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Breaking Weyl invariance in the interior of a bubble
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The basis on which Weyl's unified theory of gravitation and electromagnetism was rejected is
reconsidered from a new perspective. It is argued that while Weyl s theory, as indeed any classical
theory, is incapable of explaining atomic phenomena, this does not nullify the geometric interpreta-
tion of the exterior electromagnetic field; it simply reflects the fact that some form of quantization is
needed to account for atomic standards of length. In support of this argument the Gauss-Mainardi-
Codazzi formalism is employed to demonstrate that it is possible to construct a bubble in Weyl space
where the exterior geometry is conformally invariant and the electromagnetic field can be given a
geometric interpretation, while at the same time a standard of length can be introduced into the
theory by breaking the conformal invariance in the interior of the bubble.
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I. INTRODUCTION

Weyl's unified theory of gravitation and electromag-
netism [1]extends the notion of parallel transport in gen-
eral relativity to include the possibility that lengths, and
not only directions, change when vectors are transported
along a path. This nonintegrability of length provides
a geometrical interpretation for the electromagnetic field
and an elegant way to unify the two known long-range
forces of nature. While null vectors remain null in the
theory so that light signals behave as expected, the ab-
sence of what has historically become known as "absolute
standards of length" [2] made Weyl's theory unpalatable
to generations of physicists well aware of the precise stan-
dards of length that can be established, for instance, by
means of atomic clocks. Lethal in this respect was Ein-
stein's comment [3] that in Weyl's theory the frequency
of spectral lines would depend on the history of the atom,
in complete contradiction to known experimental facts.

In retrospect, the criticisms that brought about the
downfall of Weyl's theory seem too harsh in two regards.
First, it seems unfair to categorically state that a paral-
lel transported vector in Weyl space changes length irre-
spective of the transport path selected when the corre-
sponding Riemannian change in direction is known not
to occur along a special class of lines (geodesics). Indeed,
London [4] showed in 1927 that length changes in Weyl
space can be made to vanish along closed paths for the
proper choice of an arbitrary parameter (see also [5—7]),
which leads us to our second point. It is now realized
that perfect symmetries must frequently be broken to
accommodate observed phenomena which are manifestly
asymmetric, lessening the role of symmetries to one of
guidance or simply to particular regions of spacetime. In
the light of present trends it would therefore seem that
all that is needed in the case of Weyl's theory is a plau-
sible breaking mechanism for conformal symmetry that
accounts for atomic standards of length. In fact, the
problem is not so simple.

Alternatively, some attempts to rehabilitate Weyl's
theory do not require any symmetry breaking. Most no-
ticeable in this respect is that given by Dirac [2] who,
following Milne, proposed the existence of an unmea-
sureable metric dsE, affected by transformations in the
standards of length, and of a measureable one, the confor-
mally invariant atomic metric ds~. Such a conceptual de-
vice would rescue the theory without recourse to symme-
try breaking. In fact, any function f(z) that tranformed
as f(z)/rr(z) under the transformation g&„-+ o g&„
would provide the appropriate relationship between the
two metrics:

f(z)dsE = dsA. (1.1)
In effect (1.1) is equivalent to assuming that atomic and
gravitational clocks are in principle affected by transfor-
mations over and above those provided by the special
and general theories of relativit;y. A way of restating this
is to assume that the relative strength of the gravita-
tional and electromagnetic interactions changes in space-
time, which is, in fact, the suggestion advanced by Dirac.
Rather than taking this view, the validit, y of which is
severely restricted by the present [8] experimental limit

G/G ( (0.2 + 0.4) x 10 "yr ', we wish to revert to the
notion of a single metric and address the issue of a uni-
fied theory of gravitation and electromagnetism without
presupposing a variable G.

Standards of length can, in principle, be established by
means of ideal standard rods which, by definition, dilate
when transported in Weyl space. Were one to strictly
adhere to the introduction of standards of length in this
manner, then only the two metric approach mentioned
above could conceivably resolve the dif5culties inherent
in Weyl's theory. Physical rods, in contrast, are made
of atoms, and while this certainly adds to the complex-
ity of the problem, it also suggests the possibility, al-
ready entertained by London, that "absolute standards
of length" ultimately find their origin in the atomic struc-
ture of matter. In our opinion the real question that
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should be asked is why atoms and their constituents as
sources of electromagnetic fields exhibit quantization at
all, this being responsible for the existence of standards
of length. Obviously the failure here is not only of Weyl's
geometric interpretation of electromagnetism, but of all
classical theories including Maxwell s theory which pre-
dicts that a bound electron will spiral into the nucleus
of an atom. The solution of this problem calls for a the-
ory that integrates quantum phenomena alongside grav-
itation and electromagnetism, a theory that, ironically,
may be more readily formulated in Weyl's space [6, 7, 9,
10]. The magnitude of the problem can be gleaned from
purely classical attempts to reproduce even a first level
of quantization. The description of charged particles as
regions of spacetime in which one field, gravitation, is
uniquely defined, but not the other [6], leads to electro-
magnetic potentials that are not a pure gauge and hence
to flux quantization. This is suKcient to restore some
measure of length integrability to the theory [11]. Fur-
ther investigat, ions in this direction will be presented at
a later date.

In this paper the more limited problem of a classical
model of extended particles represented by bubbles in
Weyl space is considered. Here, it is simply assumed
t,hat the conformal invariance is broken in the interior
space without justifying this by means of a quantization
mechanism. Weyl's geometric argument for the electro-
magnetic field in the conformally invariant exterior space
applies without objection and without recourse to Dirac's
assumption of two metrics.

