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Redshift and structure formation in a spatially flat inhomogeneous universe
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We study a spherically symmetric Tolman-Bondi cosmological model with globally flat spatial sections

t =const. We consider the model valid for the description of the Universe after matter starts to dom-

inate. The redshift and cosmological observations in the model are examined and a simple scenario of

the changes in the structure formation when compared to the standard flat Friedmann-Robertson-

Walker universe is proposed. This scenario is based on the fact that in our model different parts of the

Universe spend unequal periods of time in the matter-dominated era. The correction to the cold-dark-

matter spatial two-point correlation function is derived. Specific cases are examined corresponding to

observationally based distributions of the density. We show that this not only leads to no contradictions,

but significantly improves the fit of theoretically predicted correlation functions to observations.

PACS number(s): 98.80.Dr

I. INTRODUCTION

The two founding assumptions of the Friedmann mod-

el are that the Universe is isotropic and homogeneous.

However, only the isotropy can be verified directly by ob-

servations [and the recent Cosmic Background Explorer
(COBE) data confirming the high degree of isotropy of
the microwave background [1] seems to have done just
that]. There is no fundamental physical reason for the

latter of the assumptions to be rigorously correct. For
obvious reasons we cannot directly probe the hornogenei-

ty of the Universe on a cosrnologica1 scale, and to justify
that assumption we are left with the Copernican principle
alone. Even though it is appealing since it supplies us

with a mathematically simple cosmological model, refer-

ring to it as directly verifiable would be an overstatement.
Quite the contrary, there seems to exist a growing body
of observational evidence in favor of larger and larger
structures. So far we have heard of the "great attractor"
[2], the "great wall" [3], and recently about a quasar su-

perstructure [4]. Moreover, the survey of the galaxy den-

sity field completed by Infrared Astronomy Satellite
(IRAS) [5] provides indisputable evidence of an excess of
large-scale clustering over that predicted by the standard
cold-dark-matter (CDM) model (e.g., [6]). Attempts by

some CDM protagonists to resurrect the model in a

modified form require either a nonzero cosmological con-

stant [7], or throwing massive neutrinos into the model

along with CDM [8] to compensate for lack of clustering

on large scales. Obviously, a complicated enough model

can reproduce the observations to an acceptable accura-

cy, but also causes a lot of skepticism, particularly among

particle physicists, who would prefer both A and neutri-

no masses to be zero.
In our opinion it is worthwhile to investigate cosmo-

logical models other than Friedmann's to examine possi-
bilities of solving the large-scale structure problem. The
second simplest model at hand (mathematically that is,
conceptually, perhaps, even simpler) would be a spheri-

cally symmetrical Tolman-Bondi model [9,10]. There is

no indication of such a model contradicting observations
in any way, and many wide open avenues of research ex-

ist. In fact, this approach was recently used [11] to ex-

plore the possibility of a dipole moment of the microwave

background as a cosmological effect rather than being
caused by an infall onto the "great attractor, " and also

[12] in an attempt to reconcile dark-matter inhorno-

geneities with a homogeneous distribution of baryonic
matter.

There are remarkably few restrictions imposed on the
model. Obviously, the observable Universe should be
smaller than the inflationary bubble it is contained in.
Also the inhornogeneity should be small enough to allow

at least "quasi-inflation. " (Contrary to what inflation ad-

vocates want us to believe, initial spatial inhomogeneity
seriously affects inflation, e.g. , [13].) These restrictions

apply if one treats inflation seriously. Since the
inflationary scenarios change at the rate of fashion design

this task is difficult. Second, the Tolman-Bondi model

does not allow for pressure. This is not a serious flaw.

The Universe has been matter dominated since a very

early epoch, and all of the structure formation has taken

place in this era. However, if we wanted to take our in-

vestigation to earlier epochs, we would probably be left

only with numerical methods.
Since the Tolman-Bondi model describes an inhomo-

geneous universe, the most general (and natural) ap-

proach would be to impose no restrictions on the local
curvature. In this manner we could study a model in

which underdense parts of the universe expand forever,

while others collapse in a finite time. Curvature effects

would clearly influence the dynamics of the universe in-

cluding structure formation. In particular, we would ex-

pect, in addition to galaxies, clusters, and superclusters,
some "superstructure" on scales comparable to those of
initial inhornogeneity. Such a model will be the subject of
future work. In this paper we present a simpler model

with globally constant curvature (for the sake of
mathematical simplicity, we choose our model to be spa-

tially flat).
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II. THE MODEL

First, for the sake of notational clarity, we write the
Friedmann-Robertson-Walker line element

ds =dt a(t)—dr2 +r dQ
1 —kr

(2 1)

with dQ =d8 +sin ed/ .
Now, let us consider a Tolman-Bondi [9,10] model for

a spherically symmetric inhomogeneous universe filled
with dust. The line element in comoving coordinates can
be written as

In the following section we brie6y describe the
Tolman-Bondi model and present the spatially Bat vari-
ant. Section III consists of a discussion of the redshift-
distance relation and the corrections to the spatial two-
point correlation function of the CDM in our model.
The closing section contains a description of our results
of numerical calculations as well as conclusions.

