressions (2.25) and (2.26) depend precisely on
those arbitrary functions which are still undetermined.
The solution (2.16)-(2.18) may be expressed in terms of
(2.25):

eo = Ffelt, (2.27)
_ Mzﬂ R/ A mCQF f/
w ==L Fe (R—l)+—é-—+7, (2.28)
_ M2BF 4, - 5 mCoF  0_R
U [(R-1)+1-A]— st
(2.29)

Thus the dimensionless torsion scalar (2.26) turns out to
be a covariant function of R and A

Com?

T (230

] 2
Q =€t [T2+(R—l) —A+1] =
with a nontrivial dependence on the constant Cj alone.
In the special case [ = 7, Co = 0 (then F = e97h),
Eq. (2.30) implies a simple parabolic relation between R
and T2. It is remarkable that all solutions of the field
equation with nonvanishing torsion fulfil the covariant
equation (2.30), which may be written as a conservation
equation 0,Q = 0 for the local quantity Q. This strongly
suggests a relation to the infinite number of conservation
laws, typical for integrable theories. However an investi-
gation of this question is outside the scope of our present
work. We note in parentheses that a first-order differen-
tial equation, closely resembling (2.30) with R — © and
T? essentially e=®|©’|, remains the only one not to be
solved analytically when the solution is sought starting
in the conformal gauge (1.9) [9)].
The solutions for ;e = 0 must be treated separately:

eco=1+2% =g, (2.31)
m

w= -%Eqr“" + ml, (2.32)
Rom

Y= 5 q(zt)? 4+ mlzt + ms. (2.33)

They correspond to vanishing torsion and to constant
curvature
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Ry = +M*BVA (2.34)

and thus exist for A > 0 only. The arbitrary functions of
z~ are here ¢, [ and s. For this de Sitter (deS) solution
the relation to the corresponding one in Ref. [9] is more
easily established than in the general case (2.27)-(2.29).
This point will be clarified below in connection with a
transformation to conformal coordinates.

From the explicit form (2.16)—(2.18) of the solution
and from (2.30), by a suitable choice of three boundary
conditions on a “plane” zt = const (e.g., by R, 0, R, T?
the functions f, h, and F are determined) it is always
possible to produce singular ones in z~. In the LC gauge
only the singularity in z% is fixed by the dynamics of
(2.5). It is evident that a rich structure of singularities
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may be produced in this manner.

Just as the deS solution exists only for positive or van-
ishing cosmological constant, Eq. (2.30) obviously im-
plies certain restrictions on 72 for given curvature so
that the fields remain real. The range where this holds
is surrounded by a “curve of singularity” which need not
be immediately related to coordinate singularities deter-
mined by boundaries where measurements of “length”
and “time” become singular. In general, ¥ — +o00 or
¥ — —oo will lie at the boundary of the region men-
tioned above. At these points R and T diverge.

A Hamiltonian may be constructed from the action
(2.5) with canonical momenta II*, IT¥, and II¥ for w, ¥,
and ¢, respectively. At © = ¢ = ¢ = 0 it is a conserved
quantity in the “time” zt. The resulting expression

B 4 28
H _—_/A dz~ eq (/\ - M——(6+w)2 + m(@+g@)(6+1/)))

2¢y2

B
=/ dz~™ mf’
A

for an interval A < z= < B depends on f alone (and
vanishes for the deS solution). An appropriate f, e.g.,
with f’ behaving like (z — A)™%, 0 < a < 1, at the point
A and similarly at B, may produce any value of H.

Quantizing around one of our classical solutions, the
value of the action with (2.27) - (2.29) or (2.31) - (2.33)
will eventually be needed. With (2.30) it is readily ob-
tained as (O;eq # 0)

. M? ~ 2Com? j
Liny = — 4ﬂ/‘/d:c+d:c-' €o (R+A—l— ]Wozﬂ eR)
(2.36)

and (04e0 = 0)

Linv = —A/ detdz g, (2.37)
1%

respectively. For infinite space-time volume V both ex-

pressions in general diverge.

