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Dynamics of plane-symmetric thin walls in general relativity
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Plane walls (including plane domain walls) without reflection symmetry are studied in the framework

of Einstein s general relativity. Using the distribution theory, all the Einstein field equations and Bianchi

identities are split into two groups: one holding in the regions outside of the wall and the other holding

at the wall. The Einstein field equations at the wall are found to take a very simple form, and given ex-

plicitly in terms of the discontinuities of the metric coefficients and their derivatives. The Bianchi identi-

ties at the wall are also given explicitly. Using the latter, the interaction of a plane wall with gravitation-

al waves and some specific matter fields is studied. In particular, it is found that, when a gravitational

plane wave passes through a wall, if the wall has no reflection symmetry, the phenomena, such as

reflection, stimulation, or absorption, in general, occur. It is also found that, unlike for gravitational

waves, a massless scalar wave or an electromagnetic wave continuously passes through a wall without

any reflection. The repulsion and attraction of a plane wall are also studied. It is found that the ac-

celeration of an observer who is at rest relative to the wall usually consists of three parts: one is due to

the force produced by the wall, the second is due to the force produced by the space-time curvature,

which is zero if the wall has reflection symmetry, and the last is due to the accelerated motion of the

wall. As a result, a repulsive (attractive) plane wall may not be repulsive (attractive) at all. Finally, the

collision and interaction among the walls are studied.

PACS number(s): 04.30.+x, 98.80.Bp

I. INTRODUCTION

Topological defects, such as domain walls, cosmic
strings, monopoles, and textures, formed before or during
the inflationary epoch of the Universe are usually be-

lieved to have been inflated away. The only relics that we

could be able to observe today are those formed after
inflation. However, quite recently Linde and Lyth [I],
and Basu, Guth, and Vilenkin [2] have argued that, due

to quantum-mechanical tunneling, such defects could be
formed during inflation. Thus, the defects corresponding
to preinflationary phase transitions can still be present
after inflation. Unlike the ones formed after inflation, the
ones formed during inflation could be exponentially large
and heavy [I].

On the other hand, the newly proposed inflationary
models [3] have been becoming involved with more and

more matter fields in order to overcome some flaws inha-

bited in the old ones [4]. Once they are formed, the topo-
logical defects will interact with those rnatter fields as

well as the gravitational fields generated by them. Thus,
the significance of studying these interactions is becoming
more evident.

Nevertheless, because of the mathematical complexity
of the problems concerned, the work in this direction is

frequently restricted to some very simple cases. For ex-

ample, for plane domain walls one usually assumes that
the walls are planar [5], while for spherically symmetric
domain walls or bubbles, the metrics outside and inside of
a bubble are either the Schwarzschild, de Sitter, or
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Reissner-Nordstrom ones [6]. However, these simplica-
tions are based on technical reasons rather than on physi-
cal ones. Therefore, it is important to investigate these
defects in a more general case.

As a first step to the above problem, recently we have

studied a quite general class of space-times with plane

syrnrnetry, in which a plane thin wall has been assumed

present [7]. It has been found that a thin plane domain

wall is always repulsive whether or not the space-time out
of the wall is curved. It has been also found that such a
domain wall does not absorb or reflect any gravitational
radiation. A gravitational wave just simply passes

through a wall, as though the wall did not exist at all.
However, we have found that, when a matter wave passes

through a domain wall, the stimulation, reflection, or ab-

sorption, in general, indeed occur.
Considering the above problems more carefully, we

will find that in deriving the above conclusions we had

made several assumptions, which can be summarized as

follows: (a) First, the space-time was assumed to be plane

symmetric. (b) Second, the thickness of the walls was as-

sumed to be negligible compared with any other physical
sizes involved. Consequently, the "thin-wall" approxima-
tion was used. The justification and applicability of this

assumption were studied by several authors [8], and some
perturbation theories were developed [9]. (c) Third, the
wall was reflection symmetric. (d) Fourth, the wall was

"static." By "static" we mean that the wall is located on

a fixed hypersurface during a11 the time of its evolution,

and does not have accelerated motion in the direction
perpendicular to the wall. In review of the above as-

sumptions, one might argue that the conclusions obtained

in Ref. [7] perhaps are due to the high symmetries as-

sumed.
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In this paper we shall study plane walls without the
last two assumptions mentioned above. It should be not-
ed that a particular solution representing a static planar
domain wall without reflection symmetry was found re-
cently by Tomita [10]. It was shown that, unlike the
reflection-symmetric case [11], non-reflection-symmetric
domain walls can be obtained by "gluing" two static vac-
uum Kasner metrics together with different Kasner ex-
ponents. In his paper, a generalization of the solution to
the case where the space-time contains more than one
wall was also discussed.

The rest of the paper proceeds as follows. The proper-
ties of the space-times with plane symmetry are briefly re-
viewed in Sec. II. The space-times containing a thin
plane wall without reflection symmetry are studied in
Sec. III, and the Einstein field equations at the wall are
given explicitly in terms of the discontinuities of the
metric coefficients and their derivatives. In Sec. IV, the
repulsion and attraction of a plane wall are investigated.
Following it, i.e., in Sec. V, the "generalized" Bianchi
identities are studied. In particular, they are divided into
two groups, one of which holds in the regions out of the
wall, the other holds on the wall. It is the latter that en-
ables us to study the interaction of a plane wall with
gravitational waves and matter fields. Because of the
great importance of domain walls to the early Universe,
in Sec. VI we investigate the interaction of a plane
domain wall with gravitational fields and several specific
matter fields, which are very interesting from the point of
view of physics. In Sec. VII, the previous studies are ex-
tended to the space-times containing more than one wall,
so that the collision and interaction among the walls can
be studied. Finally, our main results obtained in this pa-
per are summarized in Sec. VIII.