The model of a particle that is presented here is based
on the concept of an infinitesimally thin shell of mat-
ter. In 1962, Dirac [12] suggested that a similar (non-
gravitational) membrane model may be used to explain
the similarities between the electron and muon. Dirac
also considered a gravitational model [13] of a neutral
particle based on an action principle. More recently,
the Gauss-Mainardi-Codazzi (GMC) formalism has been
used to facilitate the study of t, hin shells of matter in
general relativity. The formalism was first put in a
coordinate-independent form by Israel [14] in 1966 and
applied to an uncharged spherical shell of dust. The
motion of a charged shell was studied by Kuchar [15] a
few years later. Interest in cosmological applications has
since led to a number of comprehensive articles (see, e.g. ,

[16, 17]) and just recently Barrabes and Israel [18] have
extended the formalism to include the lightlike case. The
GMC formalism is useful in the present context because
it allows the possibility of sewing together two space-
time regions with different conforrnal properties. It is
hoped that the consideration of boundary-value problems
in Weyl space may lead to a more complete understand-
ing of Weyl geometry and its physical implications.

In order to develop the particle model in Weyl space,
it is necessary to first generalize the GMC formalism.
Following a brief review of Weyl geometry and its as-
sociated gauge-covariant calculus in Sec. II, the equa-
tions of Gauss, Mainardi, and Codazzi in Weyl space
are determined in Sec. III. The following section deals
with the junction conditions for a theory that is linear
in the scalar curvature. The formalism is then applied

II. WEYL SPACE

AVeyl [1] generalized the Riemannian geometry of gen-
eral relativity by supposing that a vector parallel trans-
ported around a closed circuit would not only undergo a
change of direction, but would also experience a change
in length. In order to describe this generalization math-
ematically, Weyl introduced a vector field ~~ that, to-
gether with the metric g„, , comprised the fundamental
fields of the new geometry. It is a remarkable feature of
this generalization that t, he properties of K" coincide pre-
cisely with those of the electromagnetic potentials, sug-
gesting that the long-range forces of electromagnetism
and gravity have a common geometric origin.

If a vector of length e is carried by parallel transport
along an infinitesimal displacement bz" in Weyl space,
the change in its length be is given by

(2.1)

For parallel transport around a small closed loop of area
bs"" t, he change in the vector's length is

bE = Ef„„bs"",

where

(2.2)

tv = Kv p
—Kp v. (2.3)

If bE g 0 around a closed loop, it follows that the geom-
etry will not support an "absolute standard of lengtl&. "
However, under the local scaling of lengths

(2.4)

the field t-„experiences the gauge transformation

K~ —K~ + (ln 0') ~ (2 5)

that is indicative of the independence of the physically
significant f„„on the standard of length chosen.

Of course, the local scaling of lengths also affects the
metric g&„. As a consequence of (2.4), the metric tensor
and its inverse undergo the conformal transformations

gPV CJ gPV) g =& g (2.6)

One says that g&„and g" have conformal weights 2 and
—2, respectively, and writes w(g») = 2 and ui(g"') =

in Sec. V to Dirac's 1973 conformally invariant action [2]
where a real scalar field is used to achieve conformal in-
variance. A static, spherically symmetric solution in the
exterior conformally invariant space is found, which, to-
gether with the known interior solution and scalar-field-
induced surface stress-energy tensor, comprise t,he model
of the particle. The study of the particle model concludes
with an analysis of the properties of the spherically sym-
metric thin shell. Section VI contains a discussion of
the proposed symmetry-breaking approach to reconcile
Weyl's geometric interpretation of the electromagnetic
field with atomic standards of length.
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—2. It follows that w(g —g) = 4.
The development of a conformal covariant calculus is

facilitated by introducing the semimetric connection

of the isodoublet Higgs field with R has been considered
[20]

= I +gp K —g K —g K (2 7) III. THE CMC EQUATIONS

R(pv)np z(Rp&~p + Rvpap) g~. f~p1 (2.8)

and square brackets denote antisymmetrization. In what
follows, all results are given in terms of R(»l p and the
square brackets are dropped henceforth. One can show
that

Rl'„= R I' „=R"„+2(o„~"+ ~"Ir,„)

+g"„(o z —2K z~), (2.9)

and

R:—R"„=R+ 6(o„K"—~"~„). (2.10)

(which is here assumed to be symmetric) and a gauge-
covariant (or cocovariant) derivative. In what follows,
the conventions of Ref. [19] are adopted and an over-
bar is used to distinguish an object defined in terms of
the gauge-covariant calculus from the corresponding ob-
ject associated with the covariant calculus of Riemannian
geometry. For example, the spacetime gauge-covariant

derivative & gives rise to the Weyl spacetime curvature
tensor R"„P, whereas the Riemannian curvature ten-

sor R"„P is defined in terms of the spacetime covariant
derivative o and I' „„is the Christoffei symbol of the sec-
ond kind. A property of the gauge-covariant derivative is
that it does not change the conformal weight of a tensor
on which it acts.

The Weyl curvature tensor can be written as R&„P ——

R(~&)&p + R[p@]p &
where

b'av = gpv n&nv& (3.1)

where n" = g""n, is the unit spacelike (n"n„= 1) vec-
tor field normal to E that is taken to be directed from
VI to V+. From (3.1) it follows that, since w(g„„) = 2,
w(h„„) = 2 and w(n&) = 1. Also, w(n~) = w(g""n„) =
—1, so n"n„ is conformally invariant and n" is well de-
fined as a unit vector field in Weyl space.

