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Singularity-free decaying-vacuum cosmologies
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Decaying-vacuum singularity-free cosmological models based on the Chen-Wu ansatz of a cosmologi-
cal term varying as R where R is the scale factor of the Universe are introduced. They describe a
closed ever-expanding universe of density parameter 0 1 and with no entropy, horizon, or monopole
problems. They include and extend the critical density cosmology of Ozer and Taha. The Ozer-Taha
period of phase transition during part of which the pressure is negative occurs in these models. In its
wake and throughout the radiation-dominated era the Universe is Einstein —de Sitter —like with 0 then
and subsequently near unity. Nucleosynthesis proceeds as in the standard model. Consistency with the
observed helium abundance and baryon asymmetry allows a maximum vacuum energy close to the radia-
tion energy today. The presence of this vacuum energy could be detrimental to certain theories of galaxy
formation. A specific model with initial conditions approaching the hot big bang is studied in detail,
particularly as regards the entropy and flatness of the very early Universe.

PACS number(s): 98.80.Dr

I. INTRODUCTION

Astrophysical observations show that a nonvanishing
cosmological constant must be extremely small. But the
very early Universe [1] of standard cosmology [2] has
probably gone through a series of phase transitions that
should have left the cosmological constant larger than its
observational upper bound by about 120 orders of magni-
tude.

Attempts [3] at a solution or gaining a better under-
standing of this problem have been numerous. In one
classical approach a decaying cosmological "constant" is
proposed. Generally a variable cosmological constant
implies creation of radiation and rnatter and nonconser-
vation of entropy [4]. A problem with the standard mod-
el concerns its inability to explain the generation of en-
tropy in the Universe. The field equations of general rela-
tivity and the usual perfect-fluid form of the energy-
momentum tensor imply that [2] entropy does not change
throughout the reversible expansion of the Universe.

Recently Ozer and Taha [5] have proposed a model in
which the cosmological constant A is time dependent and
the cosmic density p equals the Einstein —de Sitter critical
density p, . The condition p=p, and the requirement of
an increasing entropy completely determine A in terms of
the Robertson-Walker scale factor R. In the resulting
cosmology the Universe is closed, singularity-free, initial-
ly cold, and has no entropy, horizon, or monopole prob-
lems.

In a separate development independent of the critical
density assumption, Chen and Wu [6] suggested, a priori,
that AccR . They have shown that such a behavior is
deducible from simple general principles in line with
quantum gravity. Their model is singular and preserves
the standard picture of the early Universe. Its predic-
tions for the fate of the Universe are; however, difFerent.

Unless required by a hitherto unknown symmetry prin-
ciple, the exact equality of the cosmic and critical densi-

ties, which underlies the Ozer-Taha [5] model and is also
favored by inflation [7], is hard to justify. On the other
hand the Ozer-Taha [5] model has the attractive feature
of being free of the main cosmological problems. With
all this in mind we have sought to generalize this model
by abandoning the critical density assumption but using
the Chen-Wu [6] prescription for A. The result is this pa-
per.

In Sec. II we write the field equations and discuss the
entropy problem. In Sec. III we show that the incorpora-
tion of the Chen-Wu ansatz (A=3yR where y is a
constant) into the field equations together with the re-
quirements of entropy production and evasion of the ini-
tial singularity imply a closed universe.

In the present paper we follow Ozer and Taha in postu-
lating that the Universe has passed through three phases:
a very early (T~ 10' GeV) epoch of pure radiation; a
subsequent phase-transition period of rest-mass or matter
generation; and, lastly, an era of radiation and conserved
matter reaching to the present. Except for the matter
generation period we assume that A, or equivalently the
vacuum, decays into thermal radiation with a Planck dis-
tribution.

Section IV discusses the pure radiation universe. It is
noted that the time dependence of the scale factor re-
stricts the Chen-Wu parameter y to the range —,

' &y ~1
and solves the horizon and monopole problems. It is also
noted that the constraint on y implies that the density
parameter A~1. The model of Ozer and Taha corre-
sponds to the limiting case y =0=1.

Sections V and VI generalize, respectively, sections 4
and 5 of Ref. [5]. They discuss respectively the matter
and radiation and the rest-mass generation periods. Sec-
tion VII explores observational implications of our work:
cosmic helium synthesis, the baryon-to-photon and
baryon-to-entropy ratios, and some possible consequences
for galaxy formation. In Sec. VIII we study a specific
model (y =

—,
' ). In Sec. IX we discuss our results and re-
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late some of them to the cosmology of Freese et al. [8]
and the recent work by Pavon [9]. Section X states our
conclusion. The Appendix summarizes and generalizes
the Ozer-Taha arguments on the neutrino-to-photon tem-
perature ratio in nonadiabatic models of the present type.

i.e., entropy is conserved. This is the entropy problem of
standard cosmology. In variable-A cosmology the condi-
tion dS/dt &0 requires, as evident from Eq. (7), that
dA/dt &0 for all t)0. Or, since R )0, dA/dR &0
throughout cosmic expansion.

II. VARIABLE-A COSMOLOGY

A. Field equations

Einstein's field equations with a variable cosmological
constant A are [10]

III. SINGULARITY-FREE COSMOLOGIES
WITH A VARYING AS R

Chen and Wu [6] have introduced the ansatz [11]

A=3y/R (8)

&„=—p (t)g„„+[p(t)+p (t)]u„u,

lead to

(2)

2R 2A

R 3
—a (p+3p),

2

(3)

R
R

=a 'p+ A/3 —k /R (4)

where a—:3/8~6 and A =A( t ) because of the homogenei-

ty and isotropy of the model. From Eqs. (3) and (4) fol-

lows the energy equation

—(pR )+p—R + —R —A=O .d g d g a gd
dt dt 3 dt

(5)

With a definite model for A and a choice of an ap-
propriate equation of state, Eq. (5) determines p, leaving

Eq. (4) to be solved for R(t). Generally p=p +p„,
where p is the rest-mass energy density and p„ is the en-

ergy density of radiation and ultrarelativistic matter
(henceforth to be referred to collectively as radiation-
reserving "pure radiation" for photons and massless neu-

trinos).
The field equations suggest the correspondence

R„, ,'g„,—R—=8m GT„„+A(x }g„, .

In the homogeneous and isotropic Robertson-Walker
spacetime these equations and the perfect-fluid matter
energy-momentum tensor

a 'p~,'=k —y . (9)

Then po
& 0 implies that k y )0 so that k = 1.

It is interesting to note that a closed universe is also a
consequence of Eq. (4) with A&0 in models where the
present scale factor is taken to be maximum [12]. Such
ideas were discussed in connection with possible
modifications of the redshift-distance relation [13].

IV. VERY EARLY UNIVERSE

Prior to the generation of rest mass, in the pure-
radiation very early Universe, p= —,'p. Then use of the

ansatz (8) in Eq. (5) leads to

where y is a model-dependent number. Phenomenologi-
cally y is expected to be of order 1 and positive in a flat
universe [6].