The notation and convention to be used in this paper
will closely follow those specified in Ref. [7]. For exam-
ple, the units will be chosen so that 8n.G =1=c, where G
is the gravitational constant, and c the velocity of light.

II. THE SPACE-TIMES WITH PLANE SYMMETRY

+e coshWdy ), (2.1)

where M, U, V, and 8' are functions of only the null
coordinates u and U, the two Killing vectors are 8 and
8, and [x"j—= [u, v, x,y j, where IM=0, 1,2, 3 and
u, v, x,y E ( —ao, + ~ ).

When V=0= W, the corresponding space-times are
often said to have planar symmetry [14].

It is convenient to introduce a timelike and a spacelike
coordinate via the relations

To facilitate our discussions, it is useful first to review
some general properties of the space-times with plane
symmetry. For the details, one may see Refs. [7,12] and
the references therein.

The metric of the space-time with two commuting
spacelike Killing vectors can be cast into the form [13]

ds =2e™dudv —e (e coshWdx —2sinhWdx dy

(2.2)

The metric (2. 1) has been intensively studied recently,
and often used to describe cosmological models [15] as
well as interacting gravitational plane waves [12,13,16].

Choosing a null tetrad as the one given by Eqs. (5) and
(6) in Ref. [7] (hereafter, it will be referred to as paper I),
we find that the only nonvanishing Weyl and Ricci sca-
lars are %'0, %2, %4, and 4 oo 4 p2 4

& j 422 A, respectively.
The former represents the gravitational fields, while the
latter the matter fields. The relations between the 4~'s
and the Weyl conformal tensor C„& have been given in
Ref. [12],and the ones between the 4;~'s, A, and the Ein-
stein tensor G„given in paper I. The Einstein field equa-
tions

G„=~T„„ (2.3)

can be written in terms of the 4; 's and A, once the
matter fields are specified, where Ir=gmG/c =1 in the
present case.

In addition to the Einstein field equations (2.3), we also
have the so-called conservation equations of the energy
and stress of sources

T„„.&g" =0, (2.4)

where j„z is defined as

1 gP ~

Jj vX =-
A, [p;v] 6gi[p~~ & v] &

and satisfies the "conservation" equations

(2.6)

(2.7)

A semicolon denotes covariant differentiation.
Equation (2.5) represents the true interaction between

gravitational fields C„,& and the matter fields R„„[17].
Our main task in this paper is to exploit Eqs.

(2.3)—(2.6) for the space-times containing plane walls in
some details by using the distribution theory.

Before proceeding, we first note the following facts.
The Einstein field equations contain the second-order
derivatives of the metric coefficients, while the Bianchi
identities contain the third-order derivatives. So, to
make these equations meaningful, one usually requires
the metric coefficients to be at least C, and any coordi-
nate transformations to be at least C . However, these
requirements are too strong for our present problem. In
the next section, we shall consider the metric (2.1) in the
case where we are allowed to study plane walls as well as
their interaction with gravitational waves and surround-
ing matter fields.

III. PLANE-SYMMETRIC SPACE-TIMES
CONTAINING PLANE WALLS

As noted previously, to have plane-symmetric space-
times containing plane walls, we need to relax some re-

which is a direct consequence of the combination of Eq.
(2.3) and the Bianchi identities [17)

(2 5)



3536 ANZHONG WANG 45

strictions imposed usually on the metric coefficients
[18,19]. First, instead of requiring that they be at least
C in the whole space-time, we require that they be piece-
wise C, and across some hypersurfaces be C . For the
sake of convenience, in this section and Secs. IV —VI, we
shall consider the cases where there is only one such hy-

persurface in a space-time, and in Sec. VII we will come
back to this issue.

Let X denote the hypersurface across which the metric
coefficients are C, and be described by

f „(t,z ) =f+„(t,z }H(q))+f „(t,z }[1—H(q))],

[f ] —= lim f+(t z) — lim f (t z},
tp~0 g~0

(3.7a)

(3.7b)

BH(y) ( 5( ) (3.8)

etc.
Note that in deriving Eq. (3.6) we had used the rela-

tions

q(t, z):—z —P(t)=0, (3.1} [f,.] = [f,,]— I:f,.]

where P(t ) is a smooth function of only t Th.en, the nor-
mal vector to the surface can be defined by

(3.9)

—I 1 P, —(—1+P),0,0],a~(t, z)
ax~ &Z

(3.2)

Inserting Eq. (3.6) into those expressions for the Weyl
and Ricci scalars given in Refs. [20,21], we find that they
can be written in the form

(3.3)

We also assume that the hypersurface X divides the
space-time 0 into two parts 0+ and 0, where
0+=—[x":y~Oj and 0 =—[x":y&0j. With this nota-
tion, the above assumptions now are equivalent to saying
that the restrictions g„*„=g„„I~ are at least C, and

across 2 g„ is at least C .
Under the above assumptions, it can be shown that the