In order to describe the bending of E in VI and V+
one defines the (three-dimensional) extrinsic curvature
tensor by

In the GMC formalism, four-dimensional spacetime
is viewed as being sliced up into three-dimensional hy-
persurfaces. In the initial-value problem, one consid-
ers spacelike hypersurfaces that define a foliation of
spacetime. In the study of two-dimensional distribu-
tional sources, one considers a timelike hypersurface E
that divides spacetime into two four-dimensional regions
(V, V ) both of which have K as their boundary, where
2 represents the history of an infinitesimally thin shell of
matter. The GMC formalism in Weyl space is presented
here for the latter problem, with the application to the
initial-value problem following in a straightforward man-
ner.

The intrinsic (2+1)-dimensional Weyl space on Z is
defined by the condition that the spacetime metrics in

V and V+ induce the same intrinsic metric h„„on E
according to the formula

Also, for a dual vector field ~ and a vector field v~ both
of conformal weight A,

fQpp A +~ Ay ~ (3 2)

o„o„~ —o„o„~ = R „„up —(A —1)u f„„,
(2.1 1)

Since the gauge-covariant derivative acts on n„without
changing its conformal weight, w(I&„) = 1. Then, by
applying the rules of the gauge-covariant calculus, one
finds that

o„o„i —o,o„v = R p„„vP —(4+1)v f„„
(2.12)

pv = Izpv + hpvn Ka = I~op (3 3)

For a more complete review of the gauge-covariant cal-
culus, see [6].

In Weyl space, the conformal weight of the scalar cur-
vature is w(R) = —2. However, for a theory to be con-
formally invariant, the Lagrangian must be of conformal
weight —4. One possible way of achieving a conformally
invariant action is to adopt, as Weyl originally did, an
R theory of gravitation. Another approach, that is due
to Dirac [2], is to retain an action that is linear in R
by introducing a new field of conformal weight —2 that
couples with R. Dirac used a real scalar field P with
w(P) = —1. This was later generalized to t, he case of a
complex scalar field [6] and more recently, the coupling

where I~„„=—h ~& n and N" = g""I-„ is the vectorPV p
field introduced by Weyl.

The intrinsic gauge-covariant derivative D associated
with h&„, which gives rise to the intrinsic curvature tensor

R"„P, is related to & according to the formula

DT' ' =h . . .I""I"oT""
Pl . Pk &I Pk P AI . .Ak

(3.4)

The relation (3.4) can be used to facilitate the decompo-
sition of the spacetime curvature tensor into its normal
and intrinsic components as follows. Begin by noting that
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for an intrinsic dual vector field ~ of conformal weight Using (3.4) together with the results

9pDvu~ —Dv Dp~~

R P„,~p —(A —1)h Ph„~h, ~p f~g. (3.5)

h„h,P & hp
—I~„,n,

h n O~ (dp
—Ix 4)v

and (2.11), one finds

(3.6)

(3.7)

RP ~p+ (A —1)h Ph ~h ~pfg~ —h h h ~[R blah Pap+ (A 1)~~fyz]+ Ii„aI~ P(up —I~~aIi P~p ~ (3.8)

From (3.8) the purely intrinsic components of the
spacetime curvature tensor are given by

Rpv Rvp = 2fpu—

are determined:

(3.17)

(3 9)

Next, using (3.1), (3.2), and (3.4) with K"—:I~, one
has

n„n."G"„=—z( R+ R„„I~""—I~ ), (3.18)

(3.19)

D„I~",—D„I~ = h„h (& &p n~ &p& n—~)

=h h PR~ nv p Aup

from which follows the result

n"h 'R„„=D I~ —D„I~" . (3.10)

g„A.~ = & O I&~ +I&.~ ~, & I&. o

Now define the intrinsic Lie derivative of the extrinsic
curvature in the normal direction by

h „hp"G", = G p + l:„(IC p
—h p Ii ) —I~ K p

+~h p(I~„„I(""+I~ ). (3.20)

In applications to problems involving thin shells of
matter (with stress energy), it is convenient to recast
the above equations into a form that explicitly shows the
Riemannian Einstein tensor. This is accomplished by
substituting (2.9), (2.10), and (3.3) into (3.18)—(3.20).
Following some rather lengthy manipulations (see Ap-

pendix A for details), one finds

(3.11)

Imposing the condition that n && nv =—&„nv = 0
(which requires n,„ to be extended off the surface), it
follows from (3.11) together with (3.1) and (3.2) that

n„n"G"„=—
z ( R+ I&'q„Ii"" —Ii ) —DqK"

+ 2h„"]c"K„+2Kn" ]c„,

n„h "G"„=D~I~ —D„I~",

(3.21)

(3.22)

g„g~~„= O„ I~~„= —n h.P t:I Op n~.

Combing (3.12) with the result

I~ „Ia' = —h„nP & &p n',

(3.12)

(3.13)

h „hp"G"„= G p+ (I~ p
—h pI~) „—IiIy p

+2h p(I~„„I~""+ Ii )
—2(I~'

p
—h pI~)n. "K), + 2h ph„"r."~„.

(3.23)

the final nontrivial components of the spacetime curva-
ture tensor are found to be

(3.14)

Equations (3.9), (3.10), and (3.14) are the Gauss-
Mainardi-Codazzi equations in Weyl space. By contract-
ing these equations in the appropriate manner and using
the relation

Equations (3.21)—(3.23) generalize the corresponding
equations in Riemannian geometry, which are recovered
from the above equations when z& vanishes (cf. Ref.
[19]).For a theory that is linear in R, Eqs. (3.21)—(3.23)
are to be equated to the corresponding components of
the stress-energy tensor T"„, which necessarily contains
a contribution from a dynamical field that is introduced
to achieve conformal invariance.

