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Quantum fluctuations on domain walls, strings, and vacuum bubbles
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We develop a covariant quantum theory of fluctuations on vacuum domain walls and strings. The

fluctuations are described by a scalar field defined on the classical world sheet of the defects. We consid-

er the following cases: straight strings and planar walls in flat space, true vacuum bubbles nucleating in

false vacuum, and strings and walls nucleating during inflation. The quantum state for the perturbations

is constructed so that it respects the original symmetries of the classical solution. In particular, for the

case of vacuum bubbles and nucleating strings and walls, the geometry of the world sheet is that of a

lower-dimensional de Sitter space, and the problem reduces to the quantization of a scalar field of ta-

chyonic mass in de Sitter space. In all cases, the root-mean-squared fluctuation is evaluated in detail,

and the physical implications are briefly discussed.

PACS number(s): 98.80.Dr, 03.70.+k, 98.80.Cq

I. INTRODUCTION

Phase transitions in the early Universe may have gen-
erated nontrivial topologically stable field configurations
(topological defects) such as domain walls and cosmic
strings [1]. Of particular interest is the process of false
vacuum decay through bubble nucleation, first studied by
Voloshin et al. [2] and later described by Coleman in the
language of instantons [3]. In this process, domain walls
appear at the boundaries of the true vacuum bubbles and,
similarly, strings may appear at the boundaries of circu-
lar holes nucleating in metastable domain walls. The in-
stanton techniques have also been used recently to show
that spherical domain walls and circular loops of string
can nucleate spontaneously during an inflationary period
in the early Universe [4]. The physical properties of to-
pological defects have been extensively studied during the
last decade and are now reasonably well understood.

In most of the research on strings and walls they have
been treated as classical objects. Although this treatment
is usually justified, quantum fluctuations on strings and
walls can be important in a number of cosmological ap-
plications. For example, closed loops of string formed
during inflation would all eventually collapse to black
holes if they remained exactly circular. Quantum fiuctua-
tions cause some deviations from circular shape and thus
determine the probability of black-hole formation. For a
string network in de Sitter space, quantum fluctuations
can lead to a rapid growth of string energy, suggesting
the possibility of a self-consistent solution in which
inflation is driven by the network [5]. Another interest-
ing problem is the evolution of expanding vacuum bub-
bles. The question is how nonspherical the bubble walls
can become due to quantum fluctuations.

The purpose of this paper is to develop a quantum
theory of fluctuations on strings and walls. The corre-
sponding classical theory of small perturbations has been
presented in a previous paper [6]. There, we showed that
perturbations on strings and walls can be described by a
scalar field P defined on the unperturbed world sheet. We
shall see that the quantization of this field is not always

straightforward since, in some interesting cases, the two-

point function for P is ill defined in the quantum state
that respects the original symmetries of the classical
world sheet. This happens, for instance, in the case of an
infinite straight string in flat space. We shall see that the
two-point function for P is infrared divergent in the quan-
tum state that respects the longitudinal Poincare invari-
ance of the string and that, as a result of long-distance
correlations in the quantum fluctuations, the string will

bend on very large scales.
Also, it is well known [3] that the classical solution

describing a vacuum bubble after nucleation has the
property of O(3, 1) invariance, and therefore a vacuum
bubble should look the same to all inertial observers. The
classical world sheet describing the wall of the bubble has
the internal geometry of (2+1)-dimensional de Sitter
space, and fluctuations are represented by a scalar field of
tachyonic mass m = 3H living o—n the world sheet [6]
(here H ' is the radius of the bubble at nucleation). We
shall see that it is possible to find an O(3, 1)-invariant
quantum state for this field, although there will be in-
frared divergences in the two-point function for P due to
the translational "zero" modes of the bubble. For the
case of strings and walls nucleating during inflation, the
internal geometry of the world sheet is also that of de Sit-
ter space, and the quantization follows the same pattern
as in the case of the vacuum bubble.

The rest of this paper is organized as follows. The
basic formalism is described in Sec. II where we review
the classical theory of perturbations on strings and walls
and outline the quantization procedure. In Sec. III this
formalism is applied to planar walls and straight strings,
and in Sec. IV to expanding vacuum bubbles. Until Sec.
V it is assumed that the thickness of strings and walls is
small compared to all other relevant dimensions, so that
they can be treated as infinitely thin lines and sheets.
Generalization to thick walls and strings is discussed in
Sec. V, using the formalism developed by Vachaspati and
Vilenkin [7]. Quantum fiuctuations on strings and walls
in de Sitter space are studied in Sec. VI (again in the
thin-string approximation) and our conclusions are sum-
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marized in Sec. VII. Some technical issues are dealt with
in the Appendixes.

II. BASIC FORMALISM

Let us briefly recall, in this section, the classical theory
of perturbations on domain walls and strings which was
developed in Ref. [6], with the idea of setting up the nota-
tion for the rest of the paper. Here we shall also outline
the procedure for quantizing the perturbations.

Following Ref. [6], we start by considering an infinitely
thin domain wall evolving in (N+1)-dimensional Min-
kowski spacetime. During its time evolution, the wall
sweeps out an N-dimensional timelike hypersurface
(world sheet) X, which is parametrized by coordinates P
(a =0, . . . , N —1). The position of the world sheet is
specified by the functions x"=x"(P) and the metric on
the world sheet is

g'br (3)

where IC,b
= —r},n&r}bx" is the extrinsic curvature of X

and n" is the unit vector normal to X, pointing towards
the region with p, =p', '.

The classical theory of perturbations on a given solu-
tion x" of Eq. (3) can be summarized as follows. Noting
that only motion perpendicular to the surface of the wall
is physically observable, the perturbed solution x "can be
written as

x "=x"+Pn", (4)

where P=P(P) represents the proper magnitude of the
perturbation (i.e., the perturbation as measured by a co-
moving observer "sitting" on the unperturbed wall). In
Ref. [6] we showed that the linearized perturbations satis-
fy the "field equation"

g2
P+ %— /=0,

0-2

g,b
=B,x"Bbx„.

In general, a domain wall may separate two regions of
space with different values of the vacuum energy density,
say p'„" on one side of the wall and p'„' on the other side.
Its dynamics will be given by the action

S=—o f & gd"g—of dr
—f d~x, (2)

X vol

where e=p'„' —p',". The first term in the Nambu action,
proportional to the area of the world sheet, o is the sur-
face tension of the wall, and g is the determinant of the
metric induced on the world sheet. The second term ac-
counts for the contribution of the vacuum Lagrangian,
which is just a constant potential energy density. The
d x integral extends over the region occupied by the vac-
uum with p, =p'„'. The equations of motion resulting
from (2) are [6]

g,b}, and A is the (intrinsic) Ricci scalar on X. The
theory of perturbations is thus formally equivalent to the
theory of a scalar field living in the unperturbed world
sheet. This field has a tachyonic mass m = —e /o (or
zero mass if a=0) and a direct coupling to the curvature
of the standard form g%P, with g= 1 (see, e.g. , Ref. [8]).

Equation (5) was derived in Ref. [6] by imposing that
the perturbed solution (4) should satisfy the equations of
motion (3) and working to linear order in P. Also, one
can proceed at the Lagrangian level, substituting (4) into
the action (2) and then expanding to quadratic order in P.
Upon so doing one can show that the action takes the
form S =So+S&, where So is the action for the unper-
turbed solution and

2

s = —f—& g—y.(t'+ x —'
(6)

[compare with (4)]. The picture is, however, more com-
plicated than in the case of domain walls because, in gen-
eral, the fields (t" may be coupled to each other In Sec. s.
III and VI we will consider some physically interesting

examples of strings in flat space as well as in curved space
in which the fields P" are decoupled from each other. In
these particular cases we are back to a situation similar to
that of domain walls, where we had only one field P.

The quantum theory of perturbations on strings and
walls can now be developed using the standard methods
of quantum field theory in curved spacetime [8]. The
field P [or P", for strings in (3+1) dimensions] will be
treated as an operator which can be expressed in terms of
creation and annihilation operators,

'"y [ .4.(k}+ .'4.*(k}] (8)

satisfying the usual commutation relations [a„,a„]=5„„.
The factor o '~ can be understood from Eq. (6}: the
perturbation P has dimensions of length and the object
with the usual dimensions of a scalar field is o'~ (t. The
mode functions P„(g) are normalized so that

In deriving (6), boundary terms have been dropped, along
with terms of order higher than quadratic in P. (Of
course linear terms do not appear because the unper-
turbed solution is an extremum of the action). One can
recognize (6) as the action for a scalar field in a curved
background, from which Eq. (5) follows.

