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General-relativistic model of a spinning cosmic string
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We investigate the infinite, straight, rotating cosmic string within the framework of Einstein s

general theory of relativity. A class of exact interior solutions is derived for which the source satisfies

the weak and the dominant energy conditions. The interior metric is matched smoothly to the

exterior vacuum. A subclass of these solutions has closed timelike curves both in the interior and

the exterior geometries.

PACS number(s): 04.20.Jb, 98.80.Dr

I. INTRODUCTION

The geometry outside a straight, static cosmic

string with vanishing radius [1—3] represents a four-

dimensional extension of the point-particle solution of
(2+1)-dimensional Einstein gravity [4]. In three space-

time dimensions the Riemann curvature depends alge-

braically on the Einstein curvature. Hence, it can be ex-

pressed entirely in terms of the local distribution of mat-

ter and energy. This makes vacuum solutions of three-

dimensional Einstein theory differ from Minkowski space-

time only in their global topological properties [5].
Deser and Jackiw [6] have studied new solutions in

(2+1)-dimensional gravity that describe geometries gen-

erated by static string sources. As opposed to (2+1)-
dimensional particles and (3+1)-dimensional strings, the
exterior geometry of a static (2+1)-dimensional string

with tension always corresponds to maximum angular

deficit. Although these solutions are quite different from

four-dimensional string solutions, they may find useful

applications in studies of domain-wall dynamics. Fur-

ther solutions, representing spinning strings, were found

by Grignani and Lee [7] and by Clement [8].
Just as a static three-dimensional point-particle so-

lution becomes a static four-dimensional cosmic-string

model, the three-dimensional "Kerr" metric [4, 5] may be

interpreted as a vacuum solution outside a cosmic string

carrying angular momentum [9, 10]. This geometry has

attracted considerable interest because of its nontrivial

global topology. In addition to the conical topology of
the usual string solution, there is a helical structure of
time which gives rise to the possibility of closed timelike

curves (CTC's) near the source, as well as a gravitational

time delay [11].
Semiclassical gravitational effects on a spinning cone

have been considered by Matsas [12], who showed that
the vacuum expectation value of the angular momentum

of a massless conformally coupled scalar field is nonzero

in this background geometry. But in quantum theory the
causality-violating region of such a "spinning cone" gives

rise to apparantly pathological features such as unitar-

ity problems [13], and it is responsible for making the

Dirac Hamiltonian lose its self-adjoint character [14, 15].
Hartle [16]has, however, shown that the Hamiltonian for-

mulation of quantum mechanics is ill suited to this type
of spacetime. Instead one should apply the sum-over-

histories formulation of quantum mechanics. In this for-

malism the Cauchy problem is well posed, but the evolu-

tion is nonunitary in the region with CTC's [17]. Deutsch

[18] has reached the same result in a quantum computa-

tion model. Maybe nonunitarity is a general property of
quantum mechanics with time machines.

Nevertheless, a more serious problem remains: What
happens to the vacuum expectation value of the energy-
momentum tensor on the Cauchy horizon'? In the worm-

hole models of time machines it diverges [19, 20], and

Hawking [21] has argued that quantum effects therefore

would prevent the formation of CTC's. Others, e.g. ,

Kim and Thorne [20], hold that the divergence is too
weak: It produces fluctuations of the geometry which

are smaller than the quantum gravity fluctuations and

hence the gravitational effect of the vacuum polarization
is unimportant [20]. In the present paper we will con-

sider a purely classical model of a spinning string in 3+1
dimensions, without addressing the above issue.

Recently a number of authors have pointed out that
spinning point particles (in 2+1 dimensions), or strings

(in 3+1 dimensions), behave as gravitational analogues

to anyons —gravitational anyons [22—26]. Such particles,
which display fractional statistics, were first shown to
exist within the framework of quantum mechanics in two

space dimensions [27].
Because of the singularities associated with the ideal-

ized infinitely thin string model, one should construct
a more realistic model where the tip of the cone is

smoothed out. Such a nonsingular spacetime manifold

is the proper setting for the study of semiclassical grav-

itational effects outside a spinning cosmic string. The
singular tip of the cone could be replaced by an extended

interior region with a nonvanishing Einstein curvature

[28—30]. Hence, the tip is replaced by a smooth cap, pro-

ducing a "ballpoint pen" model [31]. Alternatively the

source could be concentrated on a ring of finite radius.