We observe that the condition dA/dR (0 requires

y )0 independently of the curvature index k and hence
A & 0 for all t &0. With A &0 Eq. (3) shows that the ex-

istence of the initial singularity R =0 is not compelling.
In particular it is possible for R to have had a minimum

nonvanishing initial value at t =0, say. The necessary
condition for the existence of this minimum in an ex-

panding universe is R =0 at t =0. In what follows we ex-

plore this possibility.
Equations (4) and (8}and the assumption R =0 at t =0

give (the subscript zero denotes values of the parameters
at t =0)

ap„A, (6) ay y '(2y —1)Ro1— (10)

where p„ is the vacuum energy density. Theoretically the
implications of Eq. (5) would appear to depend on wheth-
er p„couples to radiation or to nonrelativistic matter

[»8].

where po was eliminated on using Eq. (9) (with k = 1 }.
Substitution of Eqs. (8) and (10) in Eq. (4) gives

R 2R =(2y —1)(R —R o ),
B. Entropy

Equation (5) may be rewritten as

from which we deduce that y )—,
' or, equivalently,

Po
0

(12)

——R dA=TdS,
3

(7)

where T and S denote respectively the temperature and
matter entropy of the Universe. In obtaining Eq. (7) we

have identified the proper volume of the Universe with
R . We shall return to this point later on.

En conventional general relativity A=O so that dS =0,

Thus in the present cosmologies the Chen-Wu [6] pa-

rameter y is restricted to the range

(13}

independently of Ro (Ro&0).
When combined with Eqs. (4) and (8) the condition (13)
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leads to

0&Q —1&
1

2R 2H2
(14)

R =(2y —1)t +R

The density p attains a maximum value

ay (2y —1) '
& a

4R 4R0 0

corresponding to R =R „where

R =2y '(2y —1)R ~ 2R

(15)

(16)

The radiation temperature T is assumed to be related
to p by ( l1 /2n=c = k.

t3
= 1)

T4p — g T (18)

where g,z is the effective number of spin degrees of free-
dom, which we assume to be constant in the very early
pure-radiation era [14]. Then,

' 1/4
y '(2y —1)R 111—

R
30ay
3r gen'

where H=R /R is Hubble's constant and Q=p/p„with
p, =aH being the Einstein —de Sitter critical density.

The result (14) is valid throughout cosmic evolution
with the upper bound and Q approaching infinity as
t ~0. An infinite Q at t =0 rejects a completely
warped-up spacetime at the cosmic beginning. Thus in
the present cosmologies Q ~ 1 with the upper bound on
0—1 in Eq. (14) diminishing (increasing) with accelerat-
ed (decelerated) cosmic expansion. The identity 0= 1

corresponds to the Ozer-Taha [5] model.
The time dependence of R follows on integrating Eq.

(11). One has

t = sinh —(2y —1)' & —R
1 )1/2y

(23)

V. RADIATION AND MATTER UNIVERSE

A. Basic equations

In the wake of the pure radiation era, for R, R R2,
say, rest mass is generated. During this period the vacu-
um decayed (possibly into both matter and radiation) in
accordance with Eq. (5). But the equation of state ap-
propriate to this phase is not known. Nevertheless some
general conclusions on the implications of Eq. (5) for the
era of rest-mass generation can be reached. These are
given in the next section.

For R ~ R2, after creation of rest mass, we assume that
the vacuum decayed into radiation only and that the rate
of change of the rest-mass energy E =p R was much
smaller than that of the radiation energy E„=p„R .
Then E stayed constant so that (the subscript p denotes
present-day quantities)

3= = 3
Em Pm R Emp =Pmp Rp (24)

Furthermore we assume [5] that matter does not, under
these conditions, contribute to pressure so that the equa-
tion of state is

P= 3(p EPR ), —R+R2. (25)

R11~5X10 g 1r'/ m [using 6=6.62X10 (GeV)
1 m = 5 X 10' (GeV) ']. It follows from Eq. (12) that
P0(3.3X10 g,&kgrn

For a closed universe a time dependence of R of the
type exhibited by Eq. (15) solves the horizon and mono-
pole problems (see Ref. [5] for details). In particular we
find here that global causality is established at t =t„„,
where

with

Tmax

In terms of t,

15ay
2n. g,n(2y —1)R

11

' 1/4 1/4

2m'g ~R0

(20)

We have previously defined S and now also E as the total
entropy and total energy in a volume R, although the
proper volume of a closed universe is 21r2R3. This is in-
consequential because the measurable quantities are the
entropy and energy per unit volume (entropy and energy
densities).

Substituting Eqs. (24), (25), and (8) in Eq. (5) we arrive

, t +y '(2y —1) '(1 —y)R 121

p =ay(2y —1)
[t'+(2y —1) 'R']'

and

(21)

at

coRp
2

p = 1+, R&RR' (26)

1/4
30ay

~'g.n(2y —1)

where

a)+1=a 'y 'p R =p /p (27)

[t2+y
—

1(2y 1 )
—

1( 1 y )R 2 ]1/4

[t'+(2y 1) 'R']' '—(22)
with p, and p, being the present radiation and vacuum
energy densities, respectively.

From Eq. (26) the total radiation energy E„=p„R is

To obtain order-of-magnitude estimates of R0 and
hence p0 we take T,„-Mp1 =6 ', where Mp1 is
Planck mass. This is natural since Mp1 is the only energy
scale in the theory. Then according to Eq. (20),

E„=ayR +aycoR R (28)

The equilibrium scale factor R, is defined as the value of
R at t =t, , the beginning of the matter-dominated era of
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the Universe, when the radiation and matter energies
were equal. Thus

F.„(R, )=E

with

(29)

E„(R)&&E p when R&&R,

This means that as R rises to R, it must be small enough
for E, to be decreasing at R =R, so that

1/2 1/2 1/2
rpR, =

( 1+ )1/2
pmp

3967, 3.3X10
(1+ )' 0 h

(1+67) /
Pmp

3/4 P
Prp

3/4
5.6X10 0 h K,

(36)

(37)

co&R, /R and

This result was derived by Ozer and Taha in the y=1
critical density model. We note here that it holds for the
whole class of cosmologies considered in this paper. It
implies, from Eq. (27), that p„p &p„.

Equation (29) yields two values for R, , the smaller of
which is

( 1+ )1/2 1/2 1/2

P 1/2
Prp

=(1+co)' y' 0 7)(10~ (GeV) (38)

R, = ( 1+ )3/2 1/2 1/2
'

I 4 2

2p3/2
(

( 1 +~ )2p2

' 1/2
From Eqs. (38) and (36) one has [15]

NR 2' = "+ ' P"' )8X10'(n h')',
CO prp

P (39)

(31)

With g,s ( T,q ) =g,s.( Tp ) one then deduces
1/2

(1+co)T =2 T
P p

24cop„
X 1 — 1—

(1+co) p

1/2 —3/4

(32)

The present radiation energy density p, is calculable
from

dS 2uy
dR T

(40)

Using Eqs. (18) and (26) to express T in terms of R and
integrating lead to [16]

independently of co and y.
The result (39) implies that the 1/R term in the ex-

pression (26) for p„dominates throughout the period
R2 ~R ~R,q. But this does not mean that the total en-

tropy generated over the whole period R2 R R is
small. More precisely, consider Eqs. (7) and (8). They
give

p~p g«p p (33)

As shown in Ref. [5] and further explained in the Appen-
dix, g«( Tp )= —",, in the present cosmologies (counting
three neutrino types). Then the experimental value
T =2.7 K produces or

1/4
4 2

S(R )
—S(R2)=— g«(Tp)a y

X [(1+co) —67 ]R (41)

p„=3.8X10 ' (GeV) (34)

X 1+ 1—
2

4~prp

(1+co) p

1/2

(35)

marks a second future equilibrium moment between radi-
ation and matter. Thus in the models under considera-
tion the dominance of matter today is not permanent.