Einstein field equations (2.3) and the Bianchi identities

(2.5), as well as their contractions (2.4), hold in the sense

of distributions [7,18,20].
Following paper I, we write any function f(t,z },which

is C in 0*and C at X as

f(t,z)=f+(t, z}H(qr)+f (t,z)[1 H(y)], (—3.4)

where H(y ) denotes the Heaviside function, defined by

where an overdot denotes an ordinary differentiation with

respect to t.
Since we are concerned with plane walls, we assume

that the hypersurface X is timelike, i.e., g&g (0, which is

equivalent to

1 —P )0.

and

%„(t,z)=4„(t,z)+'p'„5(q) (~ =o,2, 4)

A(t, z ) =AD(t, z )+A™5(y),

(3.10a}

(3.10b)

A
(1—P) (coshIV[V ] +i [W ] ), (3.1»)

(1—P')([U ]
—[M~] ) (y=0),

and

4~™—:B (1+P) [U ], Aqua
—= (1 P) [U ~]—A

00 4

C„(t,z)=C„(t,z)+@;',5(q) (t,j =o, 1,2},

where ++(t,z), 4,—"(t,z), and A*(t,z) are the regular

part of the Weyl and Ricci scalars, calculated, respective-

ly, in regions Q*, and 4'z, O';J, and A' the distribution

part with support on X, and defined by

(1+P) (coshW'[V ] i [IV ] —),B2

1, y~0,
H(y) = '0— (3.5) @~™z= — (1—P )(cosh W[ V ~ ] —t [ IV ~ ] ),

(3.11b)
Then, it can be shown that the following holds in the
sense of distributions [7]:

"r}f(t z) f (t )
df(t z) f (t )

(1—P')(2[U ] +[M ] ),

cP'P= — (1 P}[M ] —(q&=0) .AB
8

8 t =f „„(t,z)+ —(1—P)'[f ~] 5( ),
Bu

a'f«, .) a'f«, }

i3u Bv Bv Bu
(3.6)

Inserting Eqs. (3.10b) and (3.11b) into the expression

for the Einstein tensor, G, given by [7]

G„„=2 [Noon „n„+@&21 „l„+@oqm „m„+@ozm „m

=fD, (t, z) ——(1 P')[f ~) 5(y), — +(@&&+3A)(l„n„+nzl„)

+ (@»—3A)(m„m, +m, m„)], (3.12}

8 =fD„(t,z)+ —(1+P)'[f ] 5( ),
Bv

where 5(qr) denotes the Dirac delta-function distribution
with support on X, and

we find that 6„ takes the form

G„„=G„+,(t,z)H(qr)+G„, (t,z)[1—H(y}]+y„„5(y),
(3.13)
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where y„„denotes the distribution part of G„with sup-
port on X, and G„* the regular part defined, respectively,
in regions Q*.

Combining Eq. (3.13) with the Einstein field equations
(2.3), we find that these equations can be divided into two
groups:

Gpv =KTpv

Xpv=~&pv ~

(3.14a)

(3.14b)

where T„* are the energy-stress tensor defined, respec-
tively, in regions 0*, and ~„ the surface energy-stress
tensor with support on X. Once the matter fields T„*„are
specified, Eq. (3.14a) will give us the regular part of the
Einstein field equations, which can be easily found in
Refs. [13,20,21]. So, in the following we shall concen-
trate ourselves only on Eq. (3.14b).

Following paper I, let us consider the surface energy-
stress tensor given by

(3.15)

where e denotes the surface energy density of the wall, v

the tension, h„„ the three-metric, and u„ the four-
velocity, given by

IV. REPULSION AND A'I 1RAC=I'ION
OF A PLANE %'ALL

One of the most remarkable features of plane walls is
that the gravitational force generated by a plane domain
wall is repulsive [7,11,24,25], whether or not the space-
time out of the wall is curved. However, as mentioned
previously, these conclusions are obtained under some as-
sumptions. Now, it is natural to ask do the above con-
clusions still hold for a general plane wall without those
symmetries? To answer this question, let us consider the
acceleration of an observer who is at rest related to the
wall. Then, the acceleration of the observer is given by

—Q . Q (4.1)

where the covariant differentiation should be taken with
respect to the connection coefficients [7,18]

r~,(t,z) =r„+,~(t,z)K(q )+r;,~(t,z)[1—K(&)] . (4.2)

that for such a wall the Weyl scalars are absent of the im-
pulsive part, while for a general wall only the %z term is
different from zero [7].

u„= [1 P, I+P,O—, OJ (u "u„=1 ),
+2(1 P)AB—

It is convenient to introduce a new quantity 8 via the
differential equations

pv pv

(3.16a)

(3.16b)

(")[1—P, I+P,O, O],ax" &2
(4.3)

From Eqs. (3.11b), (3.13), and (3.15), and taking into
account the fact that in this paper the units are chosen so
that ir= 1, we find that the Einstein field equations (3.14b)
read

e (1—P )[U ] =cr,
e (1 P)[M +]

—=2v —o',
(3.17a)

(3.17b)

[U ] =[M ] (3.19)

Then, from Eqs. (3.11a), (3.17c), and (3.19) we can see

[V+] =0=[W ] (y=o) . (3.17c)

Equations (3.14a) and (3.17) are the basic differential
equations for a plane wall space-time. However, as usual,
to completely solve these equations, one needs to specify
the matter fields in 0*, the corresponding equations of
state, and the equation of state of the wall.