III. PROPERTIES OF SOLUTIONS
IN LIGHT-CONE COORDINATES

A. “Time” and “length”

The motivation of our study of R? gravity in d = 2
kas been its possible relevance for an “extended” theory
of gravity in d = 4. Thus if classical “observables” are
searched in this non-Einsteinian theory, it is tempting to
proceed as one is used to for ordinary gravity [11]. Ind =
2, for goo > 0 coordinate time z° = ¢ is simply defined
as that variable in the line element (ds)? = g, dz®dz”
which at a fixed “space” point dx! = dx = 0 leads to a
real proper time 7 with

(2.35)

dr = /900 dt , (3.1)

whereas a measurement of a space distance by means of a
light ray is determined by the induced metric for a fixed
time

==L dz .
goo

For goo < 0 the role of ¢ and z has to be interchanged.
Inserting our solution (2.16) — (2.18) into gop = ea"eﬁbnab
yields

(3.2)

dr? = eo(1 + ¥/m) dt?, (3.3)
de? = eo(1 4+ /m)~ " de? . (3.4)
ep and/or 1 + ¢¥/m may exhibit zeros or poles. It is

evident from the explicit solution that those zeros and
poles may occur at finite and infinite values of z* with
only the z+ behavior somewhat limited. The correspond-
ing surfaces (curves) determine the coordinate range of
z¥ = t + z to be considered in possibly disconnected
parts of the “universes.” For brevity we will call those
connected regions “regular” regions.

B. Stationary and space-symmetric
light-cone solutions

The very nature of LC variables 2%+ precludes an imme-
diate interpretation of a special solution (2.16) - (2.18)
in terms of more physical coordinates [i.e., closer to 7
and £ in (3.1) and (3.2)]. In this respect, a transition to
conformal coordinates (§4++ = §—— = 0) has advantages
(cf. Sec. IV). Still, the peculiar asymmetry induced by the
gauge choice (2.3) is absent for “stationary” and “space-
symmetric” solutions. The deS solution (2.31) - (2.33)
trivially fulfils both conditions doR = (84 + )R = 0
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(stationary) and R(t,z) = R({,—z) (space symmetric).
For the general solution with d;¢ep # 0, Eq. (2.30) auto-
matically couples the respective behavior of R to the one
of T2.

In the stationary case from

R=(04+0-)R= (3.5)
evidently (the index zero denotes an arbitrary constant)
f=fo#0, h=ho—mfoz~, (3.6)

so that
R = 2mfoz + ho, (3.7)

and the other arbitrary functions by (2.19) - (2.21) are
restricted to
1—T:1:—f0(1+8)

exp(g + mfoz™ — hg) .

8f
(3.8)

The curvature R diverges here for z = +00. Whether or
not these points lie inside a regular region can be seen

from (3.3) and (3.4) with

8f2(1
0= _J.‘l_(..+_‘s) exp(2m foz + ho),

o (3.9)

1+-:%=(s+1)

x(l— M5 &k 1)2+1—A]) .

mzc
(3.10)

The behavior in = =t — z of (3.9) and (3.10) still de-

pends on the free function s(:z:‘) In any case, Eq. (3.10)
may show up to three zeros in z, dependmg how the
parabola in z transects exp(—R + ho)

If the stronger condition (94 + 0-)(fields) = 0 is im-
posed, in Eq. (3.8) s = so, ¢ = go — foz™ are further
specified.

Space symmetry with respect to z implies R(z%,z7) =
R(z~,z7%) so that

R = m2ay(t? — z?) + 2mpot + o (3.11)

and

f=po+maez™,

b= oo pan- (3.12)

From (3.11) the curvature spreads symmetrically with
the speed of light in both directions z = =+t, increasing
linearly with ¢. Using (2.30) the corresponding behavior
of the torsion scalar can be deduced easily.

IV. CONFORMAL COORDINATES

In conformal coordinates g4+ = §——- = 0 the measure-
ments of length and time (3.1) and (3.2) are determined
by one single expression g4
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dr d¢

@ T a s V-

(4.1)
The LC solution (2.16) - (2.18) yields in LC coordinates

g4+ =9~ =0,
=(gt) ==
- 5
w? . (4.2)
g--=—""749 =z =vw,
_ 24,
-g—eo—w )

where new abbreviations eg = w, v = ¥/m, z = vw have

been introduced. In order to achieve g4, = g__ =0 a
diffeomorphism z#(Z%) must satisfy

Oz~ Oz~ 1 0z*

G " G wor (43)

or a similar relation with 2zt — z—
Ozt /0z% # 0 completely free.