Recall that the above formalism applies also to strings
moving in (2+1)-dimensional Minkowski space (and, in
general, to topological defects of codimension 1 in a flat
space of arbitrary dimension). Strings in four-
dimensional spacetime can be treated along similar lines.
In this case there are two normal vectors orthogonal to
the world sheet n"„(A = 1,2), with n"„n~„=5„~,and the
perturbed world sheet can be written as

x "=x"+P "n"„

where U =g
' V, Vb stands for the covariant

d'Alembertian in the curved geometry of the worldsheet
(V, are covariant derivatives associated with the metric

where
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is the Klein-Gordon scalar product and the integration is
over a spacelike hypersurface on the world sheet. The
vacuum state ~0& of the field P is now defined by

and quantum fluctuations of the world sheet in this state
will be characterized by the two-point function

can construct an operator

which is well behaved. Physically, it means that we can-
not measure the field at one point, but we can measure its
value smeared over a certain region. In particular, taking
f to be constant over a region of radius s centered at
some point x and zero outside, the smeared field operator
1s

(9)
t}tt, (x, t)= f d yP(y, t) .

1

~s ly
—XI &~

(13}

It should be mentioned that the definition of the vacu-
um state in curved spacetime is notoriously ambiguous:
it depends on the choice of "positive frequency" modes

No "natural" prescription for the choice can be
given in the general case and, as we shall see, the quan-
tum state of P will have to be determined in each case by
the physics of the problem.

III. PLANAR WALLS AND STRAIGHT
STRINGS IN FLAT SPACE

In this section we apply our formalism to the simple
cases of a planar domain wall and an infinite straight
string in flat space. We shall see that, for the case of a
straight string, a nontrivial effect arises due to long-
distance correlations in the quantum fluctuations.

Let us start with the case of the planar wall. The
worldsheet metric in this case is the flat metric. From (6)
with%=a=0, we have

(10)

which is the action for a massless scalar field in (2+1)-
dimensional Minkowski space. The natural vacuum state
is thus the usual one associated with the set of positive-
frequency modes

(2~) 1(2~)—1/2eik x —itot

where co =
~ k~, k = (k„,k ), and we have parametrized the

world sheet with coordinates P=(t,x,y) This is in. fact
the only state that respects the tangential Poincare in-
variance of the planar domain wall.

The Poincare invariance is manifest in the two-point
function

(14)

Inserting in (14) the equal time correlation function (12)
we find, after some algebra,

(15)

where 9=0.916. . . is Catalan's constant [10]. Of course
(P, & depends on s and it goes to infinity as s~0. How-
ever, on physical grounds, we should not make the
smearing distance arbitrarily small. Just as a point parti-
cle cannot be localized within a distance smaller than its
Compton wavelength m ', there is also a natural limit
on how small s can be. Demanding that s be larger than
or equal to the Compton wavelength of a fragment of
wall contained within a region of radius s, we have

S)V 1/3 (16)

A physical quantity of some interest to us is the "dis-
tortion" of the wall, D (x,y), defined by

=2& t)),'& —2(P, (x)P, (y) &, (17)

Usually, in quantum field theory, the problem of infinities
is handled by renormalization, since one is seldom in-
terested in the value of the field itself, but here
represents the amplitude of the perturbations (the physi-
cal quantities that we are interested in) and we shall use
the smeared field operator t}tt, whenever it is needed.

We can calculate, for instance, the expectation value of
the smeared field squared

&P, (x)&= f d yf d z&P(y)P(z)& .

—1

4 g1/2

iso(t" t'}]— —

(12)

which only depends on the interval 5= (x"—x')
—(t"—t') . Note that correlations in the perturbations
at two different points decay with the distance.

Also, it is clear that (P (x) & =G(x,x) does not exist
because (12) becomes infinite in the coincidence limit. As
is well known [9],P(x) is not a well behaved operator, but
it is only an operator-valued distribution. Mathernatical-
ly, this means that given a "smearing function" f (x) one

where the vacuum expectation values are taken at equal
times. This characterizes the mean squared difference in
transverse position at points x and y. The first term in
the r.h.s. of (17) can be interpreted as the quantum fluc-
tuations at the individual points x and y, while the second
term represents the correlations between them. If the
distance ~x —

y~ is much larger than s, then
( P, (x)P, (y) & = (P(x)P(y) &. Since, from (12), the correla-
tions decay with distance, we have that in the limit
/x —

y/ ))s
—1

D (x,y) =2(P, & =( I+29) =const .
s

The overall picture is, in summary, that we have
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Poincare-invariant quantum fluctuations on the domain
wall, each small region undergoing quantum fluctuations
of its own (as demanded by the uncertainty principle), but
with perturbations being uncorrelated over large dis-
tances.

Let us now consider perturbations on a straight string.
The situation in this case will be quite different (because
of the dimensionality of the world sheet). Denoting by
P" ( A =1,2) the normal displacements in the two direc-
tions orthogonal to the string, the action for the pertur-
bations is [6]

S,= —+ J'(a.y "a'y")dx dt, (19)

where we are using t and x as parameters on the world
sheet, so now we have two uncoupled massless scalar
fields in (1+1)-dimensional flat space.

As is well known (see, e.g., [11,12]), for a massless sca-
lar field in (1+1)-dimensional Minkowski space, the
Lorentz-invariant vacuum state based on the choice of
modes

Pi, =(2m. )
' (2') ' exp(ikx —i ~k~t),

has an infrared-divergent two-point function,

(p(x", r")p(x', r') )

(20)

1
D (x,y)=

27Tp
3+21n

2$
(23)

Note that, unlike (18), the distortion (23) grows without
bound as ~x —y ~

~~. Unlike the wall, the straight
string develops unbounded distortions on very large
scales, caused by long-distance correlations of the quan-
tum perturbations. One can take the point of view that
the state defined by the mode functions (20} is an accept-
able physical state, and that the divergence of the two-
point function simply reflects the fact that at very large
distances the string deviates arbitrarily far from its un-
perturbed position.

An alternative approach is to insist that the vacuum

1 exp[ik(x" —x') i ~k~(—t"—t')] . (21)
1 dk

2~@

(We have dropped the index A in P"). In order to obtain
a finite two-point function one would have to use a
different set of mode functions, but then the quantum
state would not respect the Lorentz invariance of the
world sheet.

However, using the same positive frequency modes as
in (21), one can easily compute the quantity

(P(x",r")P(x', r') P(y", r")P—(y', r') )

(y"—y')' —(r"—r')'
ln z, (22)

4~@ (x"—x')' —(r"—r')'

which not only has a nice Lorentz invariant structure,
but is also free from infrared divergences. Moreover, Eq.
(22) is all that is needed to compute the "distortion"
D(x,y) introduced in Eq. (17). After some algebra we
find that, in the limit ~x —y ~

&&s (equal time),

state should be such that the two-point function
(0~$(x)$(y)0) is free from infrared divergences. In con-
structing such state one must necessarily break Lorentz
invariance explicitly. For instance, in Ref. [12], a vacu-
um was constructed essentially by taking the usual modes

$1, ~ exp(ikx i—cot) for
~
k

~
& L ', but changing the

modes with k &L ' so that the integral (21) would be
convergent. Here L is an arbitrarily introduced length
scale. Alternatively, one can impose periodic boundary
conditions on the string, again introducing a periodicity
scale L which breaks Lorentz invariance, or one can con-
sider a finite segment of string of length L with fixed end
points. Using either of these three methods one reaches
the same conclusion: if the "cutoff" scale L is much
larger than the separation ~x

—
y~ (and if, in the case of a

finite segment, x and y are far from the end points of the
string), then the results agree with Eqs. (22) and (23).

Finally, we should mention that the unboundedness of
(23) has no cosmological implications, because the depen-
dence of the distortion on the distance is only logarith-
mic. Even if ~x —y ~

—10 cm (the radius of our observ-
able universe), we have D(x,y}&10p, '~, which is cer-
tainly negligible for cosmological purposes.

IV. TRUE VACUUM BUBBLES

False vacuum decay may proceed through quantum
nucleation of spherical bubbles of true vacuum in a "sea"
of false vacuum [2,3]. After nucleation, the trajectory of
a spherical domain wall separating the true vacuum
phase from the false vacuum is

R2 t2 —~ 2 (24)

where R is the radius of the bubble and H=e/No [we
are considering bubbles nucleating in (N+1)-
dimensional Minkowski space, with e and 0. as defined in
Sec. II]. The bubble nucleates at t =0 with radius H
and then it starts expanding.