Ipser [22] and Garfinkle and Vuille [23] have studied
the so-called I walls with the equation of state of the wall
given by

(3.18)

where I is a constant subject to the restriction I +1.
The case with I = 1 corresponds to domain walls, the one
with I =

—,
' to walls consisting of isotropically distributed

cosmic strings, and the one with I =0 to dust walls.
For a domain wall, Eqs. (3.17a) and (3.17b) give

where the function a(t, z } is a solution of the equation

a, +aP+aP =0 .

From Eq. (4.3}it is easy to show that

„„ae ae „„a~ ae
ax" ax" ax" ax"

(4.4)

(4 5)

Thus, y and 8 can be taken, respectively, as a new space-
like coordinate and a new timelike coordinate.

Taking Eqs. (3.2}, (4.2), and (4.3) into account, we find
that the four-acceleration of the observer is given by

A„= I A„, A„,O, O],
where

(4.6)

A„—= —IM +(y)+M [1—K(p)]J

A
V

P
&2(1+P)(1 P)—

—[M +(y)+M [1—K(y)]]

P
&2(1—P)(1—P )

(4.7)

Hence, if the observer just hovers off the wall, the perpen-
dicular component of the acceleration to the wall is given
by
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Jig = ——e (1 P—)[M +(y)+M [1 H—(q&)]]

~ ~

1 —P
(4.8)

where

~ ~

Me '2
1 —I'

-=—(2r —o)——e~(1—P')[M ]+1 1 M
g)

—0 4 4
~ ~

Me '2
1 —P

(4.9a)

(4.9b)

[M ]+= lim M++ lim M
y~o q~0

(4.10)

Comparing Eqs. (4.9) with Eq. (48) in paper I, we find
that there are two extra terms adding to the expressions
of A„P~ +, and that when the wall is "static" and hasq=O —'
refIection symmetry, these two extra terms vanish identi-
cally. In the following, we shall consider these terms sep-
arately.

Let us first consider the two first terms, each of which
appears, respectively, in the right-hand sides of Eqs.
(4.9a) and (4.9b). These two terms have opposite signs,
but the same amplitude, and represent the acceleration
produced by the wall. For r ) cr /2 it is repulsive, and for

rc(r/2 it is attractive. When r=cr/2, which corre-
sponds to the walls consisting of isotropically distributed
cosmic strings, it is zero. The two second terms appear-
ing, respectively, in the right-hand sides of Eqs. (4.9a) and
(4.9b) have the same sign, the same amplitude, and are
proportional to [M ]+. When the wall has refiection
symmetry, they vanish. Therefore, the appearance of
these two terms is due to the asymmetry of the space-
time in both sides of the wall. We interpret these two
terms as representing the acceleration generated by the
space-time curvature. When the wall has reAection sym-
metry, the force generated by the curvature in one side of
the wall balances the one generated in the other side of
the wall, so, the total effect of this force on the observer is
zero. When the space-time does not have such a symme-
try, we would expect that this effective force is difterent
from zero, and given by the second terms. The two last
terms also have the same sign and the same amplitude.
Hence, they should have the same properties as the
second ones. However, the origin of this force is different
from the last one, and clearly is due to the accelerated

From Eq. (4.8) it is easy to find that in each side of the
wall the perpendicular component reads

dig ~

+= ——(2r —o ) ——e (1 P—)[M ]+1 1 M
~=0 4 4

motion of the wall itself.
Therefore, an observer who is at rest related to the wall

usually feels a force acting on him. But this force, in gen-
eral, is the sum of the above three different forces, pro-
duced, respectively, by the wall, the space-time curva-
ture, and the accelerated motion of the wall. As a result,
an attractive (repulsive) wall may not be attractive (repul-
sive) at all, because of the action of the last two forces
discussed above.

V. INTERACTION OF A PLANE WALL
WITH SURROUNDING MATTER FIELDS
AND GRAVITATIONAL PLANE WAVES

In this section, we shall study the interaction of a plane
wall with surrounding matter fields and gravitational
plane waves.

Following paper I, we first split the Bianchi identities
into two groups, one holding in regions 0—+ and the other
holding on the wall.

Let us first note that for any function f(t, z ), which is
C in 0—and C at X, we have

f+, (t,z)=f, (t,z)=f, (t,z) .

On the other hand, from Eq. (3.17c) we find

V+ (t, z) = V, (t,z) = V (t,z),
W+(t, z)=W (t,z):W(t, z) —.

