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Cosmological constraints on cosmic-string gravitational radiation
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The primordial nucleosynthesis and pulsar timing noise constraints on cosmic-string gravitational ra-
diation are computed. The computation consists of a numerical integration of the Friedmann-
Robertson-Walker Einstein equations which describe a universe containing radiation, dust, and a "one-
scale"-model cosmic-string component. The procedure takes into account the effects of the annihilations
of massive particle species on the equation of state of the cosmological fluid. An expression for the
power emitted per mode of oscillation by a cosmic-string loop, suggested by both analytic calculations
and recent numerical simulations, is used. The results of the computation are spectra of the cosrnic-
string gravitational radiation at nucleosynthesis and at present. Comparison of these spectra with the
observed bounds on pulsar timing noise, and the observed bound on the effective number of light neutri-
no species permitted by the model of nucleosynthesis, allows one to exclude a range of values of p, the
cosmic-string linear mass density, for certain values of a, the size of a newly formed loop as a fraction of
the particle horizon radius. We find constraints to IM which are more restrictive than any previous limit.

PACS number(s): 98.80.Dr, 98.70.Vc

I. INTRODUCTION

Cosmic strings are tubes of the quanta of a grand
unified field, which may have formed during a phase tran-
sition in the early Universe. The properties and behavior
of cosmic strings are well detailed in the published litera-
ture [1—4]. During the past ten years, a great amount of
analytical and numerical work has been undertaken to
answer the question "can cosmic strings explain the for-
mation and growth of galaxies and clusters?" (for exam-
ple, see [3,4]). Parallel to this effort, periodic checks have
been made to assure that successful cosmic-string
scenarios are consistent with observation. These checks
require that the phenomena associated with the presence
of a cosmic-string network lie within the tolerances of
three of the most important observations of the standard
cosmology: (1) the isotropy of the microwave back-
ground radiation; (2) primordial nucleosynthesis; and (3)
limits on a stochastic gravitational-radiation background
observed through pulsar timing residuals.

The primary mechanism for energy loss by a cosmic-
string network is through the formation of loops, which
in turn emit gravitational radiation. A network of cosm-
ic strings, through this process, will contribute both to a
stochastic spectrum of background gravitational radia-
tion, leaving a (rather indistinct) signature of noise in the
measurement of pulsar periods, and to the radiation-
driven expansion of the Universe. These effects have
been translated into the two tests of cosmic strings which
will be considered in this paper. These two tests will now
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be briefly described.
The presence of gravitational radiation in the Universe

will cause a slight distortion of the signal from pulsars,
which will be observed on Earth as timing residual noise;
an upper limit to the amount of gravitational radiation
consistent with observed timing noise has been formulat-
ed by Stinebring et al. [5]. They conclude that the gravi-
tational radiation in the logarithmic frequency intervalfE[f,b, ef,b, ], where f,b, =(7.1 yr) '=4.5X10 Hz,
is constrained at the present time to contribute a fraction
smaller than

dPgr &4X10 h
pcrit df

of the critical energy density. Here, the critical energy
density is p,„t=3e H ti/8n. G, where the Hubble constant
is H0=100h km/secMpc. The frequency f,b, is the
lowest-frequency wave observable in the 7.1 years of ob-
servation.

The second constraint on cosmic strings arises from
the highly successful "standard model" of primordial nu-
cleosynthesis, based on the standard model of particle
physics. In this framework, a certain number of light
neutrino species, N„are allowed by a successful model of
primordial nucleosynthesis [6—9]. The presence of excess
amounts of gravitational radiation at the time of nu-
cleosynthesis will produce the same effects as an excess
number of light neutrino species: an increase in the rate
of expansion, leading to an overabundance of helium, in
disagreement with observation. Thus, recent calculations
[7] require N„~ 3.4, which may be written as a constraint
on the cosmic-string-produced gravitational-radiation en-
ergy density at the time of nucleosynthesis-:
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7(N, —3)
0 ~ 01+3X —'+2X —'

8 8

=0. 163 X (N, —3)Q„d . (1.2)

Note that Newton's constant G and the speed of light c
have been retained in all equations which involve p. In
other equations, k=c=G=1, where k is Boltzmann's
constant.

(A derivation of these numerical factors is found in
[10,11].) Here, Q,=p, /p„;, and Q„d=p„d/p„„give the
energy density in gravitational radiation and relativistic
matter, respectively, as a fraction of the critical energy
density at the time of nucleosynthesis. This equation as-
sumes the three neutrino species in the standard particle-
physics model to be light, so that N, gives the maximum
number of light neutrino species consistent with nu-
cleosynthesis.