Since [15]p„ /p &2X10 we can approximate R, ,
T, , and R by

On the other hand the present total energy density is

p =0 aK . If we take K =100hkm s ' Mpc
(0.5 h 1), we have pp=8X10 0 h (GeV) . Hence
the Universe today is matter dominated.

The second root of Eq. (29), viz. ,

( 1 + )3/2 1/2 1/2

eq 3/2
rp

B. Q~, q~, and f~

From the inequality (14) and Eqs. (38) and (34) we
have, for the density parameter 0 (h =0.5),

X10"p„(1+co)

2R 2H2 16yh 2
P P

=y '(1+co) ' X 10 & 2X 10

0&0, —1&
P

(43)

It is interesting that we also had p p /p p
& 2 X 10

Now the exact Friedmann equation during the whole
radiation and matter period R ~R2 is

S(R )
—S(R2)

=7y (1+co) [(1+co) —co ] X 10 . (42)

Note that the equations for R,q, Rp, and S (Rp ) reduce to
those of Ozer and Taha [5] on setting y = l.
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R =a 'p R R '+ycoR R +(2y —1) . (44)

From this equation and the condition (39) we get, at [17)
t =t„(0&2y—1&1),

2$coRp
R, H2 =R, = +(2y —1)&8X10 (Q h )

eq

R2
3f pR dR =2ay(R2 —Ro)+Eo E2—,

0

where

(49)

a relation valid for all R. When integrated between R0
and R =R2, the beginning of the conserved matter phase,
it leads to

(45) &o =«Ro) =pro (50)

so that (Q,q
—1) & 10 independently of co and y and for

h +0.5. Tighter constraints on 0—1 result as R is de-
creased retrogressively towards R z.

According to Eq. (44) the deceleration parameter
q = —RRR today is

and

E2=E(R~)=E (Rp)+E„(R2) . (51)

Using Eqs. (24), (28), and (9) (with k =1) we rewrite Eq.
(49) as

1/2+ (
q =

P (2y —1)p„~I+(+
y(1+co)p ~

(46)
3 f„pR2dR = —ayR2 ( I+co) —1

0 pTR2

where

N Prp

(1+co) p

and 0&(2y —1)y ' & l.
1

q =—,.
From Eqs. (44) and (46) we may write, for the age of

the Universe (taking approximately t =t2=0 when
R =R2--0),

Since p„~/p ~ &2X10

t =(2q~)'~ H ' f dx 1 2q +2q /—x+2(q /x
0

—1/2

(47)

sothat withqp=2 tp=3Hp
The obtained 0, q, and t values roughly match the

k =0 standard-model predictions. By comparison Chen
and Wu [6] find ', &Q &1—, 2q~ &Q, and
—', H '&t &H '. But their model is singular at t =0
and they assume that the vacuum couples to matter in
the matter-dominated universe. On the other hand ac-
cording to Olson and Jordan [18] a vacuum energy densi-
ty that decreases as R does not modify the standard-
model predictions of the age of the Universe. Our result
for t is compatible with this view.

VI. REST-MASS GENERATION

dE+p dR =2ay dR, (48)

As mentioned previously, the present cosmologies pos-
tulate that a period of matter generation, corresponding
to R&~R ~R2, has preceded the radiation and matter
era. Ozer and Taha [5] have shown, for the critical densi-
ty model with y =1, that the cosmic pressure must have
been negative during part of this period. We will now
show that this feature, and other related results, are in-
dependent of the critical density assumption prouided y
satisfies the constraint (13).

Equation (5), with A given by Eq. (8), may be written as

AfcoRp

R2
—aR (3y —1) . (52)

Since p ~R &p„R2 and 3y& —,
' by Eq. (13) the right-

hand side of Eq. (52) is negative and so is, therefore, also
the integral on the left-hand side. But p= —,'p)0 for
R0 ~ R R, . Therefore,

f pR dR&0,
1

(53)

dE
dR

=2ay —3pR ~ 0,
with E becoming maximum when

dE 2ay
dR 3R2

=0 or p= )0.

(54)

Since p is positive at R =R, and R =R2 it must pass
through at least two zero values in the region
R& &R &R2. Thus E becomes maximum in the later
period of positive pressure within (R &,R 2 ). All these
features, originally noted by Ozer and Taha in their criti-
cal density model, are seen here to be independent of the
critical density assumption.

implying the existence of at least one negative-pressure
phase during the period of matter generation.

A negative-pressure regime in the very early Universe
is commonly indicative of a phase transition. An exam-
ple is the grand-unified-theory (GUT) phase transition at
TOUT =10' GeV. We will estimate the time correspond-
ing to this temperature in a particular model (with a
definite y) in Sec. VIII.

Before the matter-creation era, in the pure-radiation
universe, Eq. (11) implies that R &0. Afterwards, for
R & R2, Eq. (44) implies that R & 0. Thus the appearance
of rest-mass ushers in a decelerated expansion phase ex-
tending to the present.

During creation of matter the generated energy is
predominantly rest-mass energy produced at the rate
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VII. OBSERVATIONAL CONSEQUENCES

A. Cosmic helium synthesis

We now discuss primordial helium synthesis in the
present cosmologies. Of particular interest will be the
conditions under which the successful standard-model
helium abundance prediction may be reproduced.

Progress of helium synthesis in the standard big-bang
nucleosynthesis model is marked by the following tem-

peratures: (i) TF, the "freeze-out" temperature of the
neutron-to-proton ratio n/p; (ii) a temperature which we

denote by T, at which the weak-interaction rates

A(p~n), A(n+ v~p+e ), and A(n+e+~p+v) be-

come negligible compared to the neutron 13-decay rate
A, (n ~p+e +v), and (iii) the temperature signaling the
start of nucleosynthesis TN (N for nucleosynthesis) when

virtually all the residual neutrons surviving P decay bind

up into stable deuterons, almost all of which burn to heli-

um. Denote the respective times by tF, t„and t~.

For T~TF

n/p =exp( —Q/T), (55)

A(n ~p)=A(p~n)=0 362T,.O s (56)

to the cosmic rate of expansion.
In the present cosmologies the expansion rate of the ra-

diation and matter universe is given by Eq. (44). The sub-

stitution p R =p„,„R, , where p„ is given by Eq. (26)

and the transformation R =yR, change this equation to

coR R R
p 1+ eq 1+ 2+ 2p 1 eq

where Q=1.293 MeV is the n pmass d-ifference. The
limit temperature TF is determined by equating the
weak-interaction transition rate [19][T„=T/(10" K)]

cosmological constant. Combined with Eq. (18) it gives

1/22~ gee

30'
R
R

0 151g' T s (61)

Taking the number of neutrino species N = 3 (see the

Appendix) and equating Eqs. (61) and (56) we find

TF,p-—1.11, the same as in the standard model.
On the other hand, from Eqs. (59) and (60),

4R Pr =4(a p)i
R p„

so that
' 1/2

15m
2 tp

27K geg

=3.31g,z' T~p +tp (in seconds),

(62)