Throughout this paper we use units in which
G =c = 1, unless stated otherwise.

0—1= —1= 1

p, 3H,ff

1 f'—2f f'
R2 (2.7)

Because of spatial inhomogeneity this is a local equation
for curvature in terms of density. There is a correspon-
dence between the curvature of space and the sign of
Q —1:

Q —1&0, f &1 open,

Q —1=0, f =1 flat,

Q —1&0, f &1 closed .

Whatever the curvature, the total mass of matter
within comoving radius r is

M(r)= ,' f dr f—'F'=4mf dr pf 'R'R2, (2.8)
0 0

8', =3Keff

We also define a local density parameter
Q(t, r)=p(t, r) jp, (t, r). If we now solve (2.4) using (2.3)
we get

ds =dt R' (t, r)f—dr R(t, r)d—Q (2 2}
so that

where f is an arbitrary function of r only, and the field
equations demand that R (t, r) satisfies

2RR +2R (1 f )=F(r—), (2.3}

with F being an arbitrary function of class C,
R =BR/'Bt, and R'=dR/Br. We have three distinct
solutions depending on whether f & 1, = 1, & 1 and they
correspond to elliptic (closed}, parabolic (flat), and hyper-
bolic (open) cases, respectively.

The proper density can be expressed as R = [1—cos(u)], E(r) &0,m (r)
(2.9a)

M'(r}= =4npf R'RdM
dr

Also for p&0 everywhere we have I"&0 and R'&0, so
that in the nonsingular part of the model R & 0 except for
r =0 and F (r) is non-negative and monotonically increas-
ing for r ~ 0. This could be used to define the new radial
coordinate r =M(r) and to find [14] the parametric
solutions for the rate of expansion:

F'
16''R' (2.4) m(r)

i2E/'" [u —sin(v)], E(r) &0, (2.9b)

and by analogy with the Friedmann model, we can define
the critical density p, (t, r} corresponding to flat spatial
sections t =const (f =1):

or

R = [cosh(v) —1], E(r) &0,m(r)
(2.10a)

R RR'
8m.p = +2-

R R' (2.5)
t = [sinh(u) —u], E(r) &0,

m (r)
/2Ei 3/2 (2.10b)

I„K =—=
P

R'
R' (2.6a)

In a spherically symmetric universe we have two
"Hubble parameters": H„(t, r) for the local expansion
rate in the radial direction and Hz(t, r) for expansion in
the perpendicular direction. Usual definitions give

whe«E(r)=-, '(f' —1) can be interpreted as the total en-
ergy within radius r and m (r) = Jodr fM' Clearly, (2.9).
and (2.10) correspond to closed and open cases, respec-
tively.

For simplicity we consider the globally flat case f =1
(E =0). The metric reduces to

li
H

l (2.6b)

ds2=dt2 —R'r2dr2 —R 2do, (2.11)

where I denotes the proper distance, i.e.,
1„=R'(t, r)f 'dr and li =R (t, r)d Q. By defining an
"effective" Hubble parameter H, ff =Hz +2K&H„we can
rewrite (2.5) as a formal analogue of the Friedmann equa-
tion: i

( 9F)1 /3 (2.12)

R =
—,'(9F)'"(t +P)'"

with P(r) an arbitrary function of r of class C (we use the
notation of [14]}.Choosing a new radial coordinate
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we get

R (t, r)=r [t +P(r)] (2.13)

where we have dropped the bar over r when adopting this

choice of radial coordinate. Supposing a nonzero limit

for g„, as r ~0, we have R -r near r =0, so for finite

R(t, O) we have F(0)=0. This requires that p(r) has a

finite limit as r ~0. The metric (2.11) becomes

=R (t„r,}[1+z(t„r,)], (3.1)

our discussion, for the sake of simplicity, we place an ob-

server at the center (t,~ =tc, r,~ =0}.
The luminosity distance between an observer at the ori-

gin of our coordinate system (t~, O) and the source at

(t„r„0„$,) is [10]
1/2

ds =dt (t—+p) ~ (3Y dr +r dQ )

where

Y= I+ 3(t+P} '

and from (2.4) the density is given by

1
P 6~(t +P)'Y

(2.14)