(5.1)

(5.2)

From Eqs. (3.10) and (3.11), we also find

q, - a(1 —P) q, - q, - = a(1+P) q, -2, u ~2 2, 9' 2, v ~2 2, 8 ~ (5.3)

'Pz „(t,z) =%2 „(t,z)+ [[%2] 5(p)+a%'2 e6(q&)

+q ™5'(q)],
and so on, where a prime denotes ordinary differentiation
with respect to the indicated argument. Combining Eqs.
(5.1)—(5.4) and the facts (in the sense of distributions, see
Appendix)

H(y)5((p) =
—,'8(y), [1—H(y)]5(y) =

—,'8(y), (5.5)

we find that the Bianchi identities given by Eps. (35) and
(36) in paper I remain the same in regions 0—,while on
the wall we have

+4' 8'(y)],
(5.4)

%, ,(t,z) =%, ,(t,z) — [[0,] 5(q )
—aq'™&(q )

(1 P)[% ] 0—(1+P)[—N ]0=2——'(1+P)[2a(oo ro)(cosh—WV e iW &)+(2—oo ro)(coshWV ——iW )],
(1+P)[q] —i4(1 P)[4 ]20= —,'(1 P—)[2a(oo—ro)(cosh—WV&+iW &)

—(2oo ro)(cosh—WV +iW )],
[%z—@„—A] = ', cro[ U ]+, —

(5.6a)

(5.6b)

(5.6c)
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(5.6e)

(1+P) [4zz] +(1—P) [Coo] —2(1—P )[4ii+3A] = 4(1 P—)[o'o[M ]++2ro[U ]+ 4—aoP(1 —P ) ], (5.6d)

(1+P)2[422] —(1 P—} [4oo] =
—,'a(1 P—)[2cro s+ooM &

—2(o'o —ro) U s] (p=O),

where r~,= ,'[r-.+„~(t,z}~,,+r„,~(r-,z}~, l . (5.13)
—M ——MO.

Q
=—e o, ~0 —=e (5.7)

f+, I =o+= f .e, l o

Consequently, we have

[M ]+=0=[U ]+,
V =0= W (p=O) .

s f' s f'

(5 &)

(5.9a}

(5.9b)

In obtaining Eq. (5.9b) we had used Eq. (5.2).
Therefore, for a plane domain wall (o =r } with

reflection symmetry, Eqs. (5.6) become

Equations (5.6) represent the interaction of a plane wall
with gravitational and matter fields.

It should be noted that all the Weyl and Ricci scalars
appearing in Eq. (5.6}correspond to the "scale-invariant"
ones, defined by Eq. (34) in paper I. From now on, we
shall continuously use these "scale-invariant" ones, un-
less some specific statements are made.

When the wall has reffection symmetry, it is easy to
show that the following is true:

It is easy to show that Eq. (5.12b) is satisfied identically
while Eq. (5.12c) gives the last two equations of Eqs. (5.6).
This is what we expect, since Eq. (2.4) is the direct result
of the combination of Eqs. (2.3) and (2.5).

VI. THE INTERACTION OF A PLANE DOMAIN
WALL WITH GRAVITATIONAL FIELD

AND SOME SPECIFIC MATTER FIELDS

Because of the particular importance of domain walls
to the early Universe, we devote this section to consider
the interaction of a plane domain wall with a gravitation-
al field and some specific matter fields, which are very in-
teresting from the point of view of physics.

(i,j=0,1,2) . (6.1)

A. When the matter Selds on both sides of the wall

are vanishing

When the matter fields on both sides of the wall vanish,
we have

(1 P)[+o) =(1+P)[@o2]

( I+P )[%4] =(1—P )[42o]

[q, ] =[4„+A]
(1+P) [422] +(1—P) [Coo]

—2(1—P )[4i,+3A] = —ooP(1 P)—

(5.10a)

(5.10b)

(5.10c)

Then, Eqs. (5.6) reduce to

(1—P)[+o] = —
—,'(I+P)ao(coshW V iW —),

(6.2a)

(1+P )[%4] = —
—,'(1 P)oo(cos—h W V +i W ),

(6.2b)

~„.,~g"'= ~„.,A"'+ [0'[~„i] +~, ,~"']&(m)

+r„ig fi'(0 )=0, (5.11)

or equivalently

Z
+ ~VX, p
iMV,

r„ ig = g"[T„i.]—(5.12a}

(5.12b)

(5.12c)

where the covariant differentiation of ~„ is taken with
respect to the connection coefficients [see Eqs. (5.5)]

(1+P) [4 ] —(1—P) [4 ]
=

—,'a(1 P)(2oo s+—ooM s) (qr=O, o =w),

(5.10d}

which shows that such a plane wall does not interact with
any gravitational waves (%o and %4), although it does
with surrounding matter fields and the "Coulomb-like"
gravitational field %2. The latter is carried out through
Eqs. (5.10c) and (5.10d). This is consistent with our ear-
lier conclusions obtained in paper I.

On the other hand, from Eqs. (2.4) and (3.14) we find

[q'2] =
8 ao[ U, 4 ]

[M ]++2[U ]+=4P(1 P)—
2o s+oooM s=O (p=O) .

(6.2c)

(6.2d)

(6.2e)

Equations (6.2a) —(6.2c) show that, due to the
nonreffection symmetry of the space-time, the gravita-
tional field interacts with the wall.

To be more specific, let us consider the %0 term, which
represents the transverse gravitational-wave component
propagating in the n" direction [12]. Without loss of
generality, we assume that at the beginning the gravita-
tional wave is in the region 0+, and moving towards the
wall. As long as the velocity of the wall is less than the
velocity of light, at some moment, say, t0, the gravita-
tional wave will reach the wall at z =P(to ), and then pass
through it into the region Q . According to Eq. (6.2a),
the amplitude (%o%o)'~ of the gravitational wave [12] is
not equal in both sides of the wall. The difference, obvi-
ously, is partially due to the reffection of the wa11 to this
gravitational wave, and partially to the fact that when the
gravitational wave passes through the wall it may stimu-
late gravitational radiation or be partially absorbed.