Then the geometry is that of a "flower pot" [31]; see

Fig. 1.
It has been shown that, when regarded as a line sin-

gularity, the spacetime geometry for a spinning string

exhibits torsion at the location of the source [32]. A
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(b)

(c)

physically acceptable sources. " A four-dimensional ro-
tating dust cylinder can produce closed timelike curves

[37, 38], however. This solution must be dismissed, it
might be argued, since the exterior is not asymptotically
fat, and hence unphysical. On the other hand it would
be surprising if the causal structure of a realistic spinning
cosmic-string model differs fundamentally from that of a
spinning dust cylinder. After all, the existence of CTC's
is more of a topological issue than a geometrical one.

Here we consider both types of extended string mod-
els. We find that a rotating cosmic string can be given

by a rotating "flower pot, " with the ring source being a
(2+1)-dimensional spinning string [8]. For the "ballpoint

pen, " we find new exact solutions of Einstein's field equa-
tions. In the latter model we show that closed timelike
curves can exist even if both the weak and the dominant

energy conditions hold in the interior of the string. The
loophole in the proof of the nonexistence of CTC's in
Ref. [36] is the restriction to a source of n point parti-
cles, combined with the lack of gravitational attraction
between such particles (strings) in three (four) spacetime
dimensions. It could well be argued that a fluid model
in which gravitational attraction appears is more realis-
tic than the point-particle (string) model. After all the
vacuum-polarization eR'ect does liberate the graviton and
introduces gravitational attraction on the semiclassical
level [39—41].

II. GEOMETRY OF THE SPINNING STRINC

FIG. 1. The figures show two-dimensional projections of
the string geometry. (a) The source is a point singularity on

the tip of a cone. (b) In the "flower-pot" model, the source is
a ring at a finite radius. (c) In the "ballpoint pen" model the
Einstein curvature is distributed over a smooth cap surface.

more realistic model could be composed in two ways: ei-
ther by considering an extended source with torsion or
a rotating source. A "ballpoint pen" source of the first
kind has been found within the Einstein-Cartan theory
[33]. In this model the source is a homogeneous cylin-
der with spin polarization along the axis of symmetry.
In the present paper we will construct a source of the
second kind.

The belief that physically realistic sources will not pro-
duce CTC's is often encountered. In [4], referring to
three-dimensional spacetime, it is stated that "One can
show that such closed time-like contours are not pos-
sible in a space with n moving spinless particles (...)."
Waelbroeck [34] has shown that a pair of cosmic strings
with relative angular momentum does not have CTC's.
A. more general conviction is found in Ref. [35]: "We be-
lieve that this is a general result: closed time-like curves
are absent for reasonable geometries. " In Ref. [36] en-
titled "Physical cosmic strings do not generate closed
time-like curves" it is proved, in the case of point par-
ticles, that "there are no CTC if the spacetimes have
physically acceptable global structure, which they do for

F =1, M=m, and A = B(r +rp) (2)

where m, B, and rp are constants. Locally this is the
Minkowski metric in disguise (t:—T mP), but the gl—obal
topology is different. Firstly m g 0 induces a helical
structure of time, and secondly B ( 1 produces a conical
topology. The constant m is determined by the angular
momentum per length, J, by

rn = 4GJ

B is a measure of angle deficit of the cone, which is de-
termined by the mass per length, p, by

B=l —4Gp .

Note that if r + rp ( m/B, the P coordinate becomes
timelike, and because it is periodic, closed timelike curves
do exist here. t'0 is a constant determinihg the origin of
the exterior radial coordinate, so that the radial coor-

The line element in both the exterior and interior re-
gions will be assumed to be of the form

ds = (Fdt+—Md/) +A dP +dz +dr, (1)

where F, M, and A are functions of r only. Note that
Lorentz invariance along the z axis implies that any so-
lution of the four-dimensional field equations may also
be interpreted as a solution of the corresponding (2+1)-
dimensional equations.

In the exterior region, the metric is a flat vacuum so-
lution [4]. Here
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dinates coincide in the interior and exterior coordinate
systems.

For later convenience we define an orthonormal tetrad
frame by

~0 = Fdk+ Md/

~' =Ad/,
(5):dz

where the subscript 8 denotes the value of the radial co-
ordinate r at the junction surface.