In this paper, these constraints on the spectrum of
gravitational radiation will be used to obtain constraints
on values of p, the linear mass density of the cosmic
strings, for certain values of u, the size of a newly formed
cosmic-string loop as a fraction of the particle horizon ra-
dius. We point out that the existing constraints that may
be found in the literature generally refer only to p, be-
cause the value of a is not a "free parameter"; in princi-
ple it can be determined from numerical simulations of
the string network. There is currently no consensus re-
garding the value of this parameter, so we give results for
a wide range of reasonable values of o.. For this wide
range of values of a, we find a maximum allowed value of
p consistent with cosmological constraints.

The constraints due to pulsar timing noise and primor-
dial nucleosynthesis have been previously considered by a
number of authors [12—22]. Successive authors have
found a tighter bound on Gp/c . This bound currently is
of the order 10, which is generally regarded as the
minimum acceptable value of Gp/c for a cosmic-string
network to make a useful contribution to galaxy forma-
tion. The tightening of the bound has been due to (1) im-
provement of pulsar timing, (2) a decreasing limit on the
number of light neutrino species consistent with nu-
cleosynthesis, and (3) the more accurate models of
cosmic-string networks provided by detailed numerical
simulations. A short summary of the constraints ob-
tained by previous authors follows in Sec. II.

The bounds obtained in this work have several advan-
tages over past work. First, they benefit from the most
recent results of numerical simulations and astronomical
observations. Second, an improved model of the emission
of gravitational waves by an oscillating loop, obtained
from recent numerical simulations, is used [14,23].
Another advantage is that our work attempts to take into
account all processes which could affect the spectrum of
cosmic-string gravitational radiation. These include the
effects of the annihilations of massive particles on the
equation of state of the cosmological Auid, and the devia-
tion from pure radiation- or matter-dominated expansion
caused by the presence of the cosmic-string network.
The end result is that it is possible to generate an entire,
realistic power spectrum of the cosmic-string gravitation-
al radiation.

A description of the effects included and the methods
used to carry out the computation are given in Sec. III.
In Sec. IV, the results are presented and interpreted.

II. SUMMARY OF PREVIOUS CONSTRAINTS

The observed limits on a power spectrum of stochastic
gravitational radiation at the present time, and at the
time of nucleosynthesis, have been used by previous au-
thors [12—22] to bound the cosmic-string linear mass
density p. This section will not duplicate work by other
authors, but will summarize their key assumptions and
results. A series of tables are included for comparison.
The goal will be to indicate the weaknesses of past calcu-
lations, and motivate the more detailed computation
which is the main thrust of this paper.

Basis for comparison of calcu1ations

The one-scale model of cosmic strings, the model of
gravitational-radiation emission by cosmic strings, and
the cosmological model comprise the common elements
of the past work. In this section, the key elements of
these three models, and the pulsar and nucleosynthesis
bounds, will be described with tables. The next five para-
graphs describe the five different sections of these tables.

All calculations to date have used the "one-scale"
model which describes the basic features and evolution of
a cosmic-string network. This model assumes a homo-
geneous Friedmann-Robertson-Walker (FRW) metric
ds = dt +a (t )dx—. Its one characteristic length scale
is the horizon radius I (t)=a(t) fodt'/a(t') The c.osmic

strings are described by three dimensionless parameters:
B, and a. There will be on the average

2 =p„I (t)/c p cosmic strings of length greater than
l(t) per horizon volume. The energy density of these
"long" strings is given by p„. The number of loops
formed per horizon time per horizon volume will be
B=1 (t)V '(t)dN~„~, /dl(t), where N„, , is the total
number of loops present within V(t), the comoving
volume of the Universe. The size of a newly formed loop
will be the fraction a of the horizon radius. However,
the peculiar velocity of the loop rapidly redshifts to zero,
reducing the length of the loop to a fraction f„ofits for-
mation length. After this redshifting, the loop size may
be written as Lh, =f„al(th, ). Note that, given values

of the parameters A and o, , the string equations of
motion uniquely determine the value of B. [See Eq. (3.8).]
Early calculations often set f„=1, did not use A, and set

B and o. to —1 for order-of-magnitude estimates. More
recent work has taken advantage of the results of numeri-
cal simulations to obtain values for these parameters.
The values of these parameters used in the calculations
are listed in the following tables.