(63)

where tp is a constant. In the standard model the initial

singularity at t =0 requires tp=0. Here t =0 is in the

pure radiation phase, which has a different temperature-
time relation from Eq. (63) [see Eq. (22)] and is, in any

case, separated from the region R &R2 by the phase-

transition period R1 R R2 ~ On the other hand Eq.
(63) holds only for R «R,q, so one cannot relate [20] to

to t
Equation (63) shifts the standard thermal history of the

early matter and radiation universe: a temperature at-

tained at time t in the standard model is now reached at
(t + to). But this does not affect nucleosynthesis because

what matters there are time differences. (See [20].)
Deferring for the time being discussion of the tempera-

ture T, we turn to the calculation of Tz. This tempera-

ture may be estimated from the equilibrium abundance
ratio [21,22] ( T & T, & TF ):

(57)

For y & 1 this equation reduces, because of condition (39),
to the approximate form

Xn Xp

—3=—n B

3/2 3/2
2m

exp(Bd /T),
m~

(64)

2 /NREM '+y ').
R4,

(58)

Assuming nucleosynthesis to have taken place at the ear-

ly epoch R &(R, we may neglect the y
' term. Then

with

cxgcoRp
Pr =

4 ~ 2 — — eqR

we have

(59)

p coR
R2 P —~ lpR2

R
(60)

at the time of nucleosynthesis.
Equation (60) is approximately the standard fiat-space

(Einstein —de Sitter) Friedmann equation. Here it implies

that tke universe of our models expanded at nucleosyn-

thesis as if it were nearly of zero curvature and vanishing

n„ n

nB nB

2nd

nB
(65)

are the neutron, proton, and deuteron mass fractions, re-

spectively (x„and x are also the fractions by number).

Conservation of baryon number throughout R ~ R2 leads

to

nB =nBpRpR3
—3

with

nBp
=elm~

ABHOR

—1 2

(66)

(67)

where QB is the present baryonic fraction of the critical

where m~ and md ( =2m&) are the nucleon and deuteron

rest-masses, nB is the baryon-number density at tempera-

ture T, Bz ( =2.23 MeV) is the deuteron binding energy,

and
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density.
With Eqs. (59), (38), and (18), Eq. (66) for n~ yields the

model expression

nB nBp

3/4 '

(T)
'3/4

g,ff(T~ )
(68)

3 2 3

TN 2 N B 4
+—lnT +in(Q h )

—14.47+ —ln
1+co

N

(69)

The to-dependent logarithmic term in Eq. (69)
represents the deviation from the standard model.
Without it TN depends only on QBh . Arguments ex-
plaining the observed abundances of deuterium, He, and
Li (assumed to be primordial relics) require [24]

0.010 QBh 0.025.

valid for T in the range T,q ~ T ~ T2.
If p„, the present vacuum energy density, is consider-

ably smaller than the present radiation energy density

p,~, then co will be large and Eq. (68) will approach the
standard-model result (formally the transition to the stan-
dard model corresponds to co~ 00 ). Note however that
for finite co Eq. (68) does not hold for T & T, .

As stable deuterons begin to form, the equilibrium ra-
tio y in Eq. (64) is below unity. Subsequently it increases
as the Universe cools, until a temperature is reached
when y= l. This temperature is defined [21] to be Tz.
The helium abundance is assumed to be double the neu-
tron mass fraction at [23] Tz.

Take mN =0.94 GeV, T =2.7 K and

g ff ( Tttt ) =g,ff( T~ ) ( Tz & T„, the temperature of neutrino
decoupling}. Then Eqs. (68), (67), and (64) at T=Tz (in
GeV) give

In the absence of the co-dependent term Eq. (69) yields
values of TN in a range speci6ed by the bounds on QBh .
In the presence of this term the same range of TN values
would obtain [25] if the sum of the third and fifth terms
in Eq. (69) is limited by the bounds on Qzh . This condi-
tion allows a maximum vacuum energy satisfying
Q13h (1+co '} =0.025 wltere Q~h =0.010, or co=0.4
corresponding to p„ /p, =0.7.

With Q~h (1+co ') /4=0. 025, iteration of Eq. (69)
converges to T&=68.54 keV (=—T&,0=0.079). Having
known Tz, TN, and the temperature-time relation, a
rough estimate of the primordial helium abundance Y
may be made. Assuming that nucleosynthesis occurred
suddenly and that all free neutrons at t =tN fused into
He, Y may be written approximately as [8]

Yp=
2n

n+p
2n

exP[ A,„(t3/—tF)]-
N +p tF

2
exp —

A,„ tz tz— (70)

dXn =A,(n ~p)x„—A,(p ~n )(1—x„), (71)

where the transition rates A, are given by [2] (see [19])

where A,„'ln2 =r„ is the neutron half-life. Taking
TF10= 1.11 (N, =3), TN1c =0.079, and noting that

g,ff=2+ ,', N„after —neutrino decoupling (see the Appen-

dix), we find from Eq. (63) that tz tF =26—7 s. Then for
r„=10.3 min (lowest quoted [26] r„=9.88 min) Eq. (70)
yields Yz ——0.31. Observationally [27] 0.23& Y &0.25.

In the correct quantitative treatment of nucleosyn-
thesis, the neutron fractional abundance [28]
x„=n /(n +p) satisfies the differential equation

A(n ~p) =A(n+v~—p +e )+A(n+e+~p+v)+A(n ~p+e +v)
' 1/2

and

me=A 1—
(Q+q)' .

(Q+ )2 2d (I+e'3 ~)
—1(1+e—1Q+e1/T) —1 (72)

me=A 1—
(Q+q)

A(p~n): A(p+e— +n+v)+A(p—+v +n +e+—) +A(p +e +v~n)
' 1/2

(Q+q)2q2dq(1+ev) —1(1+e(Q+q)/T) —1 (73)

in which m, is the electron mass, T the neutrino temper-
ature, and m, &e(q+Q)(q+Q}& oo. For T))Q the
rates reduce to Eq. (56}.

The numerical solution of Eq. (71), for T& T~, was
performed in the standard model by Peebles [29,21,22].
His calculations show that at about Tjp = T+ ~0 =0.13 the
rates A(p~n), A(n+v~p+e ), A(n+e+~p+v) be-
come negligible compared to A,(n~p+e +v) (—:A,„).
Thus for t ) t neutrons (P) decay freely and x„de-
creases according to

—A.„(t—t~ )x„(t)=Ne

where [22] N =0.142.
In the present models, for T & T„,

T g(
4 )1/3T g (

ll )1/12

(74)

(75)

(see the Appendix). This modification in the standard
value of T (g= 1 in standard cosmology) alters the stan-
dard transitions rates k and thereby also the numerical
integration of Eq. (71). Here we discuss qualitatively the



3504 A-M. M. ABDEL-RAHMAN 45

B /T Bd Bd=0.42e " +2 +2
T T

(76}

In our models photons are continuously produced by the

decaying vacuum energy. Because it is assumed that
these photons are produced with a Planckian thermal dis-

tribution, the ratio of the number of photons created with

energy in a certain range at a certain instant to the total
number of photons created at that instant will still be

given by Eq. (76). Thus Eq. (76} is applicable in the

present nonadiabatic models. Then for
2X„=Y =0.25 —0.23, corresponding to temperatures in

the range T,o =0.09—0.08 (the deuteron photodissocia-
tion temperature Trd —10 K} we obtain

q=nz/n =10 —4X10

B. Baryon-to-photon ratio

In the standard model the baryon-to-photon ratio

g =n& /n z is constant and falls at nucleosynthesis in the

range 10 ' g&10 . Yet at T=20 MeV, well before
nucleosynthesis has commenced, the standard model

gives [31] r1=10 ', in disagreement with the observed

effect of (%1.
Consider A.(n ~p) in Eq. (72) and denote the contribu-

tions to it from the q & 0 and q & 0 regions of integration

by A, + and A. , respectively. Clearly A, + is an increasing
function of g whereas A, is a decreasing function of g.
Since both are positive and g (=1.088) does not differ

substantially from unity, the effect on A, (n ~p) is likely

to be negligible. A similar argument goes for A,(p~n)
where A, + (A. ) decreases (increases) with g and k+)0
also.