. Equation (4.3) leaves
Furthermore 9z~ /0z~

may be fixed conveniently, e.g., by z= = z7. The re-
maining first-order differential equation

Ozt

af = —y(et(zt,57),27) (4.4)

with (2.18) again shows the structure of the residual dif-
ferential equation when the solution is sought directly in
conformal coordinates [9].

A. Torsion and curvature independence of =~

Most salient features of a solution with nonvanishing
torsion and curvature can be deduced from a special case
with the functions f, A and F replaced by constants fo,
h() and Fg in (218), le. (f = mf017+)

fov = M ﬂFO

eftho [(E4+hg— 1)+ 1—A]—

CoFy
g
(4.5)

This equation may be simplified by a shift in zt to

fov = Ao + Boet (€° + Do) (4.6)

with constants Ag, Bp and Dg. A qualitative discussion
of the integral of (4.4)

G(zt):

/E d¢’ [Ao + 30651(5'2 + Do)}—
o

= —m[z~ — ®(z1)] (4.7)
is straightforward, choosing, e.g., the arbitrary differen-
tiable function ®(z*) = z*. In that case z* becomes a
function of the conformal space coordinate Z alone. We
have to distinguish g4— > 0 and g4_ < 0. In the sec-
ond case conformal time ¢ may be simply exchanged with
conformal space .

The integrand in (4.7) has at most three poles, in com-
plete analogy to the short discussion of the “stationary”
solution above.
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1. No pole

z* lies in [—00,400] and the initial value z7 lies in
(—o00, +00], but due to the convergence of G at z+ —
oo (we take all constants positive, which also guarantees
/m > 0) we find that Z is restricted to the interval
(Z-0o = —00, Z400) representing the regular region in the
conformal coordinates. According to (2.25) the curvature
diverges at T4,. From

_ _ w Ozt
9+-(2) = -5 3=

2 0z~ (48)

it is easy to see that gy_|z__ = 0 with 8 /8t repre-
senting a Killing vector field. The total spatial “phys-
ical” size between the singularities £4o, from (4.1), af-
ter transforming back to £ = mfoz*, is proportional to
the infinite integral of exp(£/2)[G"(€)]*/? which is finite.
Thus this solution corresponds to two singularities in cur-
vature [and by (2.30) also in torsion], situated in a finite
distance.

2. One pole

When the parabola and the exponential in the denom-
inator of the integral of (4.7) touch, a double pole at
¢t = Uzt is produced. This happens for Ay = — Dy Bo.
Choosing By > 0 yields g,_ > 0. For zt > Mzt (we
take, e.g., £o in G to be +00) due to the divergence of
the integral at z+ = (Uzt z now resides in the in-
terval E—oo,O], with g;_ now diverging at z — —oo
(zt = (Wzt), Thus (in infinite “physical” distance) for
finite R a coordinate singularity exists, whereas the sin-
gularity in R is placed at infinity. Turning to the range
zt < Mzt (with fo > 0 as before and & any negative
real number) both coordinate singularities are infinitely

far away, none of them related to a singularity of R and
T.

8. Two or three poles

The occurrence of two (single) poles (Vzt > ()z+ in
(4.7) entails the separation into three regions of z+. In
the cases zt > Nzt and 2t < (Pz+ we have essentially
the situation of Sec. IVA 2. For Mzt < zt < (gt
on the other hand, both coordinate singularities lie at
infinite distances. These considerations may be simply
extended to the three-pole case.

As already mentioned above, for g4 < 0 with the
same choice ®(z%) = z* the reinterpretation t = #',z =
t’ shows that all the singularities in conformal coordinates
discussed so far turn into (finite and infinite) beginnings
and ends of “time.” In all cases the respective second
internal variable (f for g4 > 0, z for g4_ < 0) is unre-
stricted. Hence the space-time volume of the respective
regular regions diverges for all special solutions discussed
on the basis of (4.5). However, in a completely general
case with an appropriate z~ dependence, solutions with
finite space-time volume can be expected.
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B. De Sitter solution with = dependence

The deS solution (2.31) - (2.33) in the special case (I
and $, are constants)

I=q(z7)o, s=q(z7)s0 (4.9)
permits a “separation of variables” by fixing in (4.3)
Oz~ 1
so that by (4.9) in (4.3)
613+ ¢ R +2 > + ~
—55: = q—m—-g.’c + lgmz™ + §o (411)

can even be reduced to elementary integrals. For R #

0 without loss of generality we set lo = 0 and 3o =:

+(R/8)a® (a > 0), depending upon whether 50/R 2 0.
The nontrivial relation from (4.10)

T

dq(§) =2~ =t-2

Zo

(4.12)

with appropriately selected function ¢(¢) now allows sit-
uations with Z~ limited to a finite regular interval.