On the other hand, from Eq. (6.2d) we can see that, be-
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cause of the nonreflection symmetry, the space-time cur-

vature produces an effective force acting on the wall so

that the wall has to have accelerated motion.
However, when the wall has reflection symmetry, Eqs.

(6.2) will read

['p ] =[q' ] =[q' ]

2oo s+ooM s=O,

P=0 (iI=0) .

(6.3a)

(6.3b)

(6.3c)

That is, the gravitational field in this case is continuous

across the wall, and no reflection, stimulation, or absorp-

tion occurs. From Eq. (6.3c},on the other hand, we can

see that the wall does not have accelerated motion, and

P(t}=u,t, (6.4)

where uo is an arbitrary constant, but when Eq. (3.3} is

taken into account we must have u 0 & 1. Thus, uo can be

interpreted as the velocity of the wall.

Combining Eqs. (4.3), (4.4), and (6.4), we find that the

function 0 takes the form

with the fluid through the components N&&, and A via Eq.
(6.8).

When the space-time of the wall has reflection symme-

try, the wall does not interact either with the gravitation-

al field or the fluid. As a result, all such walls can only

have uniform motion [see Eq. (6.3c)].
Note that when the fluid in both sides of the wall has a

different "chemistry, " then we have detonation waves

[27]

C. When a plane domain wall is coupled with null dust

The energy-stress tensor for a null dust field can be

written as a sum of two pure radiation fields [28—30],
moving in opposite directions [see Eq. (5.15) in Ref. [12]].

It is easy to show that in this case the only nonvanish-

ing Ricci scalars in regions 0* are 40O and 422, given by

Eq. (5.16) in Ref. [12].
Setting @v~2, 4&i, and A —equal to zero in Eqs. (5.6},we

find

(1—P)[%'0] = —
—,'(1+P)oo(cosh@' V iW—),

8(t,z)=t u, z . — (6.5)
(6.9a)

In terms of ip and 8, the metric (2.1) takes exactly the

form used in paper I. Consequently, all the results ob-

tained in paper I are applicable to this special case.

B. When a plane domain wall is coupled with a perfect fluid

( I+P)[%~] = —
—,'(1 P)cr o(c o—shW V +i8' ),

[+2] ao[ U, l

(1+P) [iIiii] +(1—P) [iI&(xi]

(6.9b)

(6.9c)

The energy-stress tensor of a perfect fluid and the cor-

responding nonvanishing Ricci ("scale-invariant") scalars

are given, respectively, by Eqs. (4.13) and (4.16) in Ref.

[12].
Across the hypersurface X where the wall is located,

the fluid is usually required to satisfy the so-called

Rankine-Hugoniot equations [26]

[pv gi. ] =0, (6.6a)

(6.6b)

where p denotes the rest particle density of the fluid, and

P is the normal vector to the wall defined by Eq. (3.2).

Equations (6.6a) and (6.6b) are the generalization of the

equation of the conservation of the particle number, and

of the energy and stress of the fluid, respectively.
On the other hand, the combination of Eqs. (3.12),

(3.14a), and (6.6b) yields

(1 P)[4 ]DO=(1+—P)[4„+3A]
(6.7)

(1+P)[4 ]~i=(1—P)[@„+3A]

[+2—@ii—A] = Scro[U q]+ . (6.8)

Then, it follows that the nonreflection symmetry of the

wall is partially preserved by the wall's reflecting, and or

absorbing gravitational radiation. The wall interacts

Substituting Eq. (6.7) into Eqs. (5.6}, we find that the re-

duced equations take exactly the same form as Eqs. (6.2)

for the vacuum case, except Eq. (6.2c) now must be re-

placed by

=
—,'(1—P )oo[[M ]++2[U ]+ 4P(1 —P )—

(6.9d)

[% ] =[0'] =[0 ] =0, (6.10)

which means that there is no interaction between the

gravitational field and domain walls. However, in con-

trast with the vacuum and perfect-fluid cases, even when

the space-time has reflection symmetry, P does not van-

ish. Hence, the wall in this case can still have an ac-

celerated motion due to the interaction of it with the pure

radiation fields.

D. When a plane domain wall is coupled

with a massless scalar field

The energy-stress tensor for a massless scalar field P is

given by Eq. (5.19) in Ref. [12], and P satisfies the mass-

less Klein-Gordon equation given by Eq. (5.21). For the

following discussions, we quote it here:

(1+P) [iIii2] —(1 P) [Coo]—
=

—,'a(1 P)(2o0 s+cro—M s) (ip=O) . (6.9e)

It is clear that in the present case domain walls interact

with both gravitational and matter fields. Similar to the

vacuum and perfect-fluid cases, the interaction of the

gravitational field with a domain wall is entirely due to

the nonreflection symmetry of the wall. Otherwise, the

right-hand sides of Eqs. (6.9a) —(6.9c) vanish, and we have
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2()() „,—U „$,—U „P „=0 . (6.11)

P(t,z)=P+(t, z)H(q)+P (t,z)[1—H(qr)] . (6.12)