The model of gravitational-radiation emission by loops
is based on the expression for the power radiated by a
loop: P=+„,P„Gp c=yGp c. The dimensionless pa-
rameter y describes the rate at which a loop converts its
energy into gravitational radiation. A looped formed
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with length L]ppp at time t&ppp will radiate at the time-

dependent frequencies f„(t)=2n l[L&„~ —yGp(t
t—i„)]until it has radiated all its energy, and disap-

pears. The constants P„characterize the power P„Gp c
radiated at frequency f„. Early calculations made
order-of-magnitude estimates of y, and assumed that all
emission occurs in the n =1 mode at fixed frequency.
This has been noted in the tables.

While all past work has examined the cosmic-string
network in an FRW background, the further details of
the cosmological model have varied greatly. These in-

clude the transition from the radiation- to matter-
dominated expansion eras, the massive particle annihila-
tions which serve to reheat the cosmological fluid, and
the effects of the cosmic strings and cosmic-string gravi-
tational radiation on the expansion rate of the Universe.
The details of the different cosmological models are listed
in the following tables.

The upper limit on the energy density in a stochastic
gravitational-wave background [5] has lowered consider-
ably since the observation of pulsar timing noise began
eight years ago. This is due to the fact that during this
time, the upper limit has decreased as

f Pgr 4
d

Pcrit df

where T„„is the observation time in years. (It is unlikely
that the limit will continue to decrease in proportion to
T„„;see Sec. IV.) Thus, the later papers have established
constraints on cosmic strings which are tighter than
those imposed by the early papers. In the following
tables, we list the limit to

f dPgr
&g.(f»s) =-

Pcrit

the frequency f»„and the resultant limit on Gyle .
The reader should note that Qg, (f», ) differs from Qg, .
The former is the fraction of critical energy density in the

logarithmic frequency interval fC [f,b„ef», ]. The
latter is the total fraction of critical energy density. We
retain this notation throughout the paper.

The upper limit on the number of light neutrino
species consistent with the standard model of nucleosyn-
thesis has also dropped in the past decade, tightening the
limit on cosmic-string models. In the following tables, we
list the limit to 1V„,and the resultant limit on Gp/c .

We now examine past calculations of the nucleosyn-
thesis and pulsar timing limits on the cosmic-string-
produced gravity-wave spectrum. Note that the parame-
ters listed in the following tables may differ from those
used in the original papers by powers of two. This is be-
cause our parameters are defined in terms of the horizon
radius l(t) rather than the time t. In the radiation-
dominated era, l(t)Ict =2.

Vilenkin (1981)

The earliest estimate of the energy density and power
spectrum of the gravitational radiation produced by the
loops of a cosmic-string network was made by Vilenkin
[12]. In this purely analytic calculation, he made an
order-of-magnitude comparison of the energy density in
radiation emitted by the string loops with the bounds on
energy density consistent with the observed cosmology.
One assumption made (see Table I) was that a loop
formed at time t&„p was assumed to radiate only in the
fundamental mode, at the constant frequency -t~„'„until
it evaporated at time -(Gyle ) 'ti„Anothe. r as-
sumption was that 8 and a were of order unity; the pa-
rameter A did not enter directly into this calculation. In
1981 the most stringent limit on cosmological sources of
gravitational radiation was 0, Q„d at the time of nu-
cleosynthesis [24,25]. (It appears to have been incorrectly
reported that the first nucleosynthesis constraints on
cosmic strings were calculated much later. ) While this
limit was originally expressed in terms of a fraction of the
radiation energy density, it may also be expressed as an

TABLE I. Summary of the evaluation of constraints on ttt by Vilenkin [12]and Hogan and Rees [13].

Parameter

p I (t)/c 9= A

l ( t ) V ( t )dN) p /dl 8
L)„p/l(t) =a

Vilenkin [12]

-4
-0.5

Hogan and Rees [13]

—E/(Gcp )=y
Power per mode P„
Emission f„(t}

—1

Pl =y-1
constant

—1

~l=r-1
constant

Particle annihilation
Strings afFect expansion

Observed limit on Qg,
Sensitive frequency
Pulsar timing limit on p

Q„&1.6X 10-'h -'
fob
Gp/c —10 ok

Observed limit on N
Nucleosynthesis limit on p

N (6
Gp/c 10
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equivalent number of light neutrino species, yielding
N &6. The primary conclusion of Vilenkin's work was
that values of p as large as Gp/c —10 were consistent
with the limits of observational cosmology and satisfied
the requirements of galaxy formation.