A'pv: &gnhpv i (3.15) IV. JUNCTION CONDITIONS

Gpgl —
2 (Rp~ + R~p gp~R))

where

(3.16)

the following expressions, given in terms of the general-
ized Einstein tensor

While the form of the GMC equations depends only on
the nature of the geometry itself, the analysis of the junc-
tion conditions across a thin shell depends on the field
equations and hence on the nature of the conformally in-
variant theory under consideration. In the present work,



45 BREAKING WEYL INVARIANCE IN THE INTERIOR OF A BUBBLE 3621

only theories that are linear in the scalar curvature are
considered. In fact, for a thin shell of matter, it may
be essential to work with a theory that is linear in the
scalar curvature (and consequently also linear in the sec-
ond derivatives of the metric), in order for the problem
to be well defined in a distributional sense. The analysis
of a thin shell of matter in Weyl space requires that the
junction conditions for the electromagnetic field as well
as the gravitational field be satisfied.

It is assumed here that the metric tensor field g&„,
the vector field x& and the field that is conformally cou-
pled to R are all smooth in the four-dimensional regions
VI and V+ (including their mutual boundary E), that
they are all continuous across E, and their derivatives,
which are taken to be discontinuous across Z, are su%-
ciently continuous in V and V for the usual equations
to apply. These assumptions are adequate to ensure that
E exists and has a well-defined intrinsic Weyl geomet, ry.
The intrinsic stress-energy tensor on E, which is defined
by

S"„=lim T"„dn,
e~O

(4.1)

depends on the properties of the field that is used to
achieve a conformally invariant action that is linear in R.
The stress-energy tensor S"„ is particularly sensitive to
the boundary conditions that are assumed for the deriva-
tives of this field across E.

The junction conditions for the gravitational field are
obtained by integrating the Einstein equations in the nor-
mal direction from —c to +s across E, and then taking
the limit as z ~ O. Using the above boundary condi-
tions for g„„and ~", integration of (3.21)—(3.23) when

set equal to the corresponding components of (4.1) yields

~. f""= [:l f""= j",
[a tv] = f[pv, al = 0)

(4.6)

(4 7)

where j" is the intrinsic current (n„j" = 0), defined only
on E. Applying the boundary conditions for ~" in t,he
integrals of the normal and intrinsic components of (4.6)
and (4.?) yields the usual electromagnetic junction con-
ditions (cf. Ref. [15])

[n„h "f„"]= h "j„, [h„h"p f",] = 0. (4 8)

Two further equations that are useful in determining
the properties of the thin shell arise by taking the jump
in the Einstein field equations. Introducing the notation

(4) = lim
~ [C(n = +a) y C(n = —s)] (4 9)

it follows from (3.21) that

(I~",)S„'+[n„n"T"„]= 0 (4.10)

which is identical to the Riemannian result [17]. Tak-
ing the jump in (3.22) and using (4.4), one recovers the
Riemannian equation

D„(h" h„~S p) + [n h„~T p] = 0, (4.11)

V. THE PARTICLE MODEL

A. Dirac's conformally invariant action

while the jump in (3.23) has been used to determine (4.4).
Once a specific example has been chosen, Eqs. (4.10)
and (4.11) can be used to describe the balance of stress-
energy-momentum in the shell.

lim n„n"G",dn = 0 = n„n"S"„,
a~0

C

lim n„h "G"„dn = 0 = n„h "S"„,
e~o

(4.2)

(4 3)

The simplest way in which a theory that is linear in R
can be made conformally invariant is to introduce a real
scalar field P(z). This approach was adopted by Dirac
[2), who took m(P) = —1 and considered the action

ID ——
~

~ + R+

lim h h&'G", dn = 7 p
—h &7 = h „h&"S"„,

0
(4.4)

where

p p
= [Ic' p]—:lim[I& p(n = +s) —I& p(n = —s)]

(4.5)

represents the jump in the Riemannian extrinsic curva-
ture and p = 7"„.The junction conditions (4.2)—(4.4) in

Weyl space are formally the same as the junction condi-
tions in Riemannian space. However, (4.4) difFers funda-
mentally in that the existence of the stress-energy tensor
(4.1) may be related to the conformal invariance of the
geometry [see (5.23) below], rather than being introduced
in an adt hoc manner.

The junction conditions for the electromagnetic field
are similarly obtained by taking the limit as c ~ 0 of the
integral of the Maxwell equations

+ AP )g—gd z. (5 1)

Dirac chose to set k = 6, and by discarding a total di-
vergence in the action, expressed (5.1) in the equivalent,
although not manifestly invariant form

Cl„f&" = 0 (5.3)

and

1G„„= E„„+I„„+ Ag„„P = T„„, —
2

(5.4)

where

ID —— —
4 „„"'+ R+6 „'"+A —gd z.

(5.2)

The field equations for the vacuum that follow from (5.2)
are the Maxwell and Einstein equations
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Ep. = fp f. — g—p.f pf crP

4

2
Ipv = —(Ov OpP gpvO~O P)

(5.5)
constant was put forward by Lanczos [22] some time ago
in his analysis of an action that is quadratic in the scalar
curvature. In the present theory, A remains an arbitrary
constant. With the Maxwell tensor E„„and I„, vanish-
ing in V, the interior stress-energy tensor reduces to

1——,(4P,pP,.—gp. P, P' ), (5.6)
I i 2

Tpv 2 AgpvPp & (5.10)

and the field equation for P which is identically the trace
of (5.4). If the conformal invariance were to be broken
by setting p = 1, the geometric interpretation of the
electromagnetic field would be lost and one would be
left with the Einstein-Maxwell theory (with cosmologi-
cal constant) in units where cs(167rG) i = l.