The solution (24) satisfies the energy conservation
equation

N —1 (N —1)
E R S a R ~V(,~ &)& P

(1—R )'
(25)

where S' "and V' "are the surface and the volume
of the unit (N —1)-sphere, respectively. The first term is
the energy of the domain wall, while the second is the en-

ergy removed from the false vacuum by cutting out of it a
spherical piece of radius R. Using S' "/V' "=N,
Eq. (25) reads R (1 —R )'~ =0, which is readily satisfied

by (24). The spherical syinmetry of the bubble also
guarantees that its three-momentum is zero, so the totaI
four-momentum of the bubble vanishes

pp=p

This is a consequence of the Lorentz invariance of (24},
according to which the bubble looks the same in all iner-
tial frames.

Equation (24) represents a hyperboloid embedded in
(N+1)-dimensional Minkowski space, and therefore the
metric induced on the world sheet is that of
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1
d&z = (

—dt +dQ(N, ))
H cost

(26)

Here dQ&N, ~
is the line element on the (N —1)-sphere,

and the timelike coordinate t( n—/2 .& t &m. /2), can be
defined through the relation

R(t)= 1

H cost
(27}

where R (t) is given by (24).
As we discussed in Sec. II, the perturbations to the

solution (24) are described by a scalar field P which has
the meaning of a normal displacement of the world sheet.
The scalar field P satisfies the Klein-Gordon equation in
N-dimensional de Sitter space [6]

—QP+m /=0, (28}

dimensional de Sitter space, which can be written in the
form

Schrodinger equation for the system of bubble plus the
scalar field, it can be shown [7] that the bubble nucleates
with all these fields in de Sitter-invariant quantum states.
This suggests that the field P describing the perturbations
of the nucleating bubble should also be in a de Sitter-
invariant state. We shall see, however, that for the par-
ticular value of the mass that we have found, Eq. (29), the
construction of a de Sitter-invariant state encounters an

unexpected difficulty.
Let us briefly review the standard quantization of a

scalar field of mass m in de Sitter space. The mode func-
tions can be separated as

ELM 9 L(t )~LM(Q) ~ (33)

where Yz~ are harmonics on the ¹phere. They satisfy
5Yz~ = —JYI~, where 6 is the Laplacian on the unit

(N 1)-sph—ere and the eigenvalues are given by
J =L(L +N —2), with L =0, 1, . . . , 00. The field equa-
tion reduces to

where 0 is the covariant d'Alembertian and

m = —NH2 2 (29)

2

j&L+(N —2) tant('pL+ J+
2 yL =0,

H cos2t
(34)

It will be also convenient, for later discussion, to intro-
duce a noncovariant parametrization in which the trajec-
tory of the perturbed bubble is given by [13]

r(Q, t)=R(t)+5(Q, t) . (30)

Here r is the distance to the origin of coordinates, 0 is a
set of angles on the sphere, R (t) is the unperturbed ra-
dius (24) and b, (Q, t) is the perturbation at time t as mea-
sured by an "external" observer at rest. The perturbation
b, is related to the proper perturbation P by a Lorentz
contraction factor [6]

b, ='}/I —R P .

From (24), we have

6=cost/ .

(31)

(32)

In Ref. [6] we studied the classical solutions to Eq. (28)
and their interpretation. Let us now address the quan-
tum theory of perturbations.

The first step is to choose a vacuum state for the per-
turbation field P, based on the symmetries of the classical
world sheet. We note that the N-dimensional de Sitter
group SO(N, 1) coincides with the group of (N+1)-
dimensional Lorentz transformations, and therefore the
de Sitter-invariant state is the only state that does not
break the Lorentz invariance of the bubble trajectory
(24). There is also another reason for choosing a de Sitter
invariant vacuum, based on the dynamics of bubble nu-
cleation. The quantum state of a scalar field interacting
with a nucleating vacuum bubble has been studied by Va-
chaspati and Vilenkin [7]. They consider a four-
dimensional scalar field and in this respect their problem
is different from ours. However, the two problems are
closely related. A scalar field in four dimensions can be
represented as an infinite set of scalar fields in a three-
dimensional de Sitter space (that is, on the unperturbed
world sheet of the bubble wall). By solving the

where here, and for the rest of this section, a dot indi-
cates derivative with respect to t. Of course, this equa-
tion has two independent solutions.

The requirement of de Sitter invariance specifies the
quantum state uniquely [14,15]. The corresponding
mode solutions are given by [16]

q&L
= AL(cost )' " R „"(sint ), (3&)

where we have introduced the combination of Legendre
functions R „=P„—(2i le )Q„with

2
1/2

(N —1) m
(36)

4 H'
N —3

2
v=L+

The normalization constant is given by
T 1/2

Al = ~ H(N —2)/2 i A,m/2

2

N —1

2

r I+N '+~
2

The two-point function for this state is [17,18]

(37)

~N —2

m ~'~
(4 )N/2

N —1
~

N —1

2 2

I (N/2)

F N —1 ~N —1 ~N 1+Z
2 2 '2' 2

(38)

where F is the hypergeometric function and Z is the sca-
lar product of the position vectors at points g and g' (see,
e.g., Ref. [17]),
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m = —s(s+N —1)H, s=0, 1, . . . (40)

which make the argument of I ((N —1)/2 —A. }a negative
integer or zero. For s =1 this gives m = —NH, which
is the mass squared of our field P. Mathematically, the
special status of the masses (40) is due to the fact that
they are eigenvalues of the Laplacian on the N-sphere
(the Euclideanized N-dimensional de Sitter space is an
¹phere of radius H ). The origin of the divergence in
the two-point function becomes particularly clear when it
is presented as an expansion in harmonics on the N-

sphere (see, for example, Ref. [20]). In Appendix A we
derive this representation using the Euclidean path in-

tegral approach. Let us emphasize that the special value
(29) that we have found for the mass is not an artifact of
the thin wall approximation. In Sec. V we shall see that
in the general case, one of the three-dimensional fields
representing perturbations of the bubble has exactly the
mass (29). One could try to obtain a finite two-point
function by taking the limit of G & as m ~NH, as it

was done in Refs. [21,22] for the case of quantum pertur-
bations around a soliton. However, in our case this gives
an anomalous two-point function which is not a solution
of the scalar field equation. This point is also explained
in detail in Appendix A.

The origin of the difficulties can be understood in terms
of the mode functions (35). Notice that the coefficients

AL with L =0, 1 diverge as m ~—NH . The reason is
that for m = —NH and I. =0, 1 the mode functions R,
become real and their Klein-Gordon norm goes to zero.
More specifically, these functions are given by

sint
—(x+i]/2(cost )

1
R) =B)

( t )(N +)/i2

(41)

where Ro and R
&

denote the functions R corresponding
to the critical value of the mass [i.e., A, =(N+ I)/2) for
L =0 and L =1 respectively, and Bo,B] are constants,
wit I&o I

= III, I

= '2'""'"I ((N+I)/2).
The resolution of the difficulties comes from the obser-

vation, inade in Ref. [6], that the modes with L =0, 1 cor-
respond to space and time translations of the bubble.
Indeed, from (32)—(35) and (41), we have

b,oo
——cost goo ~ sint,

a,~—:costyiM Y,M(n) .
(42)

Xote that A&~ is proportional to the spherical harmonics
with L =1, which correspond to small spatial transla-

Z(g, g')—=H x"(g)x„(g')= . (39)
cost cost '

Here y is the angle between the two points on the bubble.
Notice that the two-point function only depends on Z,
which is a Lorentz invariant quantity in the embedding
space.

We note that this two-point function is well defined
both for m & 0 and m & 0. However it is divergent for a
discrete set of masses

tions of the bubble. That Aoo corresponds to a time
translation can be seen by considering a small temporal
shift, q, to the solution (24). We have

r=[(t+q )+H ]'~ =R(t)+q
R (t)

=R +q sint, (43)

so A=q sint. Therefore these modes do not represent ex-
citations on the bubble, but rather correspond to going
from one unperturbed bubble to another. The infinities in
the normalization constants arise because the expansion
of P in terms of creation and annihilation operators be-
comes inadequate for the degrees of freedom correspond-
ing to the zero modes.

In Appendix B we argue that a more suitable expan-
sion is given by

P=P+g [q"Z„(t)+p"JV„(t)]Y„(Q), (44)

where P is the usual expansion in terms of creation and
annihilation operators for L & 1

X X ( LM4LM+ LM0LM )

L&1 M

(45)

In Eq. (44) the index p (@=0,1, . . . , N) runs over all
translational zero modes. The functions Z„are given by

Zo= tant,

Z, =sect, (i =1, . . . , N)
(46)

and they correspond to small temporal and spatial shifts
of the center of the hyperboloid, respectively. The "con-
jugate" modes JV„are independent solutions of Eq. (34),
which can be chosen to satisfy the Wronskian condition

Z„JV„Z„JV„=(H—cost ) /OS'

[q",p'] =i 5"' .

Now we define a vacuum state IO) by requiring

p~IO) =0,
aL~IO) =0 (L) 1} .