Note that the energy-stress tensor T„ in this case in-
cludes the quadratic terms of (() „and P „. Thus, to be
physically meaningful, P must be at least C across the
wall. Otherwise, T„„will contain the squares of the
Dirac delta function, which is physically unacceptable.
Since Eq. (6.11) is satisfied in regions 0, we can see that
P is at least C in these regions. Following the discus-
sions carried out in Sec. III, we can write P(t, z) as

YA.
FI „.~g = —jI, F(p .g) =0, (6.17)

where j„denotes the density flow vector, and satisfies the
conservation equation of charge

E. When a plane domain wall is coupled
with an electromagnetic Seld

When the space-time is filled with an electromagnetic
field, the energy-stress tensor is given by Eq. (5.27) in Ref.
[12] with the field tensor F„„satisfying the Maxwell
equations

j„.&g =0 . (6.18)
Hence, we have

P „(t,z)=P „(t,z), P „(t,z)=P „(t,z),
P „„(t,z) =P „„(t,z) ,'(1 ——P—')[P~] 5(~) .

(6.13}

Introducing the Maxwell scalars as those given by Eq.
(5.29) in Ref. [12], we find that the sourceless (j„=0)
Maxwell equations read

e"'=(U --'M )C"'1,v, v p, v 1

Inserting Eq. (6.13) into Eq. (6.11},and taking into ac-
count the fact that P* satisfy Eq. (6.11), respectively, in
regions 0*,we find that

(6.14}

(o)
( U i M )4(0)

1~Q ~Q 2 ~Q

240( „' =( U „isinh8' V—„}40(0)

-(cos W V„-t~„)e(zo), (6.19)

[@00] =[@))] =[4'22] (6.15)

which means that the massless scalar field is "inert" to
plane domain walls.

Substituting Eq. (6.15} into Eqs. (5.6), we find that the
reduced equations are exactly the same as those given by
Eqs. (6.2) for the vacuum case. Consequently, the con-
clusions obtained in that subsection are also true for a
massless scalar field.

It should be mentioned that when P „ is timelike, the
corresponding P field is energetically equivalent to a
"stiff" fluid with its energy density p, pressure p, and
four-velocity v„given, respectively, by [30,31]

p, =p = P),P', v„=($ zP—' )
'

P „. (6.16)

When (I) „ is spacelike, on the other hand, it is
equivalent to an anisotropic fluid with a vanishing heat-
flow vector [30,31].

There also exist the cases in which the sign of P „
changes from one region to another, and the hypersur-
faces separating those regions are the ones on which

vanishes [30].

That is, across the hypersurface X not only is P necessari-
ly continuous, but also its first derivatives P „. The con-
tinuities of P„across X imply that the reflectivity of a
plane domain wall to this massless scalar field is zero. If
an observer hovers just off' the wall, he will find that an
incident massless scalar wave continuously passes
through the wall without reflection.

Note that the above conclusions are also true for a gen-
eral plane wall, since in obtaining them we did not use
the equation of state of the wall.

On the other hand, the nonvanishing Ricci scalars in
this case are those given by Eq. (5.22) in Ref. [12]. By the
fact that (() „are C across X, it is easy to show that

2@& „'=(U,+i sinhW V, )@zo'

-(cos W V„+tIV„}Co(0),

where 4', ' are defined by

c,"'=—a-'e, ,

c',"—=(~a)-'"c, ,

42 ' =—A 'e2.
(6.20)

4'; „' =4';0„' (t,z)+ — [4'; '] 5(lp),

(P(0)—q)(0) (t z ) [(y(0)]—$( )

(6.21)

Inserting Eq. (6.21) into Eq. (6.19) we find

[q&(0) ]
——() (6.22}

which means that, to guarantee the sourceless Maxwell
equations to be satisfied in the whole space-time includ-
ing the hypersurface X, the Maxwell scalars @',- ' must be
continuous across X.

The continuities of the 4'; 's, or equivalently, of the
antisymmetric tensor F„,across X imply that the wall is
completely transparent to this field, too. Similar to the
last case, this conclusion holds also for a general wall.

On the other hand, the nonvanishing "scale-invariant"
Ricci scalars in this case are given by

Since the energy-stress tensor T„contains the quadratic
terms of 4'; ', as argued in the last subsection, we must
assume that 4'; ' at most have the 8-function discontinui-
ties across X. Thus, combining the assumption that the
sourceless Maxwell equations are satisfied in both sides of
the wall, we can write 4'; ' in the same form as P(t, z ) in
Eq. (6.12). Then, we have
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4;J. =4&'; '@J ' (i,j =0, 1,2) .

Using Eq. (6.22), it is easy to show

[4, ] =0.

(6.23)

(6.24)

Thus, like the massless scalar field, the electromagnetic
field is also "inert" to plane thin domain walls.

VII. THE COLLISION AND INTERACTION
AMONG PLANE WALLS

In the previous sections, we have considered the

space-time in which there exists only one single plane

wall. However, in reality a space-time may contain many

such walls, and during their evolution they may collide

and interact with each other [10]. Thus, in order to cover

the latter case, we have to consider the space-time con-

taining more than one C hypersurface; crossing it g„, is

C'.
The generalization of the treatment given in Sec. III to

the present case is straightforward. For the sake of com-

pleteness, in the following we give a brief outline.
Let X, denote the ath hypersurface and be described

by

y, (t,z)—=z P, (t)=0—(a=1,2, . . . ,N), (7.1}

where N is the number of the walls contained in the

space-time considered. Then, for each of these surfaces

we define a normal vector g~, ~„by

aq. (t,z)
0(a)p = —[1 P„—(1+P—, ),0,0] .