Hogan and Rees (1984)

The first check of the cosmic-string loop gravitational-
wave spectrum against the timing noise of the millisecond
pulsar PSR1937+21 was tnade by Hogan and Rees [13].
Their approach did not explicitly use the one-scale mod-
el, although the assumptions regarding the behavior of
the cosmic-string network were not different from those
of the one-scale model. They made order-of-magnitude
estimates based on assumptions similar to those of Vilen-
kin (see Table I) in order to calculate the energy density
in gravitational waves caused by the radiating cosmic-
string loops. These assumptions included the
simplification that the cosmic-string loops radiate at a
single, constant frequency. They determined that the
millisecond pulsar timing noise was sensitive to the gravi-
tational waves emitted by cosmic-string loops which
formed shortly after nucleosynthesis. Because the pulsar
timing measurements were only —1 year old, in the loga-
rithmic frequency interval at f,b,

—1 yr
' the pulsar con-

straint was a loose Qs„(f,b, )~1.6X10 h . Conse-
quently, they found that p was not severely restricted at
the present time. The essential shape of the spectrum
0 „(f) =(f /p„;, )(dp „/df) of stochastic gravitational ra-
diation produced by a network of cosmic-string loops was
first sketched in their paper. (For the spectra obtained in
the present paper, see Fig. 3.) Ultimately, their main
conclusion was to show that Gp/c —10, a desirable
value for seeding galaxy formation, may contradict the
bounds set by refined pulsar timing measurements within
the near future.

Vachaspati and Vilenkin (1985)

Q (f ) ct3/2B(Gp/yc2)1/2Q32~
gr obs (2.1)

for the fraction of critical energy density in gravitational
waves within the logarithmic frequency interval bounded
below by f,» —1 yr '. This equation, taken from [14],
does not properly show the dependence of Q, (f,b, ) on a.
Rather, Q,(f», ) ~(aGp/c )'/. This is due to the fact
that B is not an independent parameter, but can be ex-
pressed in terms of A and a; the parameter A, however,
was not used directly in this calculation. [See Appendix
B for a derivation of the correct expression; see Eq. (3.8)
for the relation between A, B, and a.] They did find, as
did Hogan and Rees, that the millisecond pulsar timing

In 1985, Vachaspati and Vilenkin [14] reexamined the
work of Vilenkin, in order to improve the earlier, crude
treatment of cosmic-string gravitational radiation. In
their work, the gravitational radiation emitted by an os-
cillating cosmic-string loop was examined in detail. They
found y —100, and that the power emitted per mode of
oscillation of a particular class of loops behaved as the
power law P„~n for the higher modes of emission.
Empirical values of the P„'s were found for the lower
emission modes, for the particular class of loops studied.
They exploited this work to derive an expression for the
total energy density in gravitational waves, emitted by a
cosmic-string network in a radiation-dominated universe
(see Table II). They made an improvement over past cal-
culations by accurately expressing the frequency of emis-
sion per mode of oscillation as f„(t)=2n/L1„~(t, t'),
which changes with time as the loop shrinks. In this
equation, L1„„(t,t')=L „1~(t',t') —yGp(t t')/c giv—es
the size at time t of a loop formed with size L1„(t',t') at
time t'. They approximated the effects of the first 100
modes of gravitational-wave emission, ultimately arriving
at the expression

TABLE II. Summary of the evaluation of constraints on p by Vachaspati and Vilenkin [14] and
Davis [15].

Parameter Vachaspati and Vilenkin [14] Davis [15]

4
-0.5 -0.5

—E/(Gcp )=y
Power per mode P„
Emission f„(t)

100
P„~n ' for n))1
2n /L(t )

100

constant

Particle annihilation
Strings affect expansion

Observed limit on Qg„
Sensitive frequency
Pulsar timing limit on p

Qg, ~ 10

f.b,
—»r '

Gp/c —10 ok

Observed limit on N
Nucleosynthesis limit on p

N ~4.0
Gp/c —10 not ok
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noise is sensitive primarily to the gravitational waves em-

itted by loops formed shortly after nucleosynthesis. (This
is not necessarily so, as will be shown in Sec. IV.) Conse-
quently, the value Gp/c —10 satisfied the observed
constraint. This result agrees with earlier, order-of-
magnitude estimates of the gravitational-radiation energy
density.

rameters were of the order of 1. However, using Eq. (3.8)
to determine B from A and a, this order-of-magnitude
calculation would have found cosmic strings in agree-
ment with observation. Thus, it was the limitations of
the early, simple model, not an overly restrictive cosmo-
logical constraint, which caused the cosmic strings to
disagree with observations in this calculation.