(2.15)

(2.16)

where X is the absolute luminosity of the source (the en-

ergy emitted per unit time in the source's rest frame), 2 is

the measured flux (the energy per unit time per unit area

as measured by the observer), and z(t„r, ) is the redshift

(blueshift) for a light ray etnitted at (t„r, ) and observed

at (t„O).
The light ray traveling inwards to the center satisfies

ds =dt R' (t,—r)dr =0, d8=dP=O,

t+P=O, Y=0, (2.17a)

The model depends on one arbitrary function P(r) and

could be specified by assuming the density on some space-

like hypersurface, say t =t0. In the closing section we

will discuss a more observationally based method of do-

ing that.
The metric and density are singular on the two hyper-

surfaces

and thus

dt = —R'(t, r) .
dT

(3.2)

t =T(r),
while the equation of the second ray is

(3.3a)

Consider two rays emitted by the source with a small

time separation ~. The equation of the first ray is

namely,
t =T(r)+r(r) . (3.3b)

(2.17b)

We consider our model valid only for

t) X(r)—:Max[t, (r), t2(r)] . (2.18}

ds =dt —t (dr +r dQ~) . (2.19)

Thus, t (r) =X(r) defines the big-bang hypersurface of the

model. Since the model describes a universe filled with

pressureless matter, we interpret it physically as the sur-

face on which the universe enters the matter-dominated

era [in the Friedmann-Robertson-Walker (FRW) model

this happens everywhere at the same t, corresponding to

z, = 10 ]. It is worth noting that even in our globally flat

rnode1 different parts of the universe can do that at

different times.
Finally, let us notice that both the substitution p=O

and taking the limit t~~ give the Einstein —de Sitter
universe

dT(r) = —R'[T(r), r],
dT

dr(r) r(r)R'[T—(r), r),
dr

where

(3.4a)

(3.4b)

BR BR'
R'[T(r), r]=

Bt Br „„, Bt

If we take r(r, ) to be the period of some spectral line at

r, then

r(0) v(r, ) =1+z(r, ), z=O for r, =O.
r(r, ) v(0)

The equation for the redshift considered as a function of r

along the light cone is

Using (3.2) we get the equation of a ray and the rate of
change of r(r) along the path:

This not only means that, as expected, we get the horno-

geneous case when P=O, but also that [14] an expanding

fiat Tolman-Bondi model with an everywhere nonvanish-

ing density necessarily evolves to the homogeneous

Einstein —de Sitter mode1, whatever the initial conditions.

=( I+z)R '[T(r),r],
dE'

(3.5)

where T(r) is given by (3.4a). The shift z& for a light ray
traveling from (t&, r& ) to (t&,0) is

III. THE REDSHIFT AND STRUCTURE FORMATION
ln(l+z&)= —J dr R'[T(r), r] .

0
(3.6)

Let us now examine the propagation of light in our

model. The high degree of isotropy of the microwave

background forces us to the conclusion that we must be

located very close to the spatial center of the universe. In

To see how this differs from the Friedmann-
Robertson-Walker case we assume (in a manner similar

to that of [10]) that R is an increasing function of r and

relabel the radial coordinate r =R [T(r),r] Also, .
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M'(r)= —ln(1 —a, ) — dr
o r(1 —a&)

(3.7)

where, in obtaining the second equation, we used (2.4)
and (2.8). Thus we have two contributions to the red-
shift: the cosmological redshift due to expansion, de-
scribed by the first term with a, =R, and the shift due to
the difference between the potential energy per unit mass
at the source and at the observer. Obviously, in the
homogeneous case [M'(r)=0] there is no gravitational
shift.