The interest in Dirac's conformally invariant action
here lies in the application of the GMC formalism to a
thin shell of matter in Acyl space, where the field equa-
tions (5.3) and (5.4) hold in VI and VE. For simplicity,
the formalism is applied to a spherically symmetric shell
that is assumed to carry an electric charge q. The GMC
formalism requires that the interior and exterior line el-
ements be specified, as well as the intrinsic stress-energy
tensor S„,. For a spherically symmetric shell in Rie-
mannian space, BirkoA's theorem may be used to specify
the form of the line element and one arbitrarily chooses
some particular form for S„„.In the present case, one
must determine the form of the line element, from first
principles, and then use (4.1) to determine S„, from the
theory itself.

which corresPonds to a Pressure APp2/2 for A Positive.
The tensor (5.10) also represents a de Sitter (A ( 0),
Minkowski (A = 0), or anti —de Sitter (A ) 0) space with
constant curvature R = —2APp2. Thus, the interior solu-
tion to (5.8) and (5.9) is given by the well-known result

er ——1+ sAppr = er. (5.11)

The Coulomb potential of the charged shell gives rise to
an exterior electromagnetic field that can be interpreted,
when P(r) is present to ensure conformal invariance, as
a manifestation of the exterior Weyl space with a stress-
energy tensor

1 1
T„, = Epv y Ipv + AgpvP .—P" 2 2 (5.12)

(Tp) = — ——e 2——p E I g —p P
P 4pz 4 E

+ -AP
1 2

2
(5.13)

The required components of (5.12) expressed in terms of
the metric (5.7) are given by (Appendix B)

B. The static spherically symmetric solution

The general static spherically symmetric line element
is written

ds = —e"t"~dt + epI" dr + r (dg + sin gdp ) (5.7).
and

(Tl )E l L2 pl2 pI 4 PI )
p' ' p' p p)

+ -AP'. (5.14)

and

(re ")=—1+r Tp2 O

dp
(5.8)

The exterior and interior geometries are distinguished by
writing t~ I, vg I and p~ I in V, respectively. The
two equations that are required to completely solve for
p, (r) and v(r) are [21)

Substituting (5.13) and (5.14) into (5.8) and (5.9), the
exterior solution is found to be (Appendix C)

eE" = 1+r
~ ~

1 — +, , + -Ap'r' ~,
r & ~ 4'"

(5.15)

2
p'+ v' = re" (T i —T p), (5.9) (5.16)

where T„ is the tensor that is equated to the Riemannian
Einstein tensor, and a prime denotes a derivative with
respect to r.

In the interior space V it is assumed that, (i) K„= 0
which establishes length integrability in the region of
spacetime accupied by the extended particle and (ii) the
scalar field acquires a constant value P = Pp which breaks
the interior conformal invariance and fixes the scale as-
sociated with the particle. Because of their continuity
properties, zp = 0 and P = Pp on E as well. The pro-
posal that microscopic particles are responsible for the
establishment of a standard of length suggests choosing
Pp to be very large since P (length) i. The idea that
the APp term may play the rale of a fundamental atomic

The integration const, ant Eo, which arises in the radial
integration of (5.9) from the boundary of the spherical
shell to the field point r, has a dimension of length. Since
&p = Pp (1+ rP /P)), =R (see Appendix C), the exterior
metric contains, in addition to the usual information re-
garding the mass and charge of the particle, informat;ion
about the size and structure of the particle as well.

C. Properties of the thin shell

The intrinsic stress-energy tensor is determined by sub-
stituting T„„into the definition (4.1). Assuming that the
normal derivative af ln P across E is discontinuous, i.e. ,
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[n~(ln p) „] = n g 0, one finds after decomposing E„„
and I„„into their normal and intrinsic components (Ap-
pendix D),

when the field equation (5.4) is used. Using (5.17) and
(5.'20), the jump condition required in (4.10) is deter-
mined to be

(5.17) [n&n"T"„]= 2 h„j "j + 2u(I&).P u 4 2 p (5.28)

n„h "E"„=n„h "hp»f" f„P, (5.18) (n"&„(9„"+ T„"))= 20(—I&), (5.29)

Taking the average ((5.26)+(5.27)), Eq. (4.10) becomes

h „hp"E"„=h „hp"g "f"„f„»

4 Php—(h„"h„» + 2n„n" h„»)f" fp", (5.19)

which demonstrates that, due to the presence of I„„in
V+, the normal forces acting on the respective sides of
Z are not equal. Taking the jump [(5.26)+(5.27)], we

recover Kuchar's result

n„n"I"„= (I&P „——D„D"P)V
2

——(3n„n" —h„")P"P,„, (5.20)

n„h "I"„= {h "P—„„+IC „P")— 2n„h—"P'"P„4
~

V ~
y

~~ ~ ~
~

I

(5.21)

[n"&„(9„"+T„")]= sj„j"+ S"„S„"——S . (5.30)

For a domain-wall tensor, the right-hand side of (5.30) is
negative definite.