Inserting the metric functions of the exterior and inte-
rior solutions into Eqs. (7) and (8), we get the Lanczos
tensor

1 ( (r'+ m')sl'&
8irGS o=,l I

1 —4Gp—

We will match the interior region to the exterior vac-
uum, and thereby determine the properties of the string
surface by means of Israel's formalism of singular sur-
faces [42]. The energy-momentum surface density of this
surface is given by Lanczos energy-momentum tensor:

1 (m'(r,'+ m')'h'&

(rz + m2)'l~ ( r, )

8-GS = '
1 4G„-("'-)

(r'+ m')»' r,

(12)

(fi)
and8irGS' = [I&'~] —6' [Ii]

where I&' are components of the external curvature ten-
2

sor, z' are the coordinates in the hyperspace (t, P, z), and
square brackets signify the discontinuity at the junction
radius.

Since we are using a radial coordinate where g„„=1,
the exterior curvature is given simply by K;z ———

2 g;&,
Transforming Ii.,I to the tetrad basis (5), we get the

following energy density and pressures

1 (m(m'+ r,')87rGS, =
(r2 + m2)1/2 q r2 (14)

This shows that the "flower-pot" model is a possible
source of the spinning cosmic string. Note that causality
violation is excluded in this model because ar, = m/r, (
1. We now turn to a "ballpoint pen" model.

IV. THE "BALLPOINT PEN" MODEL
A' F/

8irGS' = — 8~GS' i ——'=
A

)

A' I" '
8~GS' = —+-

A F
and the energy current

(7)

Here we set I" = 1. Then with the definition

2A
(15)

Einstein's field equations G„„=8&GT„„take the form

A/I
8+Gp = 30

A
'

S'M
8irGS, = —8irGS'0 ——

2A
(8) 8+Gpp ——0,

All
8~Gp, = —0'+

(17)

(18)

III. THE "FLOWER-POT" MODEL

The spacetime region inside a uniformly rotating in-

finitely thin hollow cylinder is flat [43, 44]. Therefore
the interior spacetime geometry can be described by the
metric of a rotating disk [8]

F = —~ r M=~r /F A =r +M

A nonzero u is necessary to allow a continuous matching
to the exterior vacuum solution.

The projection of the metric into the junction surface
must be a continuous function over the junction. This
gives

p2 = 1+~2r2, ~rz = m, r2+m = B (r, +ro),
(10)

'Throughout the paper a prime denotes a derivative with

respect to r.

8nGp„=0,
87rGqy —0',

(19)
(20)

where p, p, and q are the energy density, the pressure and
the heat flow relative to the reference frame (5), respec-
tively. Because of Lorentz invariance along the z axis,
the same field equations, except (18), are valid in 2+1
dimensions. Note that it is the rotation which allows us

to construct a finite (2+1)-dimensional model with pres-
sure. In the hydrostatic case such models do not exist
[45].

Petti [46] has shown that discrete rotating masses
in general relativity imply the presence of translational
holonomy which is transformed into torsion by the limit-

ing process which transforms discrete masses into contin-
uous matter fields. According to the Einstein-Cartan the-

ory, it is the canonical energy-momentum tensor which

gives the correct local description of the energy and
momentum of matter, whereas the combined energy-
momentum tensor is the source of the metric field [47].
In simple classical spin fluid models one finds that the
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eRective gravitational mass and pressure densities are
the canonical ones minus the spin density squared. By
Petti's correspondence one should expect that the exte-
rior gravitational field of a limited rotating mass distribu-
tion should be determined by the combined density and
pressures p = p —0 and p = p —0 . These quantities
imply the proper equation of state for a cosmic string:

p= —p, and py
——p„=0. (21)

Note that if we calculate the Tolman mass using these
quantities we get zero, which is consistent with a flat
exterior geometry.

To be able to integrate the field equations, we assume
that the energy density is of the simple form

8sGp = A+ M (22)

where A is a positive constant. Then it follows from Ein-
stein's field equations that the weak energy condition is
satisfied.

With the condition that the metric is Minkowskian on
the axis, the solution for A is

0.4 0.8 1.2

FIG. 2. The figure shows g~@ in units of A
' as a function

of r/r, with the parameter values a = 1, and ~Ar, = 3/2.
There are CTC's in the region where gy@ is negative.

a graph of gy~ as a function of r for a model with CTC's.
The total effective mass per unit length, p, and angular

momentum per unit length, J, are given by the integrals

1
sin (~AF) (23) (29)

Without further specifications of the physical properties
of the string, 0 remains undetermined. One alternative
is to select a simple form of q~, and integrate the field
equations. Choosing q~