To complete the discussion let us notice that the in-
tegral in (3.7) can be rewritten as

4mpr

(1—a, }

and for small r j can be neglected when compared to the
first term. Expanding the logarithms on both sides of
(3.7) we see that light emitted at (t„r, ) and observed at
(to, 0}satisfies for small r, or small to —t, :

z(t„r, ) =R(t„r,),

a, (r)=R[T(r), r], a2(r}=R[T(r),r], . . . ,

are functions of r only. Expanding (3.6) and keeping
terms to linear order we get

I I
a& ~, a&a& —a2

ln(1+z& }=f dr —f dr
o 1 —a, o l —

a&

The standard apparatus used to describe the density
field of the Universe in the spatially flat models includes
the density contrast

5p(x) p(x) —p

p p

and its Fourier expansion

5k = V ' f d x 5(x)exp(ik. x),
vol

(3.9}

(3.10)

5p ~ i
k ~5k~ dk

p "o 2+ k
(3.11)

where the quantity (k ~5k ~
)/(~2m } describes the con-

tribution to 5p/p from a given logarithmic interval in k
and is often referred to as the processed power spectrum.

Finally, if we define the mass autocorrelation function
g(r),

where p is the average density of the Universe [in the
spherically symmetric case it may be convenient to use
5(r)=5(r)]. For Gaussian random fluctuations statistical
quantities may be specified in terms of the power spec-
trum ~5k ~

. If one considers the rms density fluctuations

5' = &5(x}5(x)&'"
p

where the angular brackets denote averaging over all
space, it follows that, for an isotropic power spectrum
(i.e., depending on k =

~k~ rather than k),

where t, is T(r, } from (3.4a) with the initial condition
T(0)=to. Using (2.6b) and (3.1) we get, for small r„ g(r) = (5(x+r)5(x)), (3.12)

z(t„r, )=H~(t„r, )dL (t„r,), (3.8) one can verify that it is the Fourier transform of the
power spectrum:

which is formally analogous to the FRW result. Two
main differences are that our relation is local and that
from cosmological observations we obtain the angular
Hubble parameter H j =R /R rather than FRW's
HF =a/a.

Let us now turn our attention to the structure forma-
tion. We do not postulate any major departures from the
mechanisms considered in FRW (for an overview see,
e.g., [15]). However, we cotnment on the possibility of
such a divergence in the closing section. Since a "stan-
dard model" of structure formation in a homogeneous
universe still does not exist, we concentrate on the CDM
mechanism [6], which not long ago seemed to provide a
satisfactory picture but recently found itself in difBculty.
We assume that the primary difference between CDM
scenarios of structure formation in a FR& model and in
our inhomogeneous flat model is the amount of time
different parts of the universe have spent in the rnatter-
dominated era.

The main assumptions of the CDM mechanism are
that the Universe is flat and dominated by weakly in-
teracting massive particles (WIMP's}. It enters the
matter-dominated era with scale-invariant, Gaussian, and
adiabatic initial

fluctuations

generated in the early
epochs. These primeval inhomogeneities started growing
after decoupling via gravitational instability to form the
structure we see today.

g(r)= fd k ~5k ( exp( —ik r),1

(2n) V

~5k~~= Vfd r g(r)exp(ik r) .

(3.13a)

(3.13b)

In our isotropic case g(r)=g(r}. It also follows that
g(0) =(5p/p) .

In the standard version of the CDM model the power
spectrum (if baryons contribute a small fraction of the
density, i.e., Q~ &&Qo) is given by [16]

~5k~ =constXkl[1+[ak+(bk) ~ +(ck} ]'Iz~",

(3.14)

where a =6.4(Qoh ) 'Mpc, b =3.0(Qoh ) 'Mpc,
c =1.7(Qoh )

' Mpc, v= l. 13, and h is the FRW Hubble
parameter in units of 100 kms 'Mpc '. The spatial
two-point correlation function obtained from (3.14) using
(3.13) and the power law EGG(r) =(r/5. 5 Mpc) ', cor-
responding to the galaxy-galaxy correlation function at
galaxy separations O. lh ' Mpc ~ r ~20h ' Mpc, will be
shown parallel to our results in the figures of the next sec-
tion. Since the cluster-cluster correlation function is [15]
gcc(r}=(r/25 Mpc) ', it is clear that g(r) as predicted
by CDM falls well below the data both on small and large
scales. As mentioned earlier, attempts to cure this prob-
lem require "exotic" physics and even then do not lead to
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the solution on scales ~ 10h ' Mpc.
Leaving aside subtleties of the time evolution of density

inhomogeneities in a FRW model, let us recall [15] its

main features. For both subhorizon and superhorizon
perturbations there are two physical modes: a growing
mode and a decaying one. Subhorizon perturbations do
not grow during the radiation-dominated era, while the

growing mode of the superhorizon perturbations evolves

as (5pi'p)+=—5+ ~t. During the matter-dominated era

both growing modes evolve as 5+ ~ t . Hence, it seems

reasonable (since in Tolman-Bondi models we are
confined to the matter-dominated era) to assume in the
first approximation that in our inhomogeneous flat model

density perturbations also grow as 5 ~ t ~ independently
of their scales. We also assume that entering the matter-
dominated era [i.e., at the time t(r) =X(r) given by the
big-bang hypersurface of our model] our Universe had

the spectrum of primeval fluctuations identical to that of
the CDM FRW model at the corresponding epoch t,q