(47)

The first equation implies that the vacuum has vanishing
total momentum. In the "q" representation it means that
the wave functional 4 does not depend on the position of
the center of the bubble,

(no summation over p) where a dot indicates derivative
with respect to t The fun. ctions P„(Q) are real and

properly normalized combinations of the spherical har-
monics on the (N —1)-sphere. We take Po(Q) = Yoo, and

P;(0) can be chosen as the Cartesian combinations of
the spherical harmonics with L =1. The justification for
an expansion such as (44) within the canonical Hamil-
tonian formalism can be found in Appendix B. We show
also that the operators q" and p" have the interpretation
of the position of the center of the hyperboloid and total
momentum of the bubble, respectively, and they satisfy
the usual commutation relation
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(48)

Also, we have to show that ~0 & is a de Sitter-invariant
state. This is not a trivial check since the two-point func-
tion &0lp(g)p( f )~0& is ill defined, as expected from the
fact that the solution of (48) is not normalizable. To
probe de Sitter invariance we need to construct observ-
ables that do not depend on the translational zero modes.
It is then natural to look for operators that characterize
the geometry of the perturbed bubble. In Appendix C we
show that, for the particular case at hand, all the infor-
mation on the extrinsic and intrinsic geometry of the per-
turbed worldsheet is contained in the traceless part of the
extrinsic curvature K,b [see after Eq. (3}],

(51)

X cost ~RL —I/2(sint ) I (52)

which is given as a sum over modes similar to (9) but
without the L =0 and L = 1 modes.

For simplicity, let us consider the case N =2 first. In
this case, the t =const sections of the hyperboloid (24) are
just circles S' which can be parametrized by an angle
8,0&8&2m, an. d the spherical harmonics in (33) reduce
to YL (8)=(2n )

'~ exp(iBL ). The equal-time-truncated
two-point function is then

C(g, g')= g cosL(8 —8'}1 PL —1)
4~ L, =2

ab = ab N cgab

Also, we show that the two-point function

Gaba'b'(4~4 }= & 0~Kab(0)Ka b(0''}10 &

(49)

(50)

where we have replaced cr by p to remind that for N =2
the wall is a stringlike object. The Legendre functions in
(52) are given by

iL (f —A/2)
' 1/2

Rj )~2(sint )=-
(cost )

is a well-defined and de Sitter-invariant bitensor. This es-
tablishes the de Sitter invariance of the state ~0& defined
by (47).

We can compute distortions to the spherical shape of
the bubble by studying fluctuations in the truncated field

P defined in (45), which excludes the monopolar and di-
polar components of P (associated with the zero modes).
Note that the operation of truncating the field is not a de
Sitter-invariant one, it involves a particular temporal slic-
ing of the hyperboloid. The fluctuations can be comput-
ed using the truncated two-point function

X(sint+iL cost ) .

Substituting in (52) we have

1 + cosL ( 8—8')
27Tp L 2 L

+11

(L 1}cost— (53)

After some straightforward algebra, this sum can be
given in closed form as

5H'
2

5H
ln +ln(4cos t ) +(cos~F——')5H~—

4 4
2 cos2t

(54)

where we have used the de Sitter-invariant interval

5—:—(x"—x'")(x —x' )P P

=2H (Z —1)

Sec. III) and work with the smeared field operator P, . It
is eas to see from (54) that the smeared two-point func-
tion, =

& P, & at large times (i.e., F~m l2) is dominated
by the s independent term

cos(8 —8' ) cos( t t ')— —
H cost cost

1 1 H R2(t)
8~p cos2t 8~@

(56)

&6 (t)& =cos t&P (t) &=cos t lim C(8 8', t) . —
8~8'

(55)

Again, this quantity is formally divergent because of the
1n5H term in Eq. (54). To deal with the divergence one
has to introduce a smearing distance s (as explained in

evaluated at equal times. Note that 5~0 in the coin-
cidence limit.

Deformations from sphericity are characterized by the
mean squared fluctuation in the radial coordinate. From
(32),

More precisely (for s &H ') the above approximation is
valid when the radius of the bubble R(t)))H '~lnHs~.
Therefore for large times the mean square fluctuation in
the radius "freezes out" at a constant value

=
& b,, & =cos tC, (0, t }= (N =2) .

1

8~1M
(57)

Similarly one can consider the case N =3, that is, bub-
bles nucleating in ordinary four-dimensional Minkowski
space. Although for N =3 it is not possible to give C in
closed form, one can calculate the asymptotic behavior of
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5 for large times. The details are reported in Appendix
D. We find

H
3' 0

(N=3) . (58)

Both for N =2 and N =3, the relative fluctuation b, /R
goes to zero as R ~DO, so the bubble actually becomes
more and more spherical as it expands. This behavior is
completely analogous to that of classical perturbations,
studied in Refs. [13,6]. In the classical analysis, the am-
plitude at which each individual mode "freezes out" is a
constant related to the initial conditions, which were left
as free parameters. Here, given the quantum state, we
have been able to compute the particular amplitude at
which the perturbations freeze out.

o =oo(g) . (60)

Here g=H 'ln[H(r —r )'~ ), where H ' is an arbi-
trary length scale, r is the radial coordinate and ao is the
analytic continuation to real time of the so-called Eu-
clidean bounce solution [3]. Solving the functional
Schrodinger equation for the system of the bubble plus
the scalar field 4 (with suitable boundary conditions) it
was shown that, after nucleation, the resulting quantum
state for the field 4 is Lorentz invariant.

To understand how these results may be related with
the problem of small perturbations on the bubble, it is
convenient to review in some detail how the field 4 was
described in Ref. [7] (see also Ref. [23]). From (59), the
classical field equation for 4 is

V. DEFECTS OF ARBITRARY THICKNESS
—CIA+M (g)4=0, (61)

In this section we summarize and extend the results of
Ref. [7] regarding the quantum state of a nucleating bub-
ble. We show in particular that fluctuations of an arbi-
trary thick wall bubble always include a branch described
by a tachyonic field of mass m = —NH . We will also
consider thick planar walls and straight strings.

Consider the Lagrangian

where we have used (60) to express cr as a function of g.
0 denotes the d'Alembertian in (N + 1)-dimensional
Minkowski space. Note that the (=const hypersurface
are hyperboloids embedded in flat space, and therefore
they have the internal geometry of de Sitter space.
Denoting by P(a = 1, . . . , N ) a set of coordinates on the
hyperboloid, one can use the coordinates (g, P) to write
the Minkowski metric as [23]

,'[B—„cr—&o+ V(o )]——,'[B„@B"@+M(o )4 ] . ds =e &[d g+ds ] (62)

(59)

We assume that the potential V(cr) has the shape of a
double well with nondegenerate minima (the true and the
false vacua), so that the scalar field o can undergo a first-
order phase transition from the false to the true vacuum
through bubble nucleation (see Fig. 1). The field 4 is a
"test" scalar field, which is interacting with the bubble
through the term M (o.)4, where M (cr ) ~ 0.

In Ref. [7] the wave functional describing the nucleat-
ing bubble plus the scalar field 4 was studied in the serni-
classical approximation. It was assumed that the wave
functional for 0. is strongly peaked around a family of
field configurations that can be obtained as t =const
slices of the O(3, 1) symmetric solution

V(g)

@(g ga) g e(1—N)Hgl2FP(g)p (ga)
q, P

(64)

and using (63), one can easily see that the field equation
(61) separates into

d F
~ +e &M (g)P&= m — H F&,(N —1)

d g2 q q 4 q

(65)

Here dsH is the line element of N-dimensional de Sitter
space of "radius" H ', given in Eq. (26). The
d'Alembertian in flat space can then be split as

d2 + (N —1)H + H, (63)
dg dg

where H is the covariant d'Alembertian in N-

dimensional de Sitter space. Expanding the field 4 as

and

— „y,(P)+m,'y, (P)=0 . (66)

FIG. 1. The typical shape of the potential for the field o.,
with a false vacuum at o. and a true vacuum at o.+.

Here m are separation constants, and the index P labels
q 2the possible degeneracy for a given mq In summary, the

field N is described in terms of an infinite set of scalar
fields P living on the hypersurface /=0. The result of
Ref. [7] is that the bubble nucleates with all these fields in

de Sitter-invariant quantum states. The Lorentz invari-
ance of the corresponding quantum state for 4 follows
immediately.