Thus, retaining Eq. (74) with N=0. 142 and with t,
and tN corresponding to T„0=0.130 and TN&0-—0.079
respectively, we have from Eq. (63} tz t, =—169 s, so

that for r„=10.3 min, Yp
=2x„(tz ) =0.23 5.

For a given value of Qzh, the temperature TN in-

creases as co decreases or as the vacuum energy increases.
This would in turn raise Y . Taking as an observational

limit Y =0.25 we deduce from Eq. (74), with r„=10.3
min, that tz t, =—114 s, and hence from Eq. (63) that

TN&o =0.089 ~ With Q~h =0.010 we therefore have from

Eq. (69) co =3.5 X 10,or p, /p„= 0.9965. Note that in

this paper the present vacuum energy cannot exactly
equal or exceed the radiation energy [see Eq. (30)].
Henceforth we shall take co 3.5 X 10 as our nu-

cleosynthesis constraint.
The nucleosynthesis scenario has implications for the

ratio of nucleons (baryons) to photons. As stable deute-

rons begin to form, the number density per neutron of
thermal photons capable of breaking up the deuterons
must be low [28], i.e., n(y)/n„=n(y)/[x„(t)nB] —1,
where y denotes photons with energy exceeding Bd.
Now the fraction n(y)/n of photons of Planckian spec-

trum at a temperature T«Bd (=2.58X10' K) is ap-

proximately given by [30]

n(y) n(y) "B

baryon asymmetry of the Universe.
In the present work the assumption that the vacuum

decays into radiation with a Planck distribution implies
[8] that the radiation energy per particle must redshift
like the temperature, so that

1/4

p /n —T- p:"30
2~ geff

(77)

Hence

n r

2~ gee

30

' 1/4

3/4
r (78)

For R2 & R & R, , p„ is given to a very good approxima-
tion [see Eq. (39)] by Eq. (59). Then (g,s =2 for photons;

prp=pn }

na 30=Ca
~ gee

'9=
n

( I+~)3r4 QBH
3/4 3/4 (79)

Nprp

where C is a hitherto arbitrary dimensionless constant
and we have used Eqs. (66), (67), and (38). Equation (79)
shows that g is approximately constant in the early
Universe (for R z

& R & R,q ), despite entropy generation.
With p„p given by Eq. (34), we find

I+~ "4
(QBh ) X6.5X10 (80)

Taking Qzh =0.010 we have g&0.65CX10 ' so that

g & 6.5 X 10 " at nucleosynthesis if C ~ 1. Note that the

present models and standard cosmology are on par in

that neither explains the origin of the nucleosynthesis
value of g.

More generally, for the whole matter and radiation

epoch Rz&R &R, p„ is given by Eq. (26). Then Eqs.
(78), (66), and (67) lead to

3/4

( +R2/R3}3~4"""y '
CO P

(81)

where g„,&„
is the value of g in the early matter and radi-

ation universe Rz &R &R, [Eq. (79)]. In particular, at

present,

C03/4

9P
( + 1 )3/4 )early (82)

Using the nucleosynthesis constraint co~3.5X10 in

this equation we find 0.014 g /g„, &
1. Thus if

low as 10 ' strains agreement with observation and may

be replaced by 10 "on requiring that g has not dropped

by more than one order of magnitude. Taking this as a

constraint in Eq. (82) we get co ~ 4.9 X 10 or

p„P /p„P & 0.95. Note that the change in entropy since the

beginning of the matter and radiation era is very large for
co =0.049: from Eq. (42) we obtain in this case

S(R ) —S(R2)=7y r X10 ( —,
' &y&1).
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C. Baryon-to-entropy ratio

A parameter for which the effect of entropy generation
in the present models can be directly investigated is the
baryon-to-entropy ratio nz/(SR ) =ns/cr ( =B, after
Kolb and Turner [32]; cr =SR is the entropy density).
In standard cosmology where entropy is conserved
B

7 g =const . Here the rate of change of B ' is calcul-
able from Eq. (40) and reads

' 1/4
3/4 3/4 8g ~

n~ R 15

dB-'
dR

Integrating and using Eq. (38) we obtain
' 1/4

8gea

15

282N

3aQ~Hp
B '=B

p

(co+R /R )
~

Xp"4 1—
(co+I) i (84)

where

2mN 8g,ff&(~)=
3an, a2»

' 1/4

3/4
3/4

(1+co) i

3/4
ge~~ (Qsh ) 'X10

(I+co) i (86)

Hence (Qsh =0.010)

(87}

This result is compatible with the (common) view that the
observed baryon asymmetry of the Universe [32]
(Bz —10 ") originated in the early matter and radiation
era. Because entropy increases continuously in the
present models, this conclusion is significant.

D. Possible consequences for galaxy formation

Detailed investigations of the effect of the vacuum en-
ergy on growth of density perturbations for t ) t, require
a solution of the differential equation for the density con-
trast in the linearized approximation. In the present
work this entails knowledge of the time dependence of
R/R in Eq. (44). An exact analytic solution does not
seem to be possible and it might be necessary to make ap-
proximations and numerical integrations. (We will at-
tempt to address this issue in a subsequent article. } Yet
one can still infer, in the manner of Freese et al. [8], in-
formation on the problem without solving for the density
contrast. We elaborate next.

In standard cosmology the equilibrium redshift is
defined by ("barred" quantities are of the standard mod-
el}

where [33] g,tr=—g,s(T~)= —",, . Denoting B for R &&R,

y Bearly we have

(85)

1+z,q=R~/R, = Pr eq

Pmp

1/3 '
4

Rppv
4

Reqp p

' 1/3

=p ~/p„~=2. 1X10 Q~h (88)

On the other hand Eqs. (38) and (36) here yield

R yR
1 +co Pmp

Zeq p eq
fp

(1+z, ), (89)

imPlying zeq & zeq Clearly z,q
could be much larger than

zeq if the vacuum energy is very close to the radiation en-

ergy today. The increase in z,q
as a consequence of the

presence of a decaying vacuum energy was noted by
Freese et al. [8]. However, the size of the effect is model
dependent.