[even though formally the density on X(r) is infinite].
In FRW we have, for the growing mode,

tF
5~(t) =5~(t,

q )F F eq

2/3

(3.15)

where we normalized the solution at t,q
and tF denotes

the (same everywhere in space) time from the initial

singularity in the FRW model to a given value of time

coordinate t.
In our inhomogeneous isotropic flat model we have

tr(r)
5r(t, r) =5r(tq(r}, r }

tq(r}
(3.16)

where again tr(r)=t —X(r) is the time from the initial

singularity (2.18) of our model to a given value of time

coordinate t. Also, by our simplifying assumptions,

5r(t, )=5&(tz(r), r} and t,q=tz(r) for all r .

IV. RESULTS AND DISCUSSION

We first rewrite the basic formulas in the language of
the metric (2.14), i.e., using P(r) The Hubble parameters
(2.6) become

R' 2
~ 3(t+P) —rP'

R' 3 3(t+P}+2rP'

H =—= (t+P—)
R 2

(4.1a)

(4.1b)

2
F 0 3H0

(4.2)

The big-bang singularity is at t =0.
Our discussion in the previous section showed that if

we were to interpret the cosmological tests (such as the
redshift-luminosity one) in the spirit of our inhomogene-

ous model, we would have to assign Hp to H~(tp, 0). To
be more precise this would be the case for H0 derived

from observations at small redshifts.
At r =0 the big-bang hypersurface of our model is lo-

cated at X(0)=—P(0), since the requirement that P(r)
have a finite limit as r~0 forces P'(0) =0. Thus for the

observer at (tp, O), where tp is the time coordinate of con-

stant time hypersurface "now, " the age of the Universe is

determined by

tr(0) =t, +P(0)= 2 = 2

j. tp~ p

(4.3)

Let us denote the observationally determined value of
the Hubble constant as H0=100h kms ' Mpc '. The
reported values of h span the range (0.4;1).

In the FRW model Hp=Hz(tp}=(a/a}, sets the age

of the matter-dominated universe at

r =tp = 1 dx(1 —Qp+Qplx)= 1

H0 0

For the flat FRW case (Qp= 1 ),

Thus for some value of time coordinate t,

tr(r)
5r(t, r)= 5~(t),

tF
(3.17)

This, when compared to (4.2}, sets P(0}=0and tz=tr(0)
Consequently, we must have

3H0
Pr(tp 0)=P F(tp)=

gz'(tp r)= (5r(tp r)5r(tp 0)) (3.18)

Using (3.17) and the fact that tr(0) =tz, we finally arrive

at the correction to the FRW correlation function gF(r)
in (3.12) as given by our model:

2/3tr(r) (3.19)gz. (r) = F(r) .

which clearly shows that on some spacelike hypersurface

t =const, the extent of the gravitational amplification of
small primeval perturbations depends on position. The

larger tr(r} for a given r, the more developed structure

we expect to see there.
In our isotropic model we ("the observers") are located

at (tp, 0); thus we can write the spatial two-point correla-

tion function as

We see that our model does not solve the so-called
"age of the Universe" problem (e.g., [15]), at least not at
its spatial center. We cannot claim that at r =0 our

Universe had sufficiently more time since the big bang to
accommodate uncomfortable estimates of the age of glo-

bular clusters, the age of the Galaxy based on radioactive

dating, etc. In fact, at the center it has existed for exactly

the same time as a matter-dominated flat FRW universe.