With the geometry in V+ and V fixed [Eqs. (5.11),
(5.15), and (5.16)] as well as the form of S„(5.23), it re-
mains to consider the dynamical properties of the spher-
ical shell. One usually begins by writing the intrinsic
metric on E in the form

h „hp"I"„= I p
— (K p

—h—pI()P„

„ . (2—n"n"h
p

—P „——P P„, pV 2,+,V (5.22)

ds = dr + R—(r)(d8 +sin 8dg ), (5.31)

where the equation r = R(r) describes the motion of the
spherical shell in terms of the proper time r. The four-
velocity of a point on the shell as seen by an observer in
V+ is then given by

where h„"P„=0 for P = P(r), that the only nonvanish-

ing components of S» from (4.1) are

u~ r ——(Xa r, R, 0, 0),

where X~ r = dt's r/dr = t~ r and

(5.32)

h „hp"S"„=—2eh p. (5.23) X~ r = k(e~~ r" R + e~"r)'i (5.33)

This result, which is consistent with (4.2)—(4.4), indicates
that for a & 0 the thin shell is under a surface tension
that opposes the Coulomb repulsion. The stress-energy
tensor (5.23) is characteristic of a domain wall with sur-
face energy density 2e. From (4.11) it follows that a =
constant. This can be shown by substituting (5.23) into
(4.11) and by making use of the jump condition

The spacelike unit normals that are orthogonal to u& I
are

nz r
——{ez,r R, ez~r Xz,r, 0, 0). (5.34)

By applying the rules of the gauge-covariant calculus
to (3.15) one can show that

[n„h "T"„]= 0 (5.24) 1 cx
K@V ~ 2A APV (5.35)

that follows from (5.18) and (5.21).
To determine the physical content of (4.10) we follow

the procedure used by Kuchar [15] and define the space-
time tensor associated edith S„„by

9"„—:h" h„PS pb(n)

Kuchar considers the normal component of the diver-
gence of the combined tensor 9"„+T"„. For 9"„one
has

(5.26)

The divergence of T"„ for the present theory reduces to
the simple form

(I",)~' = e~"rxa r—— (5.36)

Now, from (4.4) and (5.23), it follows that

p~=Ss —2hsS=a,8 8 1 8 (5.37)

so that at r = R, the 88 component of (4.5) becomes

je "(e" "R'+e )'i'

pe~" (e~ "R'+ e~")'i' = aR (5.38).

As discussed in Ref. [16], the components of the extrinsic
curvature tensor that are particularly useful are

1n"O„T" = — n"f "j.
2P2

(5.27) Equation (5.38) may be applied in general to any spher-
ical domain-wall problem. For example, the analogous



%'. R. %OOD AND G. PAPINI

equations given in Refs. [16] and ['23] are recovered
from (5.38) by taking the interior (exterior) solutions to
be de Sitter (Schwarzschild) and Minkowski (Reissner-
Nordstrom), respectively. In the analyses given in [16,
23], the surface tension is an arbitrary input parameter.
In the present model n is not arbitrary since it arises by
assuming that the normal derivative of In P is discontin-
uous across E. In fact, using (5.33) and (5.34) in the
definition of a, it follows that, at r = R,

the Einstein equations is required in order to analyze the
dynamics of spherical shells in the present model beyond
the small oscillations approximation. While the existence
of a static bubble is su%cient to determine if Weyl's geo-
metric interpretation of the electromagnetic field can be
reconciled with atomic standards of length based on the
proposed symmetry-breaking approach, a dynamical so-
lution would be of interest in its own right, .

n = +e "+' (e" "R'+ e ") (5.39)
VI. DISCUSSION

g
2

8pom'
(5.41)

the existence of which is required if the bubble is to be
interpreted as representing a particle. Indeed, a particle
interpretation further suggests that the static solution
(5.41) should be reasonably stable under small perturba-
tions about R = Req. To determine if the spherical shell
is stable under small radial oscillations one would like to
solve for the motion of the bubble in general. Attempt-
ing to solve the Einstein equations in VE with the stress-
energy tensor (5.12) for p~(r, f) and v~(r, t) is a rather
formidable task. However, an approximate solution, valid
to order DP jest, retains the same functional forms for e&"
and e& given by (5.15) and (5.16), where P(r, t) is now a
slowly varying function of time. By solving (5.40) for R~

and then taking the proper time derivative, one obtains
the equation

R = —('R+ rl, (5.42)

where ( and g are expressed entirely in terms of the pa-
rameters R&q, 4/, A, Po, and m. The fact that (5.42) yields
an oscillating solution indicates that the equilibrium so-

lution is stable under small radial oscillations. The equi-
librium solution (5.41), together with the one that follows

from (5.42) when R = 0, provide a relationship between
the parameters in the model that is general enough so
as not to place any restrictions on the value that A, for
example, may have.

In Einstein-Maxwell theory, the exterior metric is guar-
anteed by BirkhoH's theorem to retain the static form,
even if the bubble is pulsating [24]. The generalization
of Birkhoff's theorem fails in the present model because
the scalar field P establishes a link between the thin
shell and the exterior metric; a pulsating bubble with
a scalar-field-induced surface stress-energy tensor will, in

general, aAect the exterior conformally invariant geome-
try. Hence, it, appears that a t, ime-dependent solution to

where ~ = (p' jp)~,-z. The requirement that a in (5.38)
take the form given in (5.39) leads to the relationship

, "( ", "R'+.;")'~' = (1+ R+.",R').;&"'"~

x (.~~ 'R'+ e,-')-'~', (5.40)

wherein the sign ambiguity is lost. Substituting the ex-
pressions for e~& &(R) and e& &(R) for the static case from

Eqs. (5.11), (5.15), and (5.16) into (5.40) with R = 0 and
squaring, yields the equilibrium solution

It is our contention that Weyl's theory has been unduly
penalized for not accounting for the existence of atomic
standards of length. The introduction of such standards
requires, in our opinion, that "atoms" be incorporated
into a classical theory not only as matter in the energy-
momentum tensor, but also as entities that somehow pro-
duce standards of length. Far from claiming that we have
achieved the desired unification of a rigorous description
of quantum phenomena with a classical geometric the-
ory, the "atoms" that we have introduced must simply
be construed as regions of spacetime in which Weyl in-
variance is violated. The "atoms" are entirely classical
in nature and though their dimensions are not dictated
by any atomic constant such as Planck's constant, their
dimensions can be truly microscopic. Even at such a
scale, however, the breaking of Weyl invariance can af-
fect the structure of the resulting spacetime in a truly
macroscopic way.