The spectrum of masses m is determined by the fact
that 4(g, P) must have a well defined Klein-Gordon
norm. If the fields P have the usual normalization in de
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f d(F~(g)F~(g}=5 5f)ir . (67)

Equation (65) can be seen as a Schrodinger equation with
potential e ~M (g) )0, and therefore all of its "energy"
eigenvalues must be positive, i.e.,

2) (N —1) H2m

Let us now try to apply the above formalism to the
perturbations on the bubble. For this we write

Sitter space, then one must demand that the functions E~
be normalized as

m &0.
Indeed, this is what happens. Using (63) the field equa-

tion for o o(g) reads

d
e ~ oo+(N —1)H oo —V'((To)=0 .

de
Upon differentiation we find

d2
2 oo+(N'—3)H (r() 2H—(N —1)(rI)

dg
—V"(oo)e &(rI)=0,

cr =(ro(g)+5o (g, P), (68} which, in terms of the new variable

where oo is the unperturbed solution (60) and 5(r is a
small perturbation. The field equation for cr is

F—(N —3)H(/2 o'p,

gives

(72)

—Ocr+ V'(0. )=0, (69) d N —1F+ V»((r )e2HrF= —N — H2F
where a prime indicates derivative with respect to the ar-
gument. Inserting (68) in this equation, we have

—CI5o + V"(oo)5(r =0 .

This is analogous to (61), with the replacements

5o ~4,
V"(oo)~M (g) .

(70)
Therefore F is a solution of Eq. (65} with m = NH . —
From the fact that pro approaches a constant as g —+oo

and do oldr =0 at r =0 (that is g~ —ec ), it is easy to see
that F is normalizable according to (67}.

As a result, we have that

There is, however, an interesting difference. Since V(0 )

has the shape of a (nondegenerate} double well, it is clear
that V" will not be positive-definite. In fact, it will be
negative on the "hump" that separates the two minima of
the potential (that is, at the core of the doinain wall
separating the true from the false vacuum}. In Fig. 2 we
illustrate the typical shape of the effective potential of the
Schrodinger equation V,(r=e ~M (g), for M (g)
= V"(oo(g) ), where V((r ) is a double well such as the one
depicted in Fig. 1. Notice that there is a region in which
V,(t (0, so the Schrodinger equation (65} may have some
bound states with negative energy, and we may even have

V
eff

m = —XH2 2
q (73)

o(g, P}=(ro(g+ Ae ~(I}o(P)), (74)

from which we see that Po corresponds to excitations on
the bubble that do not change its profile crp, but only shift
it along the g direction in a position- and time-dependent
way. (This kind of excitations is the only one that one
needs to consider in the zero thickness limit, as we saw in
Sec. IV.)

Since the mass (72) corresponds to a bound state of the
Schrodinger equation, it is a nondegenerate eigenvalue,
and there are no other excitations (i.e., other F's) with the
same mass. Also, it can be shown [3] that ao & 0, so that
F)0. Since F has no nodes, it corresponds to the lowest
energy eigenstate. All the other masses must satisfy

m & NH (qAO) . —

is the inass of one of our fields P describing the excita-
tions of the bubble (even for walls of finite thickness}. Let
us denote this particular field by Po(P). To interpret (I)p

geometrically we write, from (71) and (64)

5(r —Ae(1 N)Hg/2F(g)$ (P—}

where A is a small parameter. It is easy to check that, to
linear order in A, the perturbed solution o =o.p+5o- is
equivalent to

FIG. 2. The typical shape of V,(t(g) for a potential V(o ) such
as the one represented in Fig. 1. The width of the region in
which V,&&0 is of the order of the thickness of the wall. The
core of the wall is in the vicinity of /=0.

In principle, some of the m may be in the interval—NH &m &0. Perhaps it would be interesting to in-
vestigate this possibility in some particular model, since it
would involve fields of tachyonic mass in de Sitter space
for which a de Sitter-invariant two point function is well
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defined.
To close this section, we will show that the results of

Sec. III, concerning the behavior of quantum fluctuations
on planar walls and straight strings, also apply in the case
when the defects have a finite thickness.

For the case of domain walls one can start with a La-
grangian given by the first term in Eq. (59) where, now,
V(o ) is a double-well potential with degenerate minima.
For a planar domain wall parallel to the (x,y) plane, the
unperturbed solution has the form

ter space, which describes the inflationary universe, as a
hyperboloid embedded in a five-dimensional Minkowski
space,

(Xo)2+(X 1 )2+(X2)2+(X3)2+(X4)2 H2 (79)

Here H is the expansion rate of the inflationary universe
and X (a=0, . . . , 4) is the position vector in the embed-

ding Minkowski space. The metric on the hyperboloid
can be written in the flat Friedmann-Robertson-Walker
(FRW} form

o =cro(z) . (75) ds = dt +—e2 '(dx) (80)

5a. =g F~(z)P (x,y, t),
q, P

the equation for the perturbations separates into

d'F~
+ V"(oo)F =m Fz'

and

(76)

(77)

Writing the perturbed solution as o =oo(z)+So the
equation for the perturbations is just Eq. (70), with oo
given by (75). Writing

where the coordinates (t, x) are defined by

t =H 'ln[H(X +X )],
x'=H 'X'(X +X )

' (i =1,2, 3) .

Conversely, using (81) and (79),

X0=H 'sinh(Ht)+ e
Hx

2

X =H 'cosh(Ht) — e
Hx

2

(81)

(82)

QP (x,y—, t)+mqgq(x, y, t)=0 . (78)
X'=x'e H'

Here, as before, m are separation constants, and the
functions F~ are normalized according to (67). It is then

easy to see that m =0 is one of the eigenvalues of the
Schrodinger equation (77), with eigenfunction F=oo(z).
This corresponds to perturbed solutions of the form

o =oo[z+ Ago(x, y, t)],
which represent transverse wiggles on the wall that do
not change its profile oo. This establishes that the results

that we obtained in Sec. III for infinitely thin planar walls

also apply to the thick wall case. Using the same argu-
ments that we used for the case of the vacuum bubble we

can see that all the other excitations must have I & 0.
For the case of strings of finite thickness the analysis is

not as simple, since at least one complex scalar field plus

gauge fields are involved. However, it has been shown by
Vachaspati and Vachaspati [24] that transverse waves of
arbitrary shape (and amplitude) traveling along a straight
string at the speed of light are exact solutions of the cou-

pled field equations for the scalar and gauge fields. This
indicates that, in the linear approximation, transverse ex-

citations on a straight string of finite thickness will also
be described by a massless field ["living" in (1+1)-
dimensional flat space].

VI. STRINGS AND WALLS IN DE SITTER SPACE

The world sheet of a circular loop of string after nu-

cleation is given by [4]

(Xo)2+(X 1 )2+(X2)2 H —2

X =X =0,
(83)

which is a (1+1)-dimensional hyperboloid of maximal
"radius" embedded in the hyperboloid (79). The internal

geometry of this world sheet is, of course, that of (1+1)-
dimensional de Sitter space. To see what the string looks
like in the FRW coordinates (t,x'), one uses (82) and (83)
to find

+y2=H 2( 1+e 2Ht)—
z=0,

(84}

R (t)=H '+e '+1 (85)

centered at x =y =0.
Different configurations for the string after nucleation

can be obtained by applying de Sitter transformations to
the solution (83). These transformations result in arbi-

trary spacetime translations and rotations of the loop [4].
In particular, it is instructive to consider the rotation

where we have adopted the notation x'=(x,y, z). This is

a loop of physical radius

Here we are going to consider quantum perturbations
on circular loops of string and spherical domain walls

that can spontaneously nucleate during inflation [4].
Also, we shall comment on the case of a straight string in

de Sitter space, which has received some attention in the
context of string driven inflation [5]. As we shall see

below, both cases are very closely related.
We shall use the standard representation of the de Sit-

X ~X cosO+X sinO,

X ~X sin0+X cosO,

which transforms the hyperboloid (83) into

—(X ) +(X') +(X cos0 —X sin0) =H

X =0, X = —X cotO.

(86)
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Note that for 0=~/2 w'e have X =X =0 and R~oo.
Therefore a straight string lying on the x axis is obtained
as the limiting case in which the radius of the loop goes
to infinity.

Let us now turn to the problem of small perturbations
on the solution (83). The perturbed solution can be
parametrized as

(Xo)2+(Xl)2+(X2)2—H —2
y y ( g I 2)

(88)
X =p, , X =(t2.

The fields (j}z(P) correspond to perturbations in two
directions orthogonal to the unperturbed world sheet [6].
To clarify their interpretation, one can use (82) to find (to
linear order in Pz )

(P)=e 'z =zphi (P),

((»(P)= —(r —R )
HR

(H2R 2
1 )1/2

(89}

Here r(P) =e '(x +y )' is the perturbed physical ra-
dius, and R is the unperturbed one, given by (85). There-
fore, the field Pi represents proper perturbations trans-
verse to the plane of the loop, while the field
represents, essentially, perturbations of the radius.