2
(7.2)

The condition that guarantees X, to be timelike now

reads

1 P, )0 (a =—1,2, . . . ,N) . (7.3)

Similar to the one-wall case, we assume that each hy-

persurface X, divides a region of the space-time into two

subregions Q~, , ] and Q, ~,], where Q~, &] denotes the re-

gion between the hypersurfaces X, , and X, and in-

cludes X, , and X„and Q~, ] the region between X, and

X, +, and also includes them. The restrictions

g~, ~„,=g„,~„are assumed to be at least C, while
(a}

across X, g„at least to be C .
With the above assumptions, it is easy to see that the

treatment for each of these hypersurfaces is exactly the

same as that done for a one-wall case in Sec. III. In par-

ticular, the Einstein field equations on each of these walls

take the form

e (1—P )[U ] =o, , (7.4a)

e (1 P)[M ] =2~,——o, , (7.4b)

[V~ ] =0=[8' ] (7.4c)

where 0., and w, denote the surface energy density and

tension of the ath wa11, respectively.
A similar set of equations to Eqs. (4.9) also holds, after

o., r, and P(t ) are replaced by cr „w„and P, (t ).

At a moment t =to, the ath wall may collide with the

bth wall on the hypersurface z=P, (to)=Pb(to), where

orb. Afterwards, they may be part away from each oth-

er, and behave like two solitons, or may exchange stress

and energy and form a "bounded" state [32].
An interesting case is that the space-time contains only

two walls described, respectively, by y&=z P—(t) and

yz=z+P(t). Obviously, in this case the two walls have

the same velocity but move in opposite directions. If the

equation P(t }=0has one real root, say, to, then we can

see that the two walls will collide at the moment t = to on

the hypersurface z =0. If the equation P(t )=0 has more

than one real root, it means that they will collide more

than one time on the hypersurface z =0 before they move

away from each other.

VIII. CONCLUSIONS

In the previous sections, a plane thin wall without

reflection symmetry has been discussed by using the dis-

tribution theory, which has shown to be a very powerful

tool to this problem. It has been found that the Einstein

field equations take a very simple form on the wall, and

are given explicitly by Eqs. (3.17). The repulsion and at-

traction of a plane wall have been studied in Sec. IV. In

particular, it has been shown that an observer who is just
next to the wall, in general, feels a force acting on him-

self. This force is produced not only by the wall, but also

by the space-time curvature due to the nonreflection sym-

metry of the wall. Thus, the force this observer feels is

the sum of the above two different ones. In addition, if
the observer wants to remain at rest related to the wall,

he has to have another force acting on him in order to
have the same acceleration as the wall does. As a result,

an attractive (repulsive} plane wall may not be attractive

(repulsive} at all.
Later on, the Bianchi identities have been split into

two groups: one of which holds in the space-time out of
the wall, the other holds on the wall. It is this that has

enabled us to study the interaction of a plane thin wall

with gravitational fields and surrounding matter fields.

In particular, it has been found that plane thin walls (in-

cluding domain walls) are completely transparent to a

massless scalar or an electromagnetic field. The situa-

tion, however, is quite different when a gravitational

wave passes through such a thin plane wall. If the wall

has no reflection symmetry, we have found that the phe-

nomena such as reflection, stimulation, or absorption of
the wall to a gravitational wave occur. In Sec. VII, the

discussions given in the previous sections have been ex-

tended to the case where a space-time contains more than

one plane wall, so that the collision and interaction

among the walls can be studied.
A natural generalization of the above studies is, by us-

ing the same method used in this paper, to consider

space-times which have spherica1 or cylindrica1 sym-

metries. The former corresponds to spherical domain

walls or bubbles, while the latter to cylindrical walls. The

work in this direction will be published in the future.
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APPENDIX: THE PROOF OF Eq. (5.5)

To prove Eq. (5.5), it is useful first to construct a func-
tion whose limit is the Dirac delta-function distribution.

Without loss of generality, let us consider the problem
in a D 1 space. Construct a function 5,(p) by

where gE( —e, e) .In the last step of the above equation,
we had used the mean-value theorem for integrals. As
a~0, we have f(g)~f(0). Then, from Eq. (A2) we fin
lim f 5,(p)f(q&)dqr=f(0)=(5(y), f(y)) . (A3)
p~Q —00

That is, the Dirac delta-function distribution 5(p) can be
considered as a limit of the function 5,(p) defined by Eq.
(A 1).

In review of Eqs. (Al) —(A3), now it is easy to show
that

(H(q)5(q), f(p))= lim f 5,(q)H(p)f(q)dy

1
( —~&y&~),

5,(q) —= 2e

0 ( ~ &tp& E, E &(p&+~),
(A 1)

= ( —,'5(p),f(p) ), (A4a)

([I—H(qr)]5(y), f((p)) = lim f 5,(q&)[1—H(y)]
p~Q —oo

where e is a positive number. Then, for any test function
f(p) we have

Xf(p)dq)
= ( —,'5(q ),f(q ) ) . (A4b)

f 5,((p)f(y)dy= f f(q&)dy= f(g), (A2)
Thus, in the sense of distributions Eq. (5.5) holds.
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