Now simultaneous compatibility of the present models
with baryon asymmetry and helium synthesis requires
co+4.9X10 (or p, /p„&0. 95). Then for Q h =0.25
(here and below we take h =

—,
' and Qz = 1), Eqs. (88) and

(89) give z,q
& 1.1 X 10, with an upper bound consider-

ably higher than zeq 5X10 of standard cosmology.

zeq 1 1 X 10 can also be reached in the cosmologies of
Freese et al. , where it is induced by a vacuum-to-
radiation energy density ratio p„ /p„=0. 07 (allowed
there by the observational constraints). But this ratio is
& —,', the corresponding value here (p„~/p„& =0.95) and

produces in our case an equilibrium redshift of about
5.7X10 only. Quite generally much larger vacuum en-
ergies than are allowed (and sufficient) in the cosmologies
of Freese et al. are needed (and allowed) here in order to
increase z, significantly over its standard value.

A larger z,q implies an earlier t,q, providing more time
for post-equilibrium protogalactic structure to grow. The
relation of teq to zeq is readily obtainable in the Present
models. Integrating Eq. (58), assuming the approximate
boundary condition y =y2 =R2R, ' =0, we have

R 4 1/2

J y(1+y) '~ dy
Qci)Rp

teq

=2=—(2 —&2)
3

R4
' 1/2

eq

QcoRp
(90)

Using Eq. (36) we then get
r

2 COt, (1+z, )=—(2—V 2)eq eq 1+co

1/2 1/2
1'p

Pmp

1/2

(Q h ) 'X8.3 Mpc . (91)

Equation (91) has consequences for models of galaxy
formation with a (Harrison-Zeldovich) spectrum of cold-
dark-matter adiabatic density perturbations [8,34]. It im-
plies that the scale A, =t, (1+z, , ) below which the
spectrum flattens can drop well below the normalization
scale A,„=8h ' Mpc if the present vacuum energy is
sufficiently large. In particular, for co=4.9X10 or
PUp /prp 0 95' Aeq ~~™ pc =0.44K,„. In such a cir-
cumstance small-scale perturbation amplitudes and
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small-angle cosmic microwave background (CMB) anisot-

ropy will become important. But in our models I,, =A,„
for p, /p, =0.77 compared to as low a ratio as 0.06 only

in the models of Freese et al. Thus, although damping of
large-scale perturbation amplitudes and large-angle CMB
anisotropy occurs in our cosmologies, it requires, to be-
come appreciable, the presence of a vacuum energy much
higher than is needed (or even allowed} in the models of
Freese et al.

k =0 standard model,

and

a
(2r)'

2g (2r)1/2

~ ~

and in the Ozer-Taha model,

(99)

(100)

VIII. PARTICULAR MODEL: y =
3

a
POT

= (101)

From among the class of models that we studied there
is one that deserves additional attention. It has y =—', and

describes a universe in which the initial cosmic density
and temperature are maxirnurn but finite. Within the
class of models considered, it is thus the closest, regard-
ing the initial conditions, to the big-bang model. There-
fore it is interesting to analyze further the pure-radiation
equations in this particular case.

A. Basic equations

2

1—2a Ro
3R2

(92)

20a
2~ geff

' 1/4 1/4
0

R 1/2

2R
(93)

with the rnaximurn temperature given by
1/4

10a
m g,ffR0

2 2Tmax (94)

Using this expression for T,„we estimate (see Sec. IV)
that R0-5.7X10 g,ff' m, p0-1.7X10 g,ff kgm

In terms of t,

a(2t +3RO)

(t +3R )

(95)

and

30a
2~ geff

- / 2t+3R, '/

(r +3RO)
(96)

For t/&3»Ro, i.e., t)&3X10 g,~' s, Eqs. (95)
and (96) reduce to [35]

For y =—', the general equations of Sec. IV give

R „=Ro, p,„=a/(3RO)=po, and R = ', t +Ro —In.
terms of R one has

OT 1/2~gff t
(102)

Thus for t &)Ro in the pure-radiation era, a temperature
T attained at time t in the standard model is reached at
2&2t in the present model and at 2t in the Ozer-Taha
model. So despite the very different time dependences of
the scale factor in the pure-radiation universe in the stan-
dard model on the one hand (R =const X t '

) and in the
other two models on the other, and the different initial
conditions in all three models, the thermal history of the
early Universe in the three cases is, very soon after t =0,
essentially the same. For example the GUT temperature

T~UT = 10' GeV occurs at t -2.5 X 10 g,ff s,
t —7X10 g s, or tQT —5X10 g $

With y= —'„ the time marking the onset of global

causality is given from Eq. (23) by

t„„,= &3Rosinh
2 3

=1.8R0 . (103)

B. Entropy

For y =
—,
' and t »Ro, Eqs. (40} and (93) may be com-

bined to express dS/dR in terms of R; then integrate to
obtain

Taking R0-5.7X10 g tt' m and [14] g,s=100, we

have t„„,-2X10 s, of the order of Planck's time tp1.

Thus the Universe in this model, which has no initial cold
era as in the y = 1 model, became causally connected at a
very early time.

Lastly, the cosmic expansion rate, as deduced from Eq.
(4) or directly from the equation for R (t), is (t ))Ro)
R /R =t ', which is double the corresponding rate in the
standard model. But observe that this rate is only valid

for t )& tI, . In particular it does not hold at t =0.

2a
p (97}

1/4

S= R +S
9 0 (104)

and

30a
2~ geff

' 1/4

(&/&2)' ' (98)

Corresponding to Eqs. (97) and (98) one has, in the

where So is a dimensionless constant denoting the initial

entropy of the Universe.
Bekenstein [36] has proposed that the entropy S and

energy E of a system which may be enclosed in a sphere
of radius R satisfy
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S &4~RE . (105)

Although this result was criticized by several authors
[37], Bekenstein [38] has replied by stressing that it holds
for a complete system.

Here we apply Bekenstein's theorem to the closed
universe of our model at t =0. With po=a/(3RD), we
deduce from the inequality (105) and Eq. (94)
(T .„-G '") that

' 1/4

R 3/2 (106)

Denoting the first term on the right-hand side (RHS) of
Eq. (104) by S we see that (g,s = 100, t »R0 )

' 1/4

& 4~2 2H 2 3/2R —3/2

9 75

=4.5t'/'R, '/' »1 (107)

For example, at the time of the GUT transition,
S/So —10'3. Thus for t » t the initial entropy So may
be neglected. (Note that in the y =1 model So =0.) Then
we have from Eqs. (104) and (93), with R »Ro,

gruff T, T && Tm,„=2
45 eff (108)

which coincides in form with the corresponding
standard-model exact relation.

C. Flatness

Observations today indicate that [39] 0. 1 ~ Qz ~4, i.e.,
~0~ —

1~ is of order 1. In k =61 standard cosmology this
requires [40] that 0 in the early Universe had been ex-
traordinarily finely tuned near the "Hat" value 0= 1, e.g.,
(0 1)oUT 4X 10 (0 1).

In the present model we have, directly from Eqs. (4)
and (8) (x =RR o

' ),

0—1=x (x —1) (109)

IX. SUMMARY AND DISCUSSION

The cosmologies studied in this paper are based on the
Chen-Wu [6] ansatz for a decaying cosmological con-
stant: A =3yR . Requiring that the standard cosmo-
logical initial singularity be avoided and that cosmic en-

in the pure-radiation universe. In particular Q= Oo, 3, 3

when x =1, 3/2, 2, respectively, in accordance with the
condition (14). (x =&2 corresponds to t =3/3R 0
=t„„,csch[m/(2V3)] tp~, see Eq. (103) and ensuing re-
marks. ) For x »1, 0=2. In fact for x & 1.05, 0—1 is
of order 1 throughout the pure-radiation era.