Davis (1985)

The restrictions posed by primordial nucleosynthesis
on cosmic strings were considered by Davis [15]. Using
the same, simple framework as Vachaspati and Vilenkin
(see Table II), the accumulated gravitational-radiation en-

ergy density was compared to the energy density of the
cosmological fluid at the time of nucleosynthesis. Davis
found an expression of the form

ps, = Ba (Gp/c y )' in(t„„,/tI )p„d (2.2)

which describes the total energy density in gravitational
waves produced by loops which have evaporated prior to
the onset of nucleosynthesis. In this expression, tI is the
time at which the cosmic-string network begins to move
freely, and the first loops are formed. The time t„„,refers
to the time at which nucleosynthesis begins. (A deriva-
tion of the exact expression will be given in Appendix B.)
Davis found that, for Gp, /c —10, the cosmic-string
gravitational-radiation energy density might exceed the
observed limits on the energy density of approximately
one additional species of light neutrino. At the time, it
was commonly estimated that all the cosmic-string pa-

Brandenberger, Albrecht, and Turok (1986)

A comprehensive effect to focus solely on the con-
straints on cosmic strings through various cosmological
phenomena was made by Brandenberger, Albrecht, and
Turok [16] (see Table III). They correctly used the equa-
tions of motion to determine the relationship between B,
a, and A [Eq. (3.8) in this paper]. However, they as-
sumed that a loop radiates in its fundamental mode only,
at a constant frequency, f=2/Lho~. In order to model

the change in the number of effective degrees of freedom
after the QCD phase transition, the energy density was
reduced by a numerical factor. They showed that the en-

ergy density in gravitational waves up to the time of nu-

cleosynthesis was dominated by an expression of the form
similar to that found by Davis. Thus, they find that the
nucleosynthesis constraint for the 1984 limit of N„=4.0
[6] is satisfied for Gp/c -10 . (As in many other pa-

pers, the conversion from a limit on N to a limit on p,
was incorrectly reported as p ~z

' ~ 0. 18; the correct lim-

it is p ~ ' ~0. 163. However, the overall result was not
affected. ) With regards to the pulsar timing constraint,
an expression similar to that of Vachaspati and Vilenkin
is derived. Comparing the energy density in gravitational

TABLE III. Summary of the evaluation of constraints on p by Brandenberger, Albrecht, and Turok
[16]and Bennett [17].

Parameter

p I (t)/c p= A

l (t )/V(t )dN) p /dl =B
L]„~/l(t) =a

Brandenber ger,
Albrecht, and Turok [16]

~4
equations of motion
~0 5

Bennett [17]

10
equations of motion
0.05

—E/(Gcp~) =y
Power per mode P„
Emission f„(t)

50
pl=r
constant

20m

pi=r
constant

Particle annihilation

Strings affect expansion

correction for
annihilations at
QCD transition

corrections for
annihilations due to
minimal and
maximal GUT
back reaction on
expansion by
strings and
radiation

Observed limit on Qg,
Sensitive frequency
Pulsar timing limit on p

Qg, (4.3X 10 h

fo~s-o. 3 yr '

Gp/c ~1.5X10

Observed limit on N
Nucleosynthesis limit on p

N„+4.0
Gp/c —10 ok

N„~4.0
Gp/c (4X10
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waves in the logarithmic frequency interval at the 1986
frequency f,b, -0.3 yr ', the limit Gp/c 2 ~ 1.5 X 10 3 is
found. This is the first calculation to not simply test a
favored value of p, but to find the upper limit on accept-
able values of p. As was indicated by Hogan and Rees,
Brandenberger et al. stress that unless the timing noise
increased, within 10 years cosmic-string scenarios which
required Gp/c —10 would be ruled out.

Bennett (1986)

An extremely thorough treatment of the evolution of a
system of cosmic strings, which included a calculation of
the nucleosynthesis constraint, was carried out by Ben-
nett in a pair of papers [17]. The first of these papers
predates the Brandenberger, Albrecht, and Turok work
(Table III refers to Bennett's second paper). Treating the
cosmic strings as a dilute gas of long strings and loops in

a FRW background, he obtained evolution equations for
the gravitational-radiation energy density. The values
used for A and a were suggested by the early numerical
simulations of Albrecht and Turok [26]. This calculation
included the effects due to redshifting of a loop's peculiar
velocity (this is discussed further in Sec. III); at the time,
the numerical simulations [26] suggested that only the
fraction f„=0.97 of the loop energy is converted into
gravitational radiation. The analytic calculation models
the effect of the cosmic strings on the FRW cosmological
fluid, which increased the radiation-dominated expansion
rate. The calculation also includes numerical corrections
to the ratio of the gravitational radiation to cosmological
fluid energy density, in order to compensate for the mas-

sive particle annihilations in a minimally extended [no
particles with masses between the Weinberg-Salam
symmetry-breaking energy scale and the grand-unified-

theory (GUT) transition energy scale] GUT model. Ben-
nett found that the nucleosynthesis constraint

(p„„„,+p, )p„,d 0. 17 (again, the exact limit is 0.163) is

marginally satisfied for Gp/c —10 . The resultant

upper bound on p is Gp/c ~ 4X 10 . At this time, nu-

cleosynthesis imposed the most restrictive constraint on
cosmic strings.