The integral of (4.11) in the absence of poles [§o =
(R/8)a?, a real, the arbitrary function ®(z*) = z+ as in
the preceding subsection] becomes

zt =atan (-}EZ—:B> , (4.13)
Ra? , [ Raz

jo_ = — - . 4.14

o g (12 »

For R > 0 the positivity of g4_ is guaranteed. The
spacelike-separated coordinate singularities in (4.13) and
(4.14) are at Raz = +2w.

If R <0 as in Sec. IV A we identify Z = #’ and obtain
a solution for a finite interval of conformal time.

In both cases the respective “other” coordinate is de-
termined by the solution of (4.10). It seems remarkable
that, for that type of solution, g4+_ of (4.13) turns out to
be independent of ¢, the volume determinant eg in the
measure, expressed in LC coordinates.

For §g = —(R/8)a? a situation like the onme in
Sec. IV A 3 develops. If (2, z) are inside the two poles
at 12zt = +a, we obtain [®(z1) = z1]

z*t = —atanh (R—ZE) , (4.15)
Ra? _9 [ Raz

Jp_ = —— —_— 4.16

e =~ conn™ (22) (4.16)

and formally |Z| < oo. In this case g4+— > 0 only for
R < 0. The physical distance between the coordinate
singularities now becomes finite:

+o0 2
S =/ dz \/2§+_ = —_T.
—oo |R|
Positive curvature implies §+- = §+-(') and a finite
“life-time” (4.17) with infinite “space.”

(4.17)
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If the region outside the two poles in zt, say zt > aq,
is considered, (4.15) and (4.16) are replaced by

2+ = —acoth (R:"”) , (4.18)
_ Raz . -2 Ra.’i
9+-=-"T¢ sinh ( 1 ) . (4.19)

For R < 0 the range of Z is £ > 0. Again for R > 0 the
replacement z = t’ is necessary.

V. EXTREMAL TRAJECTORIES

Motion of a test particle according to the action (1.10)
in the background provided by a certain solution (2.16) -
(2.18) is determined by only part of the affine connections
(without the contorsion part also at T2 # 0)

(5.1)

~ 1
Pos’ =597 (0agpp + Op9pa — 0p9ap)

2

with (4.2) inserted. The trajectories £%(k) given by the
extremum of (1.10) obey

it Wy g 9047 4
w w

- Zow-0,967) =0, (52)

. 1 .

T+ -u—;(a_w —9,2)(z7)*=0. (5.3)
Besides the invariant “energy” oo (0o = 0 for lightlike
trajectories)

294-2%2" +g__(27) =wz" (2t +vE7) =00
(5.4)

in d = 2, only one further integral of motion suffices for
the integration. If, e.g., as in the examples of Sec. IV A,
one Killing vector is 8/8z~ (or 8/8t in conformal co-
ordinates) the corresponding second constant of motion
becomes

-;”-ﬁ 4287 =po . (5.5)
On the other hand, working in conformal coordinates, in
the example in Sec. IV B for g4_(z) the Killing vector
8/0t yields

dt

oo = = 294 -(2)t = po - (5.6)

A. General lightlike extremals

For 0y = 0 in (5.4) we first consider the solution £~ =
z; = const. Equation (5.3) is fulfilled identically, and
from (5.2) we conclude

1
mfo

zt(k) = In po(x — ko), (5.7)
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where fo = f(zy), ko and po are constants. Equation
(5.7) just means that —co < z¥ < +oo. Another set
of lightlike extremals follows for continuous £~ # 0 and
g0 =0 in (5.4):

ﬂ B dzt(z™) _

o = —v = —--i—l,b(z'*(a:_),x'). (5.8)

The trajectory z¥(z~) thus fulfils essentially the same
differential equation as the one to be solved for transfor-
mation to conformal coordinates. In the examples consid-
ered in Sec. IV we may simply replace 2z = ®(z1) — &~
by —z~, to obtain the solution of (5.8). For example,
from the solution (4.7), the trajectory solving (5.8) is
just G(zt) = —maz~. Transformed into conformal co-
ordinates according to (4.7) this yields ®(z%) = 0, i.e.,
z = —1 + const, the expected trivial lightlike trajectories
in conformal coordinates.