On the other hand, for R »R we have from Eq. (44)
R = (2y —1 ) so that Eqs. (4) and (8) imply
0—1 =(1—y)/(2y —1)=1 for y =

—,'. So in the very dis-
tant future also, 0=2. But from Eq. (44) R ~0 for all
R R2. Hence by the inequality (14), 0—1 in the @

=—',
model is of order 1, except for the Planck and rest-mass
generation eras.

tropy increase restricts the parameter y to the range
—,
' & y ~ 1, giving rise to a class of models that include and

~ 0

generalize the critical density cosmology of Ozer and
Taha [5]. The constraint on y implies that the density
parameter Q ~ 1 in these models.

The Universe is taken to have passed through three
distinct epochs with different equations of state: (i) a very
early era of pure radiation; (ii) a phase transition period
of rest-mass generation, and (iii) an epoch of radiation
and matter extending to the present.

In the pure radiation era the time dependence of the
scale factor solves the horizon and monopole problems.
The proof is readily constructable following the steps of
Ozer and Taha [5].

The rest-mass generation period is characterized by the
occurrence of negative pressure and the appearance of
decelerated expansion. These features were also previ-
ously noted by Ozer and Taha [5] in their critical density
model. Here we have shown that they are independent of
the critical density assumption. But a better understand-
ing of the rest-mass generation period, which possibly
corresponds to the standard model's early Universe phase
transition(s) (GUT, Weinberg-Salam, . . .) is imperative.
It is essential to propose and test appropriate equations of
state for this epoch.

The matter and radiation period following rest-mass
generation can be further subdivided into radiation-
dominated and matter-dominated phases, respectively
preceding and succeeding the equilibrium of radiation
and matter. The Universe in the radiation-dominated
phase is nearly Einstein-de Sitter-like: approximately
described by a k =0 standard model Friedmann equation
[Eq. (60)]. Throughout, the density parameter 0 exceeds
but stays very close to unity. The Friedmann equation
for the matter-dominated phase [Eq. (44)] is on the other
hand too complicated to solve analytically. However
since 2y&1 in the present work it implies that the
Universe will expand forever. Chen and Wu [6] show
that the fate of the universe of their model depends on
the value of y: If y & k/3 (or y (k/3) then the universe
will continuously expand (or will eventually collapse).
This is not contradicted by our models. But Chen and
Wu [6] assume that the vacuum energy associated with A
decays into matter in the rnatter-dominated universe. %'e
assume that it decays into thermal radiation of the
Planckian spectrum throughout the matter and radiation
period.

The present matter-dominated era is not everlasting in
the studied cosmologies. The 1/R term in Eq. (26) for
the radiation density, although dominant for R ~ R, [see
Eq. (39)], will eventually become, for sufficiently large
R ))R, negligible as compared to the 1/R term. Then
the radiation density will redshift like 1/R while the
matter density continues to redshift, because of conserva-
tion of matter, like 1/R . Thus according to the present
models radiation is destined to dominate again [when R is
given by Eq. (35)].

Assuming primordial nucleosynthesis occurred early in
the radiation-dominated era of the matter and radiation
period, i.e. when the Universe was Einstein —de Sitter-
like, we noted that the neutron-proton freeze-out temper-
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ature remains as in the standard model, and so does also
the temperature-time relation, up to an inconsequential
additive constant. Under these conditions the models are
consistent with Peebles [29,21,22] helium abundance cal-
culations, provided the present vacuum energy density

p, is, at most, just under the radiation energy density

p„. Specifically we have the constraint

p„ /p, —1—:co~3.5X10 . In the present cosmologies
the vacuum energy today cannot reach the radiation en-

ergy in any case. The sensitivity of helium synthesis to
small variations in co for a given Q~h can be estimated:
From Eq. (69),

&Tx 3 Bd 3

T~ 4(1+co) T~ 2
(110}

so that for a && 1 Bd = TIO =2.58 and TRIO=0. 089,
5T~/T~= —0.035co/co. This leads via Eqs. (63) and (74)

to

independently of the constant N in Eq. (74). Thus sensi-

tivity of Y to small variations in cu is low and, as Eq.
(110) shows, decreases with increasing to or decreasing
vacuum energy.

We have used in the helium synthesis calculation

Qsh =0.010, which is widely taken [24,41] as a reason-

ably firm lower bound on this parameter. For T~,o fixed

at 0.089 by helium abundance the lower bound on Qzh
corresponds to the minimum co or maximum admissible

vacuum energy. Sensitivity of co to small variations in

Ash can also be estimated: With Tz fixed in Eq. (69)
one has

4 5(n, I ')
=—(1+to)

N 3 Q, h'
(112)

Thus the relative change in co is of the same order as that

in Qzh when co is small and increases with increasing co.

We have confined the nucleosynthesis discussion to
He because of the high precision with which its abun-

dance is known. Still, a more complete analysis should

take account of other light elements, e.g., residual deu-

terium, He, and Li. Freese et al. [8] have addressed

this issue in their cosmology. As we will explain shortly

there is a sense in which we can relate our nucleosyn-

thesis work to theirs. In their model nucleosynthesis re-

quires p, /p„
In standard cosmology the baryon-to-photon ratio g is

constant. Here it turns out to be approximately constant
in the early matter and radiation universe and that, for
co ~ 3.5 X 10, its value now g could have dropped from

its early Universe value ( —10 '
) by as much as two or-

ders of magnitude. This admits g —10 ', a too low

value observationally. Requiring q (min) —10 " im-

poses the constraint co ~ 4.9 X 10 or p„ /p„~ 0.95.
This latter condition is quite close to the nucleosynthesis

(1—y)x
(2y —1)(x —1)

(113)

so in order to estimate the RHS a particular model

(definite y) should be chosen. Similarly for R »R in

constraint p„ /p„~ 0.99 although the corresponding
limits on co differ by one order of magnitude. For if we
denote p, /p„by r we have from Eq. (27)
5'/co = —

( 1 r)—5r lr = —205r /r for r =0.95. So a
small change in r (r near 1) induces a much larger one in

co . Moreover from Eq. (82) (with ri~ /g„,~„=rj )

5g/g= —,'(1+co) 5'/co, implying that when co is small

Qp /Qz 1 Iy is, like ~, very sensitive to smal 1 changes in the
vacuum energy in the vicinity of p, /p„=1. The desired

compatibility of g with observation can therefore be ob-

tained without a drastic change in the nucleosynthesis
condition on p„ /p„.

We have also considered the baryon-to-entropy ratio
(B} which, in the adiabatic standard model, is propor-
tional to g. We have derived an inequality connecting
the early Universe and present values of B ' [Eq. (87}].
It is consistent with attributing the presently observed
cosmic baryon asymmetry to processes in the early
Universe. These results for g and B hold despite the pro-
duction of a large amount of entropy (=10 ) between

the early Universe and now. (Recall that in the standard
model the present (constant) entropy of the Universe is

about [41] 10 . ) Thus the present models are consistent
with baryon asymmetry and helium synthesis at the same
time for p„~ /p„~ 0.95.