Accetta and Krauss (1989)

Accetta and Krauss [18] numerically computed the
power spectrum of the gravitational radiation produced
by the loops in a cosmic-string network in order to test
the validity of certain cosmic-string scenarios against the
pulsar timing and nucleosynthesis bounds. The analytic
expression, which they adapted to a numerical calcula-
tion, was similar to the work of Vachaspati and Vilenkin,
and Davis. Many improvements were made to the calcu-
lation of the constraints. Numerical factors were used to
model the effects of the adiabatic reheating of the cosmo-
logical fluid by massive particle annihilations for several
species of particles in a minimal GUT model. A smooth
transition between the radiation- and matter-dominated
eras was manufactured by making phenornenological
corrections to the expansion scale factor. The behavior
of the power P„as a function of the emission mode n

found by Vachaspati and Vilenkin was adopted. Thus,
they used the empirical values of P„ for small values of n,
and P„~n for large values of n. The first 200 modes
of oscillation by the cosmic-string loops were included in
the sum of the emitted power P„. In their work, the sizes
of newly formed loops are modeled by a size probability
distribution. The values of B, y, and a range for a were
suggested by the numerical simulations of Bennett and
Bouchet [27] (see Table IV). However, neither the equa-
tions of motion nor A were used in this calculation. As a
results, because they numerically computed the power
spectrum of gravitational radiation for different values of
B and a, the dependent value A differed. Thus it was not
possible to make a fair comparison of the various power
spectra, nor conclude what values of the parameters were
in agreement with observation. The main result of this
work was that for a variety of values of a and B,
Gp/c —10 was consistent with pulsar timing and nu-

cleosynthesis bounds.

Bennett and Bouchet (1990,1)

Two recent studies by Bennett and Bouchet [19] have
combined Bennett's earlier, analytic work with results
from their high-resolution numerical simulations in order
to generate constraints on the gravity-wave background
produced by cosmic strings (see Table IV). The two
bounds were calculated through rather different means,
and so will be discussed individually.

The nucleosynthesis limit was essentially a reevaluation
of the 1986 calculation, with a new set of parameters as

suggested by the recent numerical simulations. Thus,
Bennett and Bouchet found that N ~ 3.4 implies

Gp/c ~6X10 . Recent work has suggested the possi-

bility of an inhomogeneous QCD phase transition [28,29].
This would allow for a weakening of nucleosynthesis con-
straints, by increasing the number of light neutrino

species to N, =3.7 in the case of an inhomogeneous tran-

sition. In such a case, they found Gp/c 1.1X10
The conversion from the limit on the number of neu-

triono species to the limit on the energy density in gravi-
tational waves, however, was done incorrectly. The lim-

its on p listed above, and in [19] are too tight by -20%.
The limit Gp/c ~6X10 corresponds to N 3.3, and

G„/c 1.1X10 corresponds to N ~ 3.6.
The calculation of the pulsar timing limit was similar

to the work of Vachaspati and Vilenkin, and Branden-

berger et al. Assuming that cosmic-string loops radiate

only in the fundamental mode of oscillation, they derived

an expression for the energy density in gravitational
waves within the frequency interval to which pulsar tim-

ing measurements are sensitive. They found that these
gravitational waves were emitted in the radiation-
dorninated era. They included the effects due to redshift-

ing of a loop's peculiar velocity; recent high-resolution
numerical simulations [30] suggest that f„=0.71. They

also considered the limit in which the length of newly

formed loops is very small. The motivation for having a
very small is that the recent, high-resolution numerical

simulations found loops forming on the smallest length

scales resolved. Thus, for the calculation of the pulsar
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TABLE IV. Summary of the evaluation of constraints on p by Accetta and Krauss [18] and Bennett
and Bouchet [19].