However, in principle, we could solve the problem for
outer parts of the Universe by choosing P(r) so that X(r)
decreases with r. In this manner we would have a

universe in which the outer parts were older and the

center youngest. Obviously, there remains the ultimate

question of whether such a model would be consistent

with observations.
Let us now write the system of equations we work with
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dT(r)
dT

I= —[T(r)+P(r)]' ' 1+
3[T (r) +P(r) ]

(4.4a)

= ——r(r)[T(r)+P(r)]
3[T(r)+P(r))

(4.4b)

in a form suitable for numerical calculations. Equations
(3.4) can be written as

Since the standard notation utilizes Qo, it is convenient
to rewrite the last two equations using the ratio of the lo-
cal density in our model to the critical density of the
FRW universe. Let us call it the density ratio and denote

pz. (t, r)
6(t, r)=

p.F( t)

t
1

2r13'(r)

[t +p(r)]z 3[t +p(r) ]

with initial conditions T(0)=to, r(0) =1. Also,

r(0} 1z(r)= —1= —1 .
r(r) r(r) (4.5)

Thus, having the form of the density ratio either for a
spacelike hypersurface (t =to) 60(r) or along the light
cone QLC(r), we close the system (4.4) with one of the
equations

For numerical calculations we choose units with to = 1.
We need to supplement system (4.4) with another equa-

tion specifying P(r). As mentioned before, we can do it
by assuming the density distribution on a certain space-
like hypersurface t =td. The density of our Bat model is
defined by (2.4) and (td = to) is given "now" by

r

6 to 2rP'(r)

[t,+p(r)]' 3[to+P(r)]

T (r) 2rP'(r)
[T(r)+p(r)]& 3[T(r)+p(r)]

(4.8a)

(4.8b)
p(to, r) = [to+P(r) ] 1+

6n 3[to+P(r)]
(4.6)

p[T(r), r]= [T(r)+P(r)] 1+
6n. 3[T(r)+13(r)]

(4.7)

which could close our system of equations. However,
this approach requires from us instantaneous, "absolute"
knowledge of the density distribution throughout the
Universe —rather a God-like feature. We prefer another
method, directly coupled to observations.

One of the most challenging tasks in observational
cosmology is measuring the mass density of the Universe.
The results are usua11y quoted in terms of the FRW den-
sity parameter Qo=(p/p, )0 and obtained either by
kinematical or dynamical methods. Kinematic tests
(such as the redshift-luminosity or the redshift-galaxy
number count) used to determine Qo are biased by their
interpretations within a specific (i.e., FRW) cosmological
model. Dynamical methods are to a certain extent free of
this bias. The simplest are based on the use of Kepler's
third law to detect the gravitational effect of the mass dis-
tribution within a galaxy on its components. The method
can be extended to determine the average mass per galaxy
in a cluster or that of a cluster in a supercluster. This is
achieved by assuming that the system is gravitationally
bound and well relaxed and then applying the viral
theorem to it. The dependence on the cosmological mod-
el comes into play only through assigning the distances
from the observer to the dynamical system under con-
sideration.

All cosmological observations are necessarily done by
detecting some form of electromagnetic radiation. Thus,
it seems reasonable to assume that whatever mapping of
the density parameter they provide, it actually describes
the density along the light cone. Thus, we can specify
P(r) by closing the system (4.4) with an observationally
based equation

We are now ready to investigate particular cases in our
model specified by the choice of the density ratio [giving
the so far arbitrary function P(r)]. With our system of
equations closed by this choice, we solve for P(r}, T(r),
and r(r) and use (4.5} to obtain z (r); consequently, z (t) is
obtained as the parametric relation [T(r),z(r)]. Next,
we find the initial singularity hypersurface X(r) of the
model with the help of (2.18). Utilizing (3.19) then gives
the corrected two-point spatial correlation function in
our model.

First, let us demonstrate how the properties of the
model are affected by the choice of either (4.8a) or (4.8b)
as the equation closing the system.

The absence of quasars at large z prompted the sugges-
tion that there is a genuine absence of visible matter at
large spatial distances [17], thus, forcing the conclusion
that the visible Universe is a baryon island surrounded by
dark matter or even a vacuum. This proposal, however,
is concerned with scales so large (corresponding to z ~ 5)
that other explanations exist, such as selection effects of
observations or evolutionary corrections. We do not ar-
gue in favor of either of the above interpretations, but
simply use the inferred density distribution to present the
properties of the model.

Let us assume that the density ratio on the "now" hy-
persurface 6O(r), (4.8a), has the Gaussian form of Fig.
1(a). (Here, as in all figures, the distance r is in Mpc. )
This would not be the directly observed spatial distribu-
tion of the density parameter. The solution for P(r) in
this case [Fig. 1(b)] is monotonically increasing and
X(r) = P(r) This c—orresp. onds to the already mentioned
universe in which the outer parts are older and the center
youngest. We have tr(r) &10to for r ~1000 Mpc. How-
ever, inspection of Fig. 1(c) excludes this case (at least for
the scale and depth of inhomogeneity assumed here) as
observationally viable. The FRW redshift-time relation
zF (plotted in the same figure for reference} easily accom-
modates observations, while the maximum of zz- is an or-
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der of magnitude smaller than the largest actually ob-
served redshifts. The physical reason for the redshift to
decrease with distance (large and negative times) after
reaching the maximum comes from the gravitational
blueshift due to the centered mass distribution that more
than compensates for the redshift engendered by the ex-
pansion. Finally, Fig. 1(d) shows 6Lc(r), i.e., the obser-
vationally obtainable density ratio distribution for this
case. This distribution has an unexpected feature, name-