An important problem which we have touched upon
but plan to pursue in detail elsewhere is the question of
galaxy formation and cosmic microwave background
(CMB) radiation anisotropies. Here, we have shown, in

the manner of Freese et al. [8], that saturation of the

upper bound on the present vacuum energy

(p,~/p„~ ~0.95) enhances small-scale adiabatic density

perturbations and small-angle CMB anisotropies in cold-
dark-matter models of galaxy formation. The suppres-

sion of large-scale perturbations might curtail the ability

of these models to produce large-scale structure [8].
However, for this effect to become significant the present
vacuum energy must be larger than that sufficient in the

cosmology of Freese et al. [8].
In our work the present value of the density parameter

fl is found to be unity to within two parts in 10 ~ [Eq.
(43)]. Since current estimates [42] place the upper bound

on Qzh at no higher than 0.035 some sort of dark

matter is needed to reconcile Qz (0.04—0. 14) with 0 .

The near equality of the cosmic and critical densities is

not a distinguishing feature of the present Universe. As

we go back in time the deviation Q —1 decreases becom-

ing & 10 at the equilibrium of radiation and matter and

continues to diminish with the approach to the beginning

of the matter and radiation era. Thus Q = 1 (with varying

precision) characterized the Universe ever since it

emerged from the matter generation phase and till today.
To this extent our models have no flatness problem. In

the pure-radiation universe, however, the issue is model

dependent: Eqs. (4), (8), and (11) give (x =RR o
'

)
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the distant future Eq. (44) reduces to R =(2y —1) so
that Eqs. (4) and (8) lead to (0—1)=(1—

y )/(2y —1).
The critical density model (y= 1) that motivated this

work is very different in its initial state (cold beginning)
from the standard model. The class of cosmologies in-
cludes, however, an interesting model (y =—', ) of a
universe with maximum but finite initial density. In this
respect it is the closest model in the class to big-bang
cosmology. We have studied the pure-radiation equa-
tions of this model in some detail. In particular we have
written an upper bound on the entropy at t =0 and have
shown that 0—1 is of order 1 for t &

tp& throughout the
pure-radiation era. In fact this result holds for all t not in
the Planck or rest-mass generation periods (see the end of
Sec. VIII).

Freese et al. [8] postulate that the vacuum and radia-
tion energy densities redshift at the same rate for large R
so that the parameter x =p„/(p„+p„) is a constant in-
dependent of time. In the pure-radiation eras of our
cosmology and the cosmology of Chen and Wu [6]
p„/p„~ 1 so that x ~—,'. [See Eqs. (6), (8), and (10).] In
this case the postulate of Freese et al. emerges as a mere
by-product of the present approach. This point was re-
cently emphasized by Pav6n [43] in connection with the
y=1 and Chen-Wu models. Note, however, that the re-
sult is independent of y.

On the other hand, in the matter and radiation
universe we have, from Eqs. (6), (8), and (26),

' —1

coRpx=—1+ (114)
2

with xz=(2+co) ' and x~—,
' for R &&Rz. But for

R ~ R, the inequality (39) implies that x 5 10
This constraint on x provides an alternative (albeit for-

mal) way that leads to our nucleosynthesis conclusions.
For since the universe of our models at the time of nu-
cleosynthesis is almost Einstein-de Sitter-like, our heli-
um results can be understood in the context of the nu-
cleosynthesis code computations of Freese et al. [8].
There x ~ 10 simply implies a nucleosynthesis scenario
indistinguishable from the standard picture. Note, how-
ever, that it would not be correct in our case to require
x &10 also since x is not constant over the interval
t2~t &t .

The present models do not explain the physical origin
of the initial energy density pa. We remark that the idea
of a limiting initial density has been discussed by several
authors [44]. Quite recently Israelit and Rosen [45] have
proposed a nonsingular cosmological model in which the
Universe has an initial energy density of the order of the
Planck density [ —10 kg/m -p0,' see the remark after
Eq. (94)].

Although the dynamics of vacuum decay inta radiation
is nat specified, the fluctuations in the vacuum energy
flux p„may be discussed. It has been shown by Pavon [9]
that the ratio of the flux fluctuation to the average flux in
the Ozer-Taha and Chen-Wu models diminishes with
cosmic expansian. This is essential or else the radiation
produced in vacuum decay will not retain a Planck distri-
bution and the CMB will be distorted beyond the obser-

X. CONCLUSION

A class of nonsingular decaying-vacuum cosmological
models free of the main cosmological problems was
presented. They are compatible with the principal con-
straints of observational cosmology provided the vacuum
energy today is, at most, just under the cosmic radiation
energy.

APPENDIX

This appendix gives the relation between the neutrino
and photon temperatures today in the present nonadia-
batic models. It rehashes and straightforwardly extends
(beyond the critical density case) the corresponding ap-
pendix of Ozer and Taha [5].

After neutrinos decouple at T =T„ they leave e* in
equilibrium with photons. Assuming different com-
ponents of the radiation redshift at the same rate we
have, from Eq. (59),

y ~coRp
p~ 4 ~ R ~ R ReqR

(Al)

acoR
(A2)

where R„and R "+ are, respectively, the values of R
when T = T"„and when T =T +, the temperature at
which e* decouple from photons. y„and y + are the

ye e
partial couplings of the decaying vacuum to neutrinos
and the ye== radiation "soup, "respectively.

After e* drop out of equilibrium with phatons we
have, from Eq. (26) for R &R +

y a coR&
Py= R2 R2

1+

in addition to

(A3)

r

y ~Ex coR
pv 1+

R
(A4)

From Eqs. (A 1), (A2), and (59) (p =p +p + for

vational limits. The fact that the Ozer-Taha and Chen-
Wu models exhibit this feature has been regarded by
Pavon [9] as strong evidence of an R behavior of de-
caying vacuum energy. Inspection of Pavon's work re-
veals that the damping of the flux-fluctuation-to-
average-flux ratio occurs in all the present models, in-
dependently of the observational constraints on co.

If the vacuum decays into matter in the matter-
dominated universe then E =p R %const. Decay of
the vacuum into matter would produce, through the
creation and subsequent annihilation of baryon-
antibaryon pairs, an observable y-ray flux. It was noted
[4,6,8] in different models that observations so restrict
such a flux as to justify regarding E constant [46].
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R ~R "+ ) one has

~V+ ~r, +, — (A5)

whereas Eqs. (A3), (A4), and (26) (p, +p =p for
R&R + )give

Therefore from Eqs. (A9) and (A10) we obtain
' 1/4

VP

T gre+e

Now gr =2 and g ~ =2+—', (2+2)= —", . Hence

(Al 1)

Hence

yr "-=yr

(A6)

(A7)

T- —
(

4 )1/4
Z

11
P

compared to ( ~4)'~ in the standard tnodel. Then

(A12)

Now (suppressing the subscript "eff" on g temporarily
for convenience),

(A8)

g,tr(T~)=2+ ,', N„—,

where X, is the number of neutrino species.
With g „=', N „Eq—. (A10) becomes

(A13)

Thus from Eqs. (A8), (A4), and (A3) at T=T~,
4

gv Tvp

gr Tp

But from Eqs. (Al), (A2), (A7), and (A8) at T= T,
gv

(A9)

(A 10)

(A14)

If the vacuum-neutrino coupling is not stronger than the
vacuum-photon coupling then y„/yr & 1, implying
N, —", , i.e., N 3, so there are no more than three neu-

trino types. This would agree with current experimental
indications, e.g. , results from the 1989 Z width measure-
ments at the CERN e+e collider LEP.
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