The effective action for the perturbations is given by
[6]

s&= f v'g(g y~, y~b 2H y~y~)d g, (90)

where g,b is the metric on the unperturbed world sheet.
The perturbations behave as two uncoupled scalar fields
of mass m = 2H in (1+—1)-dimensional de Sitter
space. This is the same mass that we obtained for the
case of a vacuum bubble, so here we can simply borrow
from the results of Sec. IV (with N =2).

In the present case there will be three zero modes for
each field. For P„one of them (L =0) corresponds to
translations of the loop in the z direction and the other
two (L =1) to changes in the orientation of the loop.
For Pz, one of the zero modes corresponds to time
translations (L =0) and the others (L =1) to spatial
translations in the plane of the loop. The six zero modes
correspond to the six independent de Sitter transforma-
tions that do not leave the world sheet (83) invariant.
However, the de Sitter group, O(4, 1) is a 10-parameter
group. The remaining four independent transforrnations
leave the unperturbed world sheet invariant. If we think
of O(4, 1) as the Lorentz group in the embedding five-
dimensional Minkowski space, then these four transfor-
mations are the 3 Lorentz transformations in the
(X,X',X ) space plus rotations in the plane (X,X ).

The only quantum state for the perturbations Pz that
shares the four-parameter syrnrnetry of the world sheet is,
just as in the case of a vacuum bubble, the de Sitter-

In the FRW coordinates this is seen as a circular loop in
the z=O plane, centered at (x,y)=(O, H 'tan8), and
with physical radius

R (t)=H +e '(1+tan 8)+1 .

z',,„—= (((t},(r))'& .

Using (56) we have (for R ))H ')

HR
ZPhys ~ /2&K.p

(91)

(92)

The ratio of the mean fluctuation amplitude to the loop
radius is

ayR -Hp, (93)

This result differs from that of Ref. [4), where this ratio
(at the time of formation} was estimated to be of order
H p . The argument that was used there, however, in-
volved only the I. =0 mode, which does not change the
shape of the loop and therefore should not be included.

After inflation, the nucleated circular loops will start
collapsing and, in fact, they would all form black holes
were it not for the perturbations h. For a given loop to
form a black hole we need b /R ~4m.Gp [25,26]. Taking
HIJ, '~ —1 (this seems to be the interesting range of pa-
rameters [4]) we see, from (93), that the probability of
black hole formation will be very small (unless p is close
to the Planck scale). An estimate of this probability and
a discussion of the cosmological implications of the nu-
cleating strings scenario will be reported elsewhere.

Spherical domain walls nucleating during inflation can
be treated in a similar way. The unperturbed world sheet
is (2+1)-dimensional de Sitter space and the proper per-
turbations in the direction normal to the world sheet are
represented by a scalar field P of mass m = 3H living-
on the unperturbed world sheet [6]. Therefore we can use
the results that we have obtained in Appendix D for the
case of a vacuuin bubble (N =3). From (D6) we have

(94)

An important difference with the case of strings is that
the Schwarzschild radius of a wall grows quadratically
with R, instead of linearly. As a result, walls with radius

1/2

R ) (8m.Go. )
37T C7

wi11 all collapse to black holes.

VII. CONCLUSIONS

We have developed a quantum theory of fluctuations
on topological defects, such as vacuum domain walls and
strings. Fluctuations are represented by a scalar field P
that "lives" on the unperturbed world sheet of the defect

invariant state. [Here, de Sitter invariance is understood
in the (1+1)-dimensional sense. ] The construction of
such state was discussed at length in Sec. IV. Here, as we
did in the case of vacuum bubbles, we shall use G [see Eq.
(52)] to estimate the deviations of the loop from circular
shape. The average radial and transverse fluctuations are
given, from (89), by

H R —15 '=—((r —R )') = ((P,(t) }')
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and has the meaning of a normal displacement of the
world sheet. To avoid ultraviolet divergences, it is often
necessary to smear the field P over some distance s [see

Eq. (13)]. The amplitude of the fluctuations can then be
characterized by (P, ), where P, is the smeared field.

Another quantitative measure of the fluctuations is given

by the "distortion, "
D'(,y)=((P, ( ) —P, (y))'), (95)

where the expectation value is taken at equal times. We
have applied our formalism to a number of different

cases. Here we shall summarize our main results ~

(1) For planar walls and straight strings, P is a massless

field in an N-dimensional Minkowski space, where N =3
and N =2 for walls and strings, respectively. In the case
of walls, we find

(P, ) =1.4(&&) (96)

5))0- (97)

where cr is the wall tension and s is the smearing distance.
The wall can be treated semiclassically if the amplitude of
the fluctuations is much smaller than the wall thickness 5
for s ~ 5, that is, if

turbed world sheet is an N-dimensional de Sitter space,
with N =3 for walls and N =2 for strings. The field P
then has a tachyonic mass,

m 2= —NH2 (100)

where H is the expansion rate of the de Sitter space. For
an expanding vacuum bubble H is determined by the wall

tension and the false vacuum energy density, while for
strings and walls nucleating during inflation the expan-
sion rate on the world sheet is the same as in the back-
ground space.

In order to preserve the Lorentz invariance of the ex-

panding bubble, the quantum state of the field P should

be de Sitter invariant. The construction of a de Sitter-
invariant state for P requires careful treatment of the
lowest modes (L =0 and L =1) in the expansion of the
field operator. These modes do not correspond to defor-
mations of the bubble, but to infinitesimal translations of
the unperturbed world sheet as a whole.

Using the de Sitter-invariant quantum state, we have
calculated the rms amplitude of the fluctuations in the
bubble radius, E [b, is related to P through Eq. (32)]. At
large times 6 approaches a constant value,

For walls appearing in the scalar field theory with the po-
tential

H
3' 0

(101)

V(y)=A, (q&
—r) ) (98)

O. -A, ' g, 5-A, '
g ', and the semiclassical approxi-

mation is justified in the weak coupling limit, A. && 1.
We have also calculated the distortion for a planar

wall. For points separated by a distance much greater
than the smearing length s, the distortion is independent
of the separation, D =2(P, ). The reason is that quan-

tum fluctuations are uncorrelated at large distances.
(2) In the case of quantum fluctuations on straight

strings, the picture is entirely different. With the usual

choice of the positive-frequency mode functions (20), we

find that (P, )~~. The distortion is finite, but grows as

the separation of the two points is increased,

H
R v'8np. (102)

and the relative fluctuation 5/R goes to zero. Thus the

bubble becomes more and more spherical as it expands,
in agreement with the classical behavior (see Refs. [13,6]).
Similar results are obtained for expanding holes in a pla-

nar domain wall.
(4) A different behavior of the fluctuations is found for

a string loop or a spherical wall nucleating in de Sitter

space. There, the fluctuations grow with the loop radius,

and the relative distortion approaches a constant. We

have

D (x,y)= ln, ~x
—y~))s,z 1 x —y

77P s
(99)

for a string loop, and

(103)

indicating that at large distances the string deviates arbi-

trarily far from its unperturbed position. The growth of
D with distance is only logarithmic, and the unbounded

quantum fluctuations (99) are unlikely to have any

cosmological effect. Even if
~
x —y ~

is equal to the
present Hubble length, the amplitude of the fluctuations
is D ~ 10@ ' and cannot much exceed the string thick-
ness.

The infrared divergence in (P, ) can be cut off if one

chooses a different quantum state for P, defined by mode
functions that are different from (20) at wavelengths
above some cutoff length L. If the cutoff is introduced,
the behavior of quantum fluctuations on scales much
smaller than L remains unaffected, and the distortion is

still given by Eq. (99) for L )& ~x —y ~

)&s.
(3) We have studied several cases in which the unper-

for a spherical wall.
(5) The results summarized so far have been obtained

neglecting the wall and string thickness. In the case of a

thick domain wall, the fluctuations can be described by

an infinite number of scalar fields with masses determined

by eigenvalues of a certain operator. We have shown,

however, that for an expanding vacuum bubble one of the

fields has exactly the mass (100). This field describes dis-

tortions of the bubble shape, while all the other fields,

which have larger values of m, describe internal excita-

tions of the bubble wall. Since the mass of the field is still

given by (100) the results obtained for a thin wall bubble

[such as Eq. (101)] are applicable to thick wall bubbles as

well. Also, the results obtained in Sec. III are applicable

to thick planar walls and straight strings.
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Cosmological implications of the results presented here
will be discussed in a separate paper.
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APPENDIX A: EUCLIDEAN GREEN'S
FUNCTION AND ANOMALY

In this appendix we use the path integral approach to
derive the Euclidean Green's function for the perturba-
tions on a vacuum bubble. For the case X =2 and work-
ing in units in which H =1 the Euclidean version of (24)
is the unit 2-sphere. Rescaling the bubble tension into
the definition of the fields (o''i P~P), the action for the
perturbations is

Sz = ,' f &—g(g'bP, P b+m'P ) d g

—5+m 0, (A 1)

f2)PP(Q }P(Q')e

faye " (A2)

where m2= —2,g,& is the metric on the two sphere, dQ
is the differential solid angle and 5 is the Laplacian on
the sphere. The Green's function is given by

G', (Q, Q )=(y(Q)(t(Q ))

which is a solution of the field equation with a delta func-
tion source

( —b, +m )G 2(Q, Q')=Q YrM(Q)Yr'M(Q')
LM

=5(Q —Q') .