ly, that despite the exponentially decreasing density on
the hypersurface of constant time, there is a maximum in
the observable density ratio 6Lc(r) following the "void"
at r ~ r, =500 Mpc (where ao(r)-exp[ (rlr, ) ]) from—
which the distribution again tends to zero as r —+ ~.

Now we reinterpret the postulate of [17] by assuming
that the exponential decrease in the density ratio with
distance is the observed efFect. The corresponding at c(r)
is shown in Fig. 2(a) and is identical to the ao(r) of Fig.
1(a). We use this to show that superficial similarities in
the two types of density ratios do not lead to analogous
solutions. In fact, p(r) as seen in Fig. 2(b) is no longer a
monotonically increasing function of r and, consequently,
the big-bang hypersurface of the model X(r)A p(r). —
The initial singularity surface is we11 approximated by the
FRW singularity t =0 for r ~ 1500 Mpc. Moreover, the
time scales involved are substantially reduced:
max[tr(r)]=1 4to for r =900 .Mpc. As intuitively ex-

pected from the form of X(r), the density distribution
[shown in Fig. 2(d)] tends to the homogeneous FRW limit
as r ~~. The redshift-time relation zz- displayed in Fig.

2(c) cannot be as easily rejected on observational grounds
as the one from the previous case. Nevertheless, it has
some features which are difBcult to explain. Even though
it has the "correct" asymptotic behavior (z~~ for
t ~0), its time dependence differs substantially from that
of z~ for z ~0.25. This would lead to considerable
changes in our understanding of the "standard candles"
in the Universe, particularly as to evolutionary correc-
tions. For example, all objects with moderately large red-
shifts, say 0.25 to 1 (this, in the case under consideration,
corresponds to distances of -500 to -1000 Mpc), would
have significantly more time from the big bang to the mo-
ment when they emitted light which we now see. On the
contrary, objects with large redshifts, say z ) 2 (or
r ) 1500 Mpc) would have much less time to evolve be-
fore emitting their light. This can be regarded as a draw-
back: too little time for quasars to sufficiently evolve, or
an advantage: an explanation of why we see so relatively
few objects with large redshifts. Since we treat the par-
ticular forms of the density ratios here only as means to
probe the properties of the model, we leave the choice to
the reader. This exercise can serve as a probe of one' s

universal optimism (or pessimism).
In neither of the above cases do we achieve a

significant success in correcting the FRW CDM two-

point correlation function using (3.19). In the first case,
this results from the fact that considerable growth in the
correction factor [tr(r)/tF] ~ takes place for distances
much larger than 100 Mpc, thus leaving g(r) unchanged
for the scales 1 ~ r ~ 100 Mpc, where we seek improve-
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ment. The same is true in the second case, where also the
maximum correction factor is small (for r =900 Mpc we

have [tT(r)/tF] ~ =(1.4) ~ =1.25).
From now on we restrict ourselves to spatial scales that

have been well probed observationally, i.e., up to a few

hundred Mpc. On such scales the most striking feature

of the luminous matter distribution is the existence of
large voids surrounded by sheetlike structures containing
galaxies (e.g., [3]}.The surveys [3,5] give a typical size of
the voids of the order 50-60h ' Mpc. There has also

been some evidence [18], with less certainty, for the ex-

istence of larger underdense regions with characteristic
sizes of about 130h ' Mpc. At the same time dynamical

estimates of the FRW density parameter Qo give very

different results on different scales. The observations of
galactic halos on scales less than about 10—30 Mpc typi-

cally give (see, e.g. , [19])Qic 30
—-0.2+0. 1. On the other

hand, smoothing the observations over larger scales ( & 20

Mpc, say —100 Mpc) indicates (e.g., [5]) the existence of
a less clustered component with a contribution exceeding
0.2, and perhaps as high as 0 &00-—0.8+0.2.