The particular "atom" or "particle" considered con-
sists of a static, charged, spherically symmetric bubble
in Weyl's space. On the surface and in the interior

x& ——0. As discussed in Sec. V. , the interior space can be
Minkowski, de Sitter, or anti —de Sitter. These spaces are
frequently considered in the literature as possible realiza-
tions of confinement at the elementary particle level and
naturally appear as consequences of Dirac's Lagrangian
(5.2) for P = const and A arbitrary. It is also interest-

ing to notice that if one wants to maintain linearity in

R, which appears necessary from the point of view of
the GMC formalism, this is most easily accomplished by
means of the constraining field P introduced by Dirac.
For Dirac's conformally invariant action, P then (i) en-

sures conformal invariance in V, (ii) fixes the scale in

V, and (iii) induces the surface tension needed for sta-
bility, a tension which is frequently introduced by hand
in the literature.

In the conformally invariant exterior space V, a
transport path linking two arbitrary points A and 0 for
which bS = 0 can always be constructed by employing a
curve that has a segment BC lying entirely on the parti-
cle's world tube with end points B and C that are con-
nected to A and D via the radial segments AB and CD.
In this way, for the simple particle model considered, the
broken scale invariance in V can be used to establish
a uniform standard of length in V+. Physical objects
cannot, of course, follow the path indicated. In this case,
one would have to argue that the mechanism which binds
the "atoms" together is also responsible for maintaining
the standard of length of the macroscopic object. Such
an argument lies beyond the scope of the present work
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which is limited to a single particle model. An observer
would, however, be able to measure lengths by carry-
ing an "atom" along the world line. An alternative way
would be to look for certain paths along which no dila-
tion occurs. Steps in this direction have been considered
in the past [4—6]. More recently, Wheeler [7] has con-
sidered such paths in a theory of measurement in Weyl
geometry where test particles "do not exist" and found
that "weightful bodies follow the preferred classical tra-
jectories and therefore experience no dilation. "

Although the "atom" or "particle" model introduced
is very primitive, it supports the main point of the pa-
per that atomic standards of length can coexist with
Weyl's geometric interpretation of the electromagnetic
field. Possible refinements could be achieved by intro-
ducing a second scalar field. This leads, for some models,
still of the Weyl-Dirac type, to a wave equation [25] and
therefore to a real first-quantization mechanism.

For Eq. (3.19), one uses the relationships

D„Ii" = D„I~" + h„'h P(IC",~P —2I&"pic, )
= D~I~" —3A'„r" + I~ h "Ic„

+ n„h "(&„r"+ r"r„)
and

D I~ = D I~ —3I&„ ic" + I~h "K„
+3n„h "(&„~"+ v"~„)

to obtain

n„h "G"„= D„K—" + D I~

+n„h "(2&,rc" + 2K"rc, —f„") (A7)

For Eq. (3.20), the relation h&„„=0, that follows from
the definition of the Lie derivative (3.11), is used to show
that
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h „hp"G"„= G p+ (I~ p
—h pK),„—I&Ii p

+2h p(I&„vI~""+Ii ) —2h p(n„~") „
—2(It p

—h pIi)n"ic), + h pn„n„K"~'
(A8)

APPENDIX A: THE GMC EQUATIONS
IN TERMS OF G

The GMC equations, as expressed in the manifestly
gauge-invariant form in (3.18)—(3.20), are here rewritten
in terms of the Riemannian Einstein tensor G„„. Using
(2.9) and (2.10) in (3.16) one has

n„n"G"„=——,'( Ry IC„„IC"'—I~ ) —D„~"
+ 2h„"]c"~„+2I&n" K„, (A9)

Finally, substituting (A5) into (A8) and equating (A2)—
(A4) to (A6)—(A8), respectively, the resulting equations
can be solved for the different components of G„ to yield

G"„=G"„+O„Ic"+ &"Ic„+2]c"lc„
—g"„(2& rc —a ~ ),

from which it follows that

(A1)
n&h~" G"„=D~I& —D&lc'",

h „hp"G"„=s G p+ (I& p
—h pIC) „

(A10)

n„n"G"„=n„n"G"„—2D„K"+ 3n„n„K"~'
+h„"]c"~„,

+n„h "(&„z"+ &"K„+2K"Ic„),

(A2)

(A3)

A I~ p + ~ h p—(It„,I~""y I&2)

2(K p
—h pI—i)n Kx+ 2h ph„"Ic"&u.

(A11)

h „hp"G"„= h „hp"G"„
+h „hp'(o„K& + al'Ic„+ 21c~lc„)

hp (2&„lc"—~„—tc"),

and

(A4)

APPENDIX B: TF„ IN A STATIC,
SPHERICALLY SYMMETRIC METRIC

The exterior metric components of the static, spheri-
cally symmetric metric (5.7) are

G p
—— G p + h „hp'(C3„K" + &"Ic„+2ic "Ic„)

hp(2D„Ic" —h„v—tc"K"). (A5)

By rewriting now the right-hand sides of (3.18)—(3.20)
in terms of Riemannian operators and fields and then
equating these results to (A2)—(A4), the GMC equations
in terms of the components of G» may be obtained.