——const, and demanding that
the dominant energy condition

-T'p —ITPt
I

& o (24)

be satsified, the energy fiux is restricted by IS+Gq~I =
IA'I ( A. Thus

(25)

where a & 1.
To match this solution with an external vacuum we

must demand that the radial pressure vanish at the junc-
tion radius. Hence, if we let r, stand for the value of r
at the radius of the string, we have to set Q(r, ) = 0 or

0 = c8A(r, —r) (26)

~jth the definition (15), and the condition that M(0) =
0, we find

1
M(r) = 2a

I (r —r, ) cos (v Ar) — sin (v~AF) + r,
I

A —I &0. (28)

By choosing the parameters o, and r, one may construct
models with and without CTC's, which satisfy the weak
and the dominant energy conditions. In Fig. 2 we present

The condition for the existence of closed timelike
curves is gyp & 0 for some values of r. Then the pe-
riodic coordinate P becomes timelike. Hence, we must
demand

and

J = KN 4) (30)

where 0 = 0/4n G is the angular momentum density, and
ur t~2 = A dr dP is the area element of the string section.
This gives

p = [1 —cos (V~AF, ))
1

(31)

J = M(F8)
1

(32)

Also the first derivatives of the metric must be continu-
ous. Hence, the solution must also satisfy the conditions

[A'] = 0 and [M') = 0

The conditions (33) and (34) are met provided

[1 —(1 —4Gs )']' '
l(1 —4Gp) arccos(1 —4Gp)

We have constructed a physical source for all the three
constants of the exterior vacuum solution. B = 1 —4Gp
is a measure of the total mass per length of the string,
and the spin parameter m = 4GJ measures the total
angular momentum per unit length of the string.

In the limit m 8 0 and 0 -+ 0, the model reduces to
the Gott-Linet-Hiscock model [28—30).

This solution is to be matched to an exterior vacuum
solution. The metric projected into the junction surface
has to be a continuous function of r. This yields

M(r8) = m and A(r, ) = B(r, + rp)



3532 BJQRN JENSEN AND HARALD H. SOLENG 45

V. CONCLUSION

The fact that the exterior metric is Hat is consistent
with the fact that the Tolman mass of the string is zero.
Therefore, a string as discussed above has no gravita-
tional mass, and all the gravitational eAects are of topo-
logical origin. Hence, a freely falling test particle feels no
gravitational attraction outside the string, but because
of the conical topology, two parallel straight lines pass-
ing on different sides of the string will converge and cross
each other.

As opposed to the Einstein-Cartan spinning string
model there is no homogeneous interior solution in Ein-
stein's theory. Both in Einstein's theory and in the
Einstein-Cartan theory there is no fundamental law
which forbids causality-violating regions in the spacetime
of a spinning cosmic string. This, however, does not mean
that such objects really exist in nature. On the contrary,
for realistic strings the angular momentum density is too
small for the phenomenon to exist [33].

But even if the angular momentum density is large
enough to produce CTC's there are other mechanisms
present which could prevent their formation. There are
for instance indications that rotating objects will radi-
ate away sufFicient angular momentum to prevent CTC's
from coming into existence [48]. It may also be that
quantum distortions of the classical spacetime prevent
the creation of CTC's [21]. Furthermore, as pointed out
in [35], it is reasonable to believe that the history of for-
mation of a system should be given by a Cauchy evolu-
tion of spacelike surfaces. This puts severe restrictions
on the possibility of the occurrence of CTC's as shown
by Tipler [49]; "(...) closed timelike lines cannot evolve

from regular initial data in a singularity-free asymptot-
ically flat spacetime" (which satisfies the weak energy
condition and the generic condition). On the other hand,
despite the appeal of the idea that the history of any
system should be constructable by a Cauchy evolution,
there does not exist a compelling reason based on physi-
cal arguments that the Universe really admits a Cauchy
surface [50]. One should also note that Tipler's theorem
does not hold for the spinning string, because the generic
condition states that any nonspacelike geodesics must feel
tidal forces in at least one point. This condition cannot
be satisfied in the spacetime exterior to a finite matter
distribution in three-dimensional spacetime, because of
the complete absence of tidal forces in a vacuum. An
infinite straight string is of course an idealization. It is
tempting to assume that spacetime close to a very long
string does not differ much from the spacetime outside
an infinte one. But it is risky to claim that properties
of an infinite cylinder also hold true for a finite one [51].
This is particularly evident here, since the spacetime ge-
ometry exterior to a finite string is curved, and therefore
satisfies the generic condition.
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