Although the contribution of the negative mode to G 2

remains finite, the contribution of the L = 1 modes

Gd;„Y1M(Q}Y1M(Q } 3 Z
4~ 2+m'

becomes divergent as m —+ —2. Here Z =x(Q }
~ x(Q')=cosa, where a is the angle between Q and Q'.
This is the Euclidean analog of the variable Z used in Sec.
IV. Since the spherical harmonics with L =1 do not cor-
respond to excitations on the sphere, but to infinitesimal
translations of the unperturbed solution as a whole, it
seems natural to drop them from the expansion of the
field and, hence, from the Green's function. Upon so do-
ing we obtain the new object

G ~(Z) = lim (GE Gdiv)
m

m ~ 2

However, it is clear that

( —5—2 )G~+= 5( Q —Q') — Z,3

4m

and therefore GE is not a Green's function. Using the
identity

Substituting the expansion (A3) into (A2), the path in-

tegral is reduced to Gaussian integrations. Using stan-
dard manipulations one finds [18]

YiM(Q}Yi'M(Q')
G L(L+1)+m

Expanding the field in spherical harmonics

4«) =&CcM YrM«»

with CI.M=CI* M, we have

SE =
—,
' g / Cl M / [L (L + 1 ) +m ] .

LM

(A3)

2L+1
X Y.M(Q}Y:M(Q }=
M 4m

where I'I are the Legendre polynomials, we can write

1 2L+1
42r i~i L(L+1)—2

(Notice that now we are expanding the field in terms of
eigenmodes of the Laplacian, and not in terms of solu-
tions of the field equation. ) For m = —2 we see that the
L =0 mode gives a negative contribution to the Euclide-
an action. We call this a negative mode. Also, we see
that the three L =1 modes are zero modes. Note that
L =0, 1 here do not have the same meaning as in Sec. IV.
Here we are dealing with spherical harmonics on the
world sheet, as opposed to harmonics on the spatial sec-
tions of the world sheet. The negative and zero modes
make the path integral ill defined for m = —2, but we
can evaluate it for su%ciently large m and then analyti-
cally continue the result back to m = —2. The measure
in the path integral can be written as [3]

One can check (by using the orthogonality relations for
Pr ) that this is the Legendre expansion of the function

GE — —'Z+1+Z ln
4m. 2

(A4)

G 2(Z)=G '2(Z)— 1
m m 4~@

Z+1+Z ln
2

The analytic continuation of GE to real time simply
amounts to using the definition (39) for Z.

Equation (A4} can be compared with the liinit of G

[Eq. (38)] as m ~2H . Following Ref. [27], we expand
the hypergeometric function in (38) around m = 2H—
(this corresponds to A. = —,') [10],

2)P=g dCIM .
LM +0(—,

' —
A, ), (AS)
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where

Gdiv(Z)
4m.iM ( —' —

A, )
(A6)

(we have replaced o by iu to remind us that for N =2 the
domain wall is a stringlike object). In terms of the vari-
able Z (and under the assumption of de Sitter invariance)
the Klein-Gordon operator can be cast into the simple
form [17]

to the zero modes (see Refs. [19,28,29]}. We present an

alternative expansion which will allow for the definition

of a de Sitter-invariant state for the quantum fluctuations
on vacuum bubbles.

The situation is analogous to that of a quantum
mechanical harmonic oscillator. The expansion of posi-
tion and momentum (x and p) in terms of creation and
annihilation operators becomes inappropriate in the limit
when the frequency of the oscillator w goes to zero (the
free particle case). In the Heisenberg picture we have

[
— +ttt ]=(Z —1) +NZ +m H

dz2 dz

(A7)

x(t)= 1
(ge

—icot+ g t +in)t)
&2Mw

' 1/2

It is seen that the divergent part of G 2 is a solution of
the scalar field equation

Mmp(t)= i—
2

(ge
—icdt g 'te +iult)

(
—0—2H )G '2(Z)=0,

so one might naively expect that simply by dropping G '2

from G 2 one would get a well behaved de Sitter-

invariant two-point function,

where M is the mass of the particle. Of course, such ex-
pansions are invalid in the limit m~0, reflecting the
physical fact that for a free particle the spectrum of the
Hamiltonian is continuous and the number operator is
not an adequate tool. Instead we can consider the expan-
sions

G„—: lim [G &
—G 'i ]

m ~—2H
x (t) =xo+pot,

p(t)=pa,
(B1)

Z+1+Z ln4' 2
(A8)

However, from (A7) and (A8), one can see that this is not
the case, since G~ is not a solution of the field equation

2
—3H

( — —2H )G„= ZXO .4' (A9)

Note that G~ is essentially the analytic continuation of
GE. The difference between both expressions is propor-
tional to Z, and it stems from the fact that the divergent
term that we have dropped from G 2 includes not only

the pole in ( —,
' —

A, ), but also a finite part proportional to

Z.
The same "anomaly" (A9) can be obtained without an

explicit calculation by considering the limit A,~—, of the

equation

y XLM(t }+LM(~} (B2)

where YLM are real and properly normalized indepen-

dent combinations of the usual spherical harmonics. For
L)1 wetake

+LM(t )=~ '"[&LMqL(t }+&LM'PL(t }] (B3}

where the new operators po and xo satisfy the commuta-
tion relation [xo po] =i. At the classical level, xo and po
have the interpretation of the initial position and momen-
tum (and therefore are constants), hence (Bl) can be re-

garded as a Hamilton-Jacobi canonical transformation, in
which the new canonical variables are constants of
motion.

Similarly, we have to reconsider the expansion of the
field P. Instead of (8) we shall write

(
— +m )G p=O, (A10)

as it was done in Ref. [27] for the massless minimally

coupled case. Noting, from (36), that

as usual, with yL given by (35). However, for the lowest

modes we need an expansion analogous to (Bl). Let us

consider, for instance, the L =0 mode. We write

m = —2H +H ( —'+k)( —' —)i, ) yo(t ) =q Zo(t )+p %0(t ), (B4}

and using (A6) one finds

—3H
(
— —2H ) lim G,(Z) = Z,

m 2H2 3&P

in agreement with (A9).

(A11)

where Zo is the zero mode solution that we can read off
from (42),

Z, =tant .

A'0 is a second solution of (34), which can be chosen to
satisfy the Wronskian condition

APPENDIX 8: QUANTIZATION OF ZERO MODES Z, W, —Z, W, =(a cost P-'Z~S'"-", (B5}

In this appendix we argue that the expansion of the
field P in terms of creation and annihilation operators is

not appropriate for the degrees of freedom corresponding

where S' " is the surface of the unit (N —1) sphere-
The explicit form of JUL(t ) depends on the dimension N
and is unimportant here. Explicit expressions can be
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which, combined with (84), suggests the expansion

mo=o'(K cost) [q Zo+p JVO] . (86)

Equations (84) and (86) implement a canonical transfor-
mation between yo, ~o, and the new variables q,p .
Indeed, the canonical commutation relation

p ]='
follows from go, no] =i and the condition (85). Also, one
can check that the new canonical Hamiltonian for these
variables vanishes identically, indicating that q and p
are constant operators (as expected).

Classically, the constants q and p have a simple inter-
pretation. We saw in Eq. (43) q is the temporal coordi-
nate of the center of the "shifted" hyperboloid represent-
ing the world sheet of the bubble. Also, using (85) and
(25) one can see that p is equal to the energy of the bub-
ble (p =E, to linear order).

In the same way we can treat the L =1 modes. We
write

y,M(t ) =q Zi(t )+p A'i(t ),

found in Ref. [6] for N =2 and N =3. Here and
throughout this appendix, a dot indicates derivative with
respect to t.

From the action (6) one can find the canonical momen-
tum associated with the coordinate ELM

BL —2—N=cr(H cost )

APPENDIX C: DE SITTER INVARIANCE OF
QUANTUM FLUCTUATIONS ON A VACUUM BUBBLE

In this appendix we show that the quantum state
defined by (47) is de Sitter invariant. As we mentioned in
Sec. IV, the de Sitter invariance cannot be checked
directly in the field two-point function (0~$(g)$(f )~0)
since this quantity is ill defined. Instead, we have to con-
sider the two-point function for operators describing the
geometry of the perturbed world sheet.