Parameter

p„l2(t)/c~p=
I ( t )/V(t )dN] &

/dl =B
L&„p/l(t ) =a

Accetta and
Krauss [18]

.5&B&5
5X10 '&(a) & I

Bennett and
Bouchet [19]

52
equation of motion
limit a~0

—E/(Gcp )=y
Power per mode P„
Emission f„(t)

55&y &114
P„~n for n))1
2n /L(t)

50

constant

Particle annihilation

Strings affect expansion

Observed limit on Q~,
Sensitive frequency
Pulsar timing limit on p

minimal GUT

0 2 2X10 h

f.b. 0. 16 yr
Gp/c —10 ok

minimal and
maximal GUT
back reaction of
p„and pg,

Q„&4X10-'h '
f,b, -0.14 yr
Gp/c ~4X10

Observed limit on N„
Nucleosynthesis limit on p

N„+4.0
Gp/c —10 ok

N ~3.4
Gp/c +6X10

timing limit, an expression for Qs,(f,») similar to that of
Vachaspati and Vilenkin is found. This quantity is then
evaluated for a-(f,b, t „„„,) ' —10 . (In fact the same
result holds for 10 (a(yGp/c . For smaller values
of a, no cosmic-string gravitational radiation is observed
in f,» at the present. ) In this limit of small loop size,
Bennett and Bouchet found the constraint
Gp/c ~ 4X 10 . They also note that this constraint de-
pends sensitively on the shape of the gravitational-wave
power spectrum. The gravitational-wave power spectrum
may rise at frequencies near f,b„ in which case, for
a) 10, the constraint on p may tighten.

Other work

There have also been other papers which examine the
nucleosynthesis and pulsar timing constraints on cosmic
strings, using updated values for N, and Qs,(f,»), and
for the dimensionless parameters found in the cosmic-
string model. We have not included descriptive tables for
these papers, whose discussions of cosmological con-
straints on cosmic strings are primarily updates of earlier
calculations.

In 1989, Albrecht and Turok [20] carried out a rough
analytic calculation similar to that of [16]. In this calcu-
lation, they correctly showed that the shape of the power
spectrum is flat, regardless of the behavior of I'„, in a
radiation-dominated cosmology. They found that the
value Gp/c =10 disagreed with the observations of
both nucleosynthesis and pulsar timing noise. They
pointed out, however, that effects such as loop fragmenta-
tion and the dilution of the gravitational-radiation energy
density caused by massive particle annihilations might
bring cosmic strings into agreement with observation.

In 1990, Brandenberger and Kung [31] updated the
earlier work in [16] for the pulsar timing constraint. Us-

ing the most current values of various parameters and
limits, they found that cosmic-string scenarios for which
Gp/c =10 were not ruled out.

Several papers by Sanchez and Signore [21] have con-
sidered the restrictions on cosmic-string models. These
papers have carried out calculations similar to those of
[16] in order to restrict the parameter p. Additionally,
they considered the restrictions on the emission of elec-
tromagnetic waves by superconducting cosmic strings, in
analogy with the models for the emission of gravitational
waves by cosmic strings.

A recent paper by Quiros [22] has examined the nu-
cleosynthesis limit on cosmic-string-produced gravita-
tional radiation. This paper uses the simple, analytic ex-
pression for the total energy density in gravitational
waves present at the time of nucleosynthesis (as is derived
in Appendix B). What distinguishes this work is its de-
tailed analysis of the restriction placed on the energy den-
sity in gravitational waves by the observed values and un-
certainties in the helium abundance, the baryon density,
and the neutron lifetime. This analysis ultimately arrives
at a limit equivalent to restricting N 3.2.

While the calculations of Bennett and Bouchet and Ac-
cetta and Krauss have been the most realistic to date,
several aspects may be improved. The energy density in
string loops was not included by Bennett and Bouchet in
their calculation of the nucleosynthesis limit, although
the authors estimate that a change in the limit on p by
more than a factor of 4 is ruled out by their string sirnula-
tions. The effect of the cosmic-string and gravitational-
radiation energy densities on the expansion rate was cal-
culated, rather than the full effect on the evolution of the
FRW equations. That is, the effects on the horizon ra-
dius, the rate of loop production, and the cosmic-string
and gravitational-wave energy densities were neglected.
Rather than including the smoothly varying number of
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TABLE V. Summary of the evaluation of constraints on p by Caldwell and Allen (this paper).