We choose to interpret these observations as a
confirmation that we may live in a relatively large under-

dense region. Obviously, our model limits us to the as-

sumption of a spherically symmetric void. Further, since
the fiat model we use here necessarily restricts the local
(central) density to that of the FRW critical density

pT(t0, 0)=p,~(to), we have to assume that the void sur-

rounds the central peak. (This assumption can be avoid-
ed in the generalization to the noniiat case f~%1.) In our
calculations we approximate the observable density ratio
6Lc(r) with

ai.c( r) =ac+ ( I ac }exp
r

ro

+(ai —ao) 1— r
'2

exp(r/ri )

[exp(r /r i )—1]z
(4.9)

where ao regulates the minimum value of Q„c(r), a, is its
asymptotic value for r ~ 00, ro sets the distance from the
center to the point where the minimum occurs, and r,
governs the distance at which the density ratio starts ap-
proaching its asymptotic value a, . The Q„c(r) satisfacto-

rily corresponds to the physical assumptions we made.
In our computations we varied ao in the range (0;0.1),
a i E (0.8;0.9 ), re G ( 10;20) Mpc, and r

~
E (20; 100) Mpc.

We present four sample density ratio distributions in

Figs. 3(a)—3(d). In the following figures the results corre-
sponding to a given observed density will be allocated the
same letter. Figure 4 displays the solutions for P(r) and
X(r) for the density ratios given in Fig. 3. The properties
of the solutions are as intuitively anticipated. The age of
the Universe at any given point is set by the density. The
less dense the region the longer the time since the initial
singularity. We note that the solutions confirm the guess
that the age of the Universe should asymptotically tend
to some limit t &to as r~ao, since the density ratio
(4.9) at infinity has a limit smaller than the central value.
Also, the spatial extent of the older regions is correlated
with the boundaries of the underdense parts of a„c(r).
The minima in X(r) are = —1.9to for r =25 Mpc in case
(a), = —7. 1to for r =33 Mpc in case (b), = —1.14to for
r =25 Mpc in case (c), and = —1. lto for r =40 Mpc in
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case (d). Thus, we expect noticeable corrections in g(r)
for scales & 10 Mpc.

In Fig. 5 we present the redshift-time relations for the
assumed distributions. There is no dramatic departure
from the FRW relation. This is a positive result, since it
makes the model observationally indistinguishable from
the standard redshift-distance predictions.

Figure 6 contains our main results, namely, the

corrected two-point spatial correlation functions g T( r)
for the voidlike density distributions considered. Also
plotted is the FRW CDM spatial two-point correlation
function obtained from (3.14) using (3.13) and the "ob-
served" power law g(r) =(r I5.5 Mpc)

We think that these results are promising. There are
significant excesses in the corrected two-point correlation
functions gT(r) over the (F(r) on the scales from the very
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small to the comparable to the outer sizes of the voids.
The excess in each case is more evident on larger scales.
There is an apparent improvement in the range, say, from
1 to -100 Mpc. Our results do not exactly fit the ob-
served g(r) ~ (r lrc) ' . However, one has to remember
that we employed an ad hoc density ratio designed to cor-
respond roughly to general features of the observational
picture. Moreover, the galaxy-galaxy and cluster-cluster

correlation functions have only approximately the same
power law and much different correlation length ro
[25h ' Mpc for gcc(r) compared to 5h ' Mpc for
goo(r)], so that the importance of the exact fit to the ob-
served g(r) should not be exaggerated.

The method we employed has certain drawbacks. The
dominant one is the flatness of the model, which forbids
us from considering a true void {i.e., one without a cen-
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profile 3(d).
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tral peak in the density). It also forces us to assume that
the time spent in the matter-dominated era is the only
significant difference between the structure formation
mechanisms in FRW and our model. This is connected
to the choice of CDM scenario, which requires the flat
model. We chose CDM despite its difficulties, because it
is the most successful model of structure formation.
However, if the recent trend in the measurements of the
microwave background continues, and the limits on its
anisotropy go even lower, the CDM model may find itself
in serious diSculty (e.g. , [20]).

The above-mentioned problems can be cured by giving
up the flatness of the model. This would introduce tech-
nical difficulties, but at the same time would make the
model much richer. The Universe at the beginning
would be very similar to the FRW model, but very
different at late stages. The initial similarity would make

it much more natural to use methods and ideas of the
FRW cosmology to describe the primeval fluctuations.
At the same time, the evolution leading to creation of un-
derdense parts of the Universe enveloped by overdense
parts could explain the surfacelike structure of galaxies
surrounding voids. This type of model is the natural con-
tinuation of the present work.
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