B. Extremals for particles

To illustrate some “physical” properties of the solu-
tions discussed in Sec. IV the extremals are an excellent
tool. For the separable deS solution (4.9) in Sec. IVB
all integrals are elementary also here. Extremals here
coincide with usual geodesics.

From (5.4) (we choose oo = 1) and (5.6) for R > 0
with (4.14) and initial conditions Zg = kg = 0,

tan <RZ’_”) = fsin (@n)

describes a periodic oscillation of Z or, equivalently, of
the physical distance

\lﬁl—lntan __Ra:E ~I~1
27 8 4

with frequency \/R/2 and an amplitude determined by
(% = 8pZ/a’R — 1, provided % > 0. It should be noted
that the family of trajectories (5.9) for finite 3 always
stays inside the regular region Raz < 27.

The infinite interval for R < 0 in conformal z of (4.15)
and (4.16) maps onto a finite distance, say \/|R|/2¢ <
7/2, as long as z1 remains between the poles at *a.
Choosing the integration constant pp, again so that
8p2/a®|R| — 1 = B% > 0, the relation which is the ana-
logue of (5.9) becomes

o (1255) (L)

Because d7/ dx > 0 and finite for finite Z, the singularity
# = oo, corresponding to ¢\/|R|/2 = =/2, is reached
after a finite interval of proper time. A similar situation
is obtained for 1 > 1—8p2/a?|R| > 0 with cosh replacing
sinh in (5.11). Here no geodesics are found to exist with
tanh(|R|az/4) < /—B2.

The behavior after crossing the coordinate singularity
at £\/|R|/2 = 7/2 can be analyzed (again for R < 0)
with (4.19). Clearly a wide range of further solutions
may be investigated.

(5.9)

(5.10)

(5.11)
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VI. SUMMARY AND OUTLOOK

Few models of field theories with complete analytic so-
lutions are known. As we show in our present work, non-
Einsteinian gravity in d = 2 represents one of them, with
the full solution to be obtained in the LC gauge in terms
of elementary functions. The interpretation of some
salient features of the solution is transparent by trans-
forming to conformal coordinates. As in previous works
[9], a sector of de Sitter—type solutions with R = const
and another one with nontrivial curvature and torsion
scalar are found. In order to obtain the latter without
having to solve any residual differential equation, the use
of LC variables is essential. The general structure of our
solution shows that singularities in curvature and tor-
sion at infinite LC coordinate z+ and arbitrary £~ may
occur. Coordinate singularities for these solutions are
preferably discussed in conformal coordinates. We find
e.g., that, a singularity in % corresponding to diverging
curvature and torsion may appear in finite “physical”
distances. Extremals, as defined in analogy to general
relativity, are used to elucidate the geometry of special
cases of the general solution.

There are numerous ways in which our present sketchy
discussion of this model can be extended, and even more
directions of generalization of the model itself exist, the
most obvious ones being the introduction of scalar and
fermion “coordinate” fields by analogy to string theory,
and supersymmetry. Also test particles with spin should
be sensitive to the torsion part of our solutions.
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The original motivation for the present work was the
quantization of the action (1.1) in a suitable gauge. With
quantum fluctuations around a flat background at van-
ishing cosmological constant A this quantum theory was
found to be renormalizable [10]. Insight into the quanti-
zation of nontrivial manifolds may be obtained by start-
ing from a suitable nontrivial classical solution, includ-
ing especially solutions periodic in the space coordinate,
which were excluded from our present work.

Note added in proof. Working in conformal coordi-
nates, recently M. O. Katanaev [J. Math. Phys. 32,
2483 (1991)] has given a complete discussion of the ex-
tremals and geodesics. As suggested by his work, the
residual gauge invariance left over after fixing the gauge
may be used also in our case. It allows one to normalize
the auxiliary functions to f = 1, F = 1, and h = 0.
The special example of Sec. IV A, therefore, really covers
the most general situation. This point, but especially a
novel symmetry on “phase space” responsible for the in-
tegrability of (1.1), is treated elsewhere [M. Grosse, W.
Kummer, P. Presnajder, and D. J. Schwarz (in prepara-
tion)].
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