Parameter

p 1 (t)/c p= A

1 (t )/V(t )dN& p /dl =B
Ll p/1(t )

Caldwell and Allen (this paper)

A radiation 52~ and A matter

derived from equations of motion
yGp/c'(a (0.1

—E/{Gcp') =y
Power per mode P„
Emission f„(t)

50
p ~ —4/3

n

2n /L(t )

Particle annihilation
Strings affect expansion

minimal GUT
Pan~ Ploops~ Pgr
included in FRW evolution

Observed limit on Qg,
Sensitive frequency
Pulsar timing limit on p

Q„&4X10-'h -'
see Fig. 3

see Fig. 1

Observed limit on N,
Nucleosynthesis limit on p

N ~3.4
see Fig. 1

particle degrees of freedom in the energy density of the
cosmological fluid, in many calculations, numerical
corrections for the overall change in the number of parti-
cle degrees of freedom were made. To date, no single cal-
culation has attempted to include all the aspects of a real-
istic model for the production of gravitational radiation
by a cosmic-string network. Therefore, it appears that
there is room for improvement of the gravitational-
radiation limits to cosmic-string models (see Table V).

III. METHOD AND DETAILS OF COMPUTATIONS

The methods used in this paper to calculate the nu-

cleosynthesis and pulsar timing constraints on cosmic
strings will now be presented. This section will begin
with a detailed description of our calculation, which was
outlined in Table V. We will present the one-scale model
of cosmic strings, the model of emission of gravitational
waves by the string loops, and the cosmological model,
which are used to derive the time evolution equations for
all physical quantities of interest. We will then present
the initial conditions used in our computation, and finally

describe two details regarding the cosmological fluid.
The calculation outlined in this section is adapted to a
numerical computation, as discussed in Appendix A.

One-scale model

The starting point for most analytic calculations of the
properties of a cosmic-string network is the one-scale
model. The ability of this simple model to accurately de-
scribe the evolution of a cosmic-string network has been
supported by numerical simulations [23,30,32]. This
model consists of the following elements.

(1) The Universe is described by a homogeneous, spa-
tially flat, Q = l FRW cosmology with the metric
ds = dt +a (t)(d—x +dy +dz ). The horizon radius
l(t ) =a(t )fOdt'la (t') serves as the characteristics length

scale. All physically interesting quantities describing the

cosmic-string network will be expressed in terms of this
length scale.

(2) For simplicity, the physical volume of the Universe
in which these calculations are made is expressed as
V(t)=a (t)L . The constant coordinate volume L ulti-

mately cancels from all calculations.
(3) The energy density in long cosmic strings is given

by

p„=Ape Il (t) . (3.1)

The parameter A represents the number of long strings
present per horizon sized volume. Numerical simulations

[30] suggest the values A =52 in the radiation-dominated
era, and A =31 in the matter-dominated era. We
smoothly interpolate between these two values when the
Universe undergoes the radiation-to-matter transition.

(4) The size of a newly formed loop, chopped off the
long string network at time tf p

is a constant fraction a
of the horizon radius. Loops tend to be cut off with large
(relativistic) peculiar velocities: the loop center of mass

(c.m. ) is moving with respect to the rest frame of the
cosmological fluid. Thus the energy of a loop at the time
it is formed is the sum of two terms: a "kinetic" term

arising from its peculiar velocity, and a "potential" term
arising from its c.m. energy. In an expanding universe,

just as for any relativistic massive particle, the "kinetic"
part of the energy rapidly redshifts to zero. Albrecht and
Turok [20] have calculated this redshifting effect on the

loop energy. For a single loop with initial energy E(t, )

and velocity v, at time t,-, they found that the loop energy
behaves as E(t)=E(t;)I[a(t, )v, /a(t)] +1—

U, ]'~ . As

a(t) increases, this mechanism quickly damps away the

peculiar velocity, leaving the loop with only the fraction
f„=(1—

U,
)'~ of its initial energy. This redshifting of

peculiar velocities does not affect the loop production
rate, but it does change the size of a loop immediately
after its formation to L&„(t~„)=f„al(t&„).[Numeri-

cal simulations have suggested that loops chop them-
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selves into smaller loops or "fragment" rapidly after for-
mation until they reach a stable size. We take this stable
size, after the loops have lost their peculiar velocity, to be
f„al(t„,~).] Hence, only a fraction f„of the total loop
energy is converted into gravitational radiation; the rest
is lost to redshifting. From their numerical simulations,
Bennett and Bouchet [30] estimate that this fraction is
f„=0.71.

In order to calculate the effect of the cosmic-string net-
work on the expansion of the Universe, it is necessary to
determine the cosmic-string equation of state. The pro-
cedure for deriving the equation of state of the cosmic-
string network has been presented in other work [20,33].
Nevertheless, we will quickly outline