The geometry of the world sheet is characterized by
the extrinsic and intrinsic curvature. The extrinsic cur-
vature is defined by

Kgb = dgtt~dbx (Cl)

For the unperturbed world sheet we have n"=Hxi' (this
is easily seen in Euclidean space, where the world sheet is
a sphere of radius H '}, so

K,b
= HB,x"—dbx„= Kg,b .— (C2}

For the perturbed world sheet we have x "=x"+n "P,
and the perturbed extrinsic curvature is

Kab Kab +~Kab

where 5K,b =V, dbms K,'K,bp
—(see Ref [6]). Co. mbining

with (C2) we have

K.b =K.b+ [V.aby K'g.by] .—

Using the field equation for P one finds

where the "zero mode" solution

Z, =sect
abg g abg g~2

where g
' is the inverse of the perturbed metric

(C3)

can be read off from (42}, and JV& can be found from (85).
Classically, q are the spatial coordinates of the center of
the bubble and p are the components of the three-
momentum. Quantum mechanically, we will have the
commutation relations

[
M pN] igMiV

To summarize, we have expanded the field as

0 =0+& [e"Z„+p"~„]&„ (88)
P

where P is the usual expansion in terms of creation and
annihilation operators for L & 1 and we have used an ob-
vious notation in which the index p (p=0, 1, . . . , N} runs
over all zero modes. Here, Po = Yoo(II ), and
'P, (i =1, . . . , N) can be. chosen as the Cartesian real
combinations of the spherical harmonics with L =1,
which are simply proportional to the components of the
unit normal &' expressed in spherical coordinates. The
position and momentum operators satisfy the canonical
commutation relation

[e"p ]=if"".
The expansion (88) is used in Sec. IV to define a de
Sitter-invariant state for the fluctuations on the vacuum
bubble.

K.', =V,a,y+ K'gy. (C4)

Let us now consider the internal geometry. For 1V =2
and 1V =3, the basic object is the Ricci curvature R,b.
We showed in Ref. [6] that the Ricci scalar %=R;, is not
affected by the perturbations P as long as the equations of
motion are satisfied. So, again, we only need to consider
the traceless part. From Ref. [6]

R,b
— Ag, b

=—H(N 2)[V,Bbp—+H2g, b—g]

H(N —2)K,b, —

implying that all the information on the intrinsic and the
extrinsic curvature is actually contained in K,b.

Now we want to check the de Sitter invariance of the
two-point function

g b (1+2K/)g b

Equation (C3) shows that the trace of the extrinsic curva-
ture is the same for the perturbed and the unperturbed
solution, so we need only consider the traceless part

Kab =Kab + gab

From the preceding equations we find
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G...,,,(g, g') =—(0IZ.', (g)rC.', (g')
I
0 &

=«IQ. [0(C)IQ. [0(C')]l0&,

where we have introduced the operator notation

Q,b
—=V, Bb+H g, b .

We recall that from Sec. IV, the field operator can be ex-
panded as

P=P+g [q"Z„(t)+p"JV„(t)]P„(Q),

where P is the truncated field (45) and we use the notation
in which the index p runs over all zero modes. It is easy
to check that Q,b annihilates the zero modes

whereas G is given by a similar sum but without the
L =0 and L =1 terms. Therefore, all we have to show is
that

Q.b Q. b»m g &4M(k)ELM(k') =o
L=0, 1 M

(C7)

where @=[A,—(N —I)/2], with A. defined in Eq. (36)
(clearly, @~0 as m ~ NH—}. From (37), the normali-
zation constants AL for the modes L =0 and L = 1

behaves like e ', whereas the functions R, are analytic
in k, and therefore in e. As a result we can expand, for
L =OandL =1,

PLM=e ' [fLM(t)+ELM(t)+ . ]YLM(Q) . (C8)

As we have repeatedly emphasized, the term

Q,b [Z„(t ) tt„(Q ) ]=0, (C5)
fLM(t) YLM(Q) (C9)

for all p. This is expected, since for a translated hyper-
boloid the traceless part of the extrinsic curvature is still
vanishing. Also, the vacuum satisfies p" IO& =0. As a re-
sult,

Q. [0110&=Q. [kll0&

and we have

G,b, b(g, g')=Q, b Q, b [G(g,(')],
with G defined in (51}.

The de Sitter invariance of G,b, .b is not manifest in the
previous equation. However, G,b, ,b, will be (by construc-
tion) a de Sitter-invariant bitensor if we can prove the fol-
lowing equality:

Q. 'Q.

represents a zero mode. The other term, gLM FLM is not a
zero mode (it is not even a solution of the field equation).
To check Eq. (C7) we have to multiply (C8) by its com-
plex conjugate and sum over L =0, 1. The result is

T,= g g [~fLM(t)fL~M(t ')+fLM(t)gLM(t ')
L=0, 1 M

+fLM(t ')gLM(t )]YLM(Q) YL~M(Q')+ 0(e) .

Since Q,b acting on (C9) is zero, it is clear that

lim Q b'Q'b [T,]=0,
@~0

hence establishing the truth of (C7). This completes our
proof.

lim Q.b&& Q~ b [G,(Z}],
m 2~ NH2

(C6)
APPENDIX D: DISTORTION OF VACUUM

BUBBLESFOR N =3

where G, is given by Eq. (38).
We recall that G 2 is given as a sum over all modes, of

the form

y ELM(k)ELM(r ) ~

LM

In this appendix we derive Eq. (58), which gtves the
asymptotic behavior, for large times of the fluctuation in
the radial coordinate of a vacuum bubble (for the case
N=3}.

From Eq. (55), we need the equal time two point func-
tion G, which, from (9) and (33)—(37), is given as

G(Q, Q'; t') = cos t g CL (cosy)(L+ —,
'

) IRL(sint )I8o I L+1+A, (Dl)

Here y is the angle between 0 and 0', and we have used the relation
L

L +1) g YLM(Q}YLM(Q'}=CL (cosy),

where CL are Gegenbauer polynomials. The parameter A. is related to the mass through Eq. (36), and we have A, ~2 as
m —3H .

As explained in Sec. IV, the terms with L =0 and L = 1 have been dropped from the sum over modes because they do
not correspond to deformations of the bubble, but to temporal and spatial translations of the unperturbed bubble as a
whole. The sum (D 1) can be cast into the form

0=G,— cos t — IR o (sint ) I
+ ', cosy —IR

&
(sint ) I

H 2 1 I(1—A, ) g . q, I(2—A. )
m' 8o 2 I (1+A.)

(D2)
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where G 2 is a sum over modes similar to (Dl}but including the L =0 and L = 1 terms. G 2 is given in closed form by

Eq. (38), with N =3. The Legendre functions in (D2) are

R k( t )
~(~+ 1 ) (SA./2

'
A,S—

A, /2)

i 1(A+1)R, sint =—
er A. —1

1+sint S~t+ ' ~ 1 —s& S

with S=(1—sint ) /( 1+sint ).
Expanding (D2) in the neighborhood of A, =2 and then taking the limit as A, ~2 we find, after some lengthy algebra,

2~

( ) — —+ i + + — .— tant —— lnS-
2+o 6 2 2 2g 0 3 2sjnt 2

(D3)

where the anomalous Green's function Gz is the analog of (A8} for N =3

G„(Z)—: lim G 2(Z)+
0 Z

m ~—3H 21T tr
(D4)

Expanding the hypergeometric function in (38) in powers
of its argument, it is easy to check that the second term
in the right-hand side of (D4) exactly cancels the pole of
G 2 as m ~—3H, so G„ is well defined.

The mean fluctuation in the radial coordinate is given

by [see (55)]

(5 (t))=cos t(P (t))=cos t lim C(y, t), (D5)
y 0

[recall that G depends on y through Z, defined in (39)].
As usual, ts is formally divergent in the coincidence limit
(because Gz is), so one has to smear it out over a region
of radius s in order to find a finite answer. They key ob-
servation is that the two-point function G„(Z) is a de
Sitter-invariant function, so at equal times it only de-
pends on the geodesic distance between the two points.

As a result, if we smear C(y, t ) over a region of constant
radius, the contribution from Gz remains time indepen-
dent. It is then easy to see from (D3) that at large times
(t ~trl2), the smeared two-point function 0, is dominat-
ed by the term

C, (0,t)=
3 tT cos t

HR (t}
377 0'

(D6)

and from (D5), Eq. (58) follows.
Note that Eq. (58) could also have been guessed on di-

mensional grounds. The factor cr ' comes from the nor-
malization of the modes [see Eq. (8)]. Once cr

' has been
factored out from the two-point function, we are left with
a field theory in de Sitter space, in which the only dimen-
sionful parameter is H. Since 5 has dimensions of
length squared, we must have 6 -Ho
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