For Eq. (3.18), the right-hand side becomes

v(r) ~(r)
g00 — ~E g11 —~E

2 2 ' 2 /1g22= f'
) g33= P sin 0.

(B1)

n 1 crPF pv —2g (gup, v + gup, p gpup), , (B2)

The required nonvanishing components of the Christoffel
symbol of the second kind,

npn G"„=—2( R+ I~„„I&" —I~ ) —3D„lc~
+ 3g„"K"z„+2I(n„K". (A6)

are determined to be

r 1 1 I v —p
00 2 VERE

~1
11 —

2 PE) (B3)
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where a prime denotes differentiation with respect to r.
In the metric (Bl) the tensor

I„„=—(O„Q„P—g„„Q 0 P)
2

where q is an integration constant. Substituting (B12)
and (B13) into the Maxwell tensor, one obtains

(B14)

1
2—(4—P,~P,.—gP. P, P' ) (B4) Using the results (B9), (B10), and (B14) in the stress-

energy tensor

1
l~, (v'-gg"'~. )l—g

(B5)

is determined as follows. The Laplace-Beltrami operator E 1
T„~ = Ep~+ Iqu+ &gp—upP" 2 2 2

one finally obtains the required terms

(B15)

acting on P = P(r) becomes

0 0 p(r) = e~"(—v~ —p~)p'+ —ea"p'+ eE"p".
2 p

One also has

(B6)

(T'o)

and

(B16)

2 ( PII PI2 pi 4 pi)
PF. +4P'" '

& P O' P ~ Pr
+ —Ap

1 2

2

P P' =e "P" (B7)

Using (B6) and (B7), along with the connection coeffi-
cients (B3) in the term (B17)

4P'&
(T', ) = — ——e~"

l
3 + v~ —+ ——

l4P2 r4 a i P2 P r P)
+ —Ap .

1 2

2

& &.P = P, ~ —I' „.P, , (B8)

the required components of I&„become

—,( p" p", p' 4O'&Io= ez l2 2 PF. +
O' P ~ P)

and

(B9)

APPENDIX C: THE EXTERIOR SOLUTION

A static, spherically symmetric solution to the Einstein
field equations is obtained by solving the two equations

—,( P", P' 4P'&I', = e~"
l

3 —+ v~ —+ ——
l

.' &O' 'P ~ P)

—(re ") = 1+ r To
—I 2 0

(Blo)
and

(C1)

To express the Maxwell tensor E» in the static metric
(Bl), begin by writing

p'+ v' = re" (T', —To, ). (C2)

Ko = y(r), ~i —f(r), ~2 —~s —0. (B11)

2
(&+v)

CE = —
)p4

(B13)

Then, by noting that the gauge transformation k„= ~„+
(ln o) „by itself leaves the action (5.2) invariant, one can
gauge away ~i (so that length integrability exists along
radial directions) leaving

(B12)

with all other f» —0. Integrating the Maxwell equation
(e&+" r fi ) i ——0 yields the result

( I 2

eg = eF."(&op) '
l
1+ r— (C4)

The integration constant Eo = po (1+rp'/p)l„Rhas a-
dimension of length.

Using (B16), Eq. (C1) becomes

Substituting the expressions (B16) and (B17) into (C2)
and rearranging terms, one finds that

d (I P'i
p~+ v~ = —21nl —+ r

dr ip P2)

which can then be integrated immediately to yield

—(re ") = 1+ r — —e "
l

2—— —p~ —+ ——+ —AP
q' „( P" P", P' 4P'

4P' ' (C5)

y'+fy = g, (C6)

Multiplying (C5) by e~& and introducing the fields y =
re&" and z = 1+ rP'/P leads to the equation

where

z 1
2

f =2—+-(z —1) = —ln p I+r-
Z 7 ~

(C7)
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and

I ( q'
g:——

I( 4P, , +2 P )l. (C8)

(C9)

Equation (C6) is a standard differential equation with
solution

APPENDIX D: DECOMPOSITION OF I„„

h qhp" &"G„P = D DpP —I~ pP„, (D1)

The decomposition of the Maxwell tensor E» into its
normal and intrinsic components follows in a straightfor-
ward manner by application of (3.1). To decompose I„„,
one must first determine the relationships

where

(Clo)

n„h 'a" O„P = h J'P „„+I& „P",

n„n"0"O P = n„n"P"„,

(D2)

The integral in (C9) also takes on a trivial form:

ge dr=c2 —Pry +-AP r dr,f F " & 1 s s
dr 4Pr 6

(C11)

&„&"P= D„D"P+n„n"P "„—I&P„, (D4)

where the definition (3.4) has been used extensively. Em-
ploying (Dl)—(D4) in the definition of I„„,Eq. (5.6), one
obtains

n„n"I"„= (It P, ——D„D"P)
2

which leads to yet another integration constant cs. Defin-

ing 2m =— —(ci + cs)/c2 and reexpressing the solution y
in terms of e&" we obtain the final result

——(3n„n" —h„")P"P„, (D5)

and from (C4),

e~ = (g,P)-
i

1 — +, , + -AP r
q'

4 'r' 6

(C12)

(C13)

n„h "I"„= (h "i3,„—„+I~ „P'")——n„h "P "P„,

h „hp I"„= I p
— (I~ p

—h p—I~)P„P II p, A

„,. (2n"n'hp~ ——P „——P P„i.
EP

'"" P' '" '")

(D6)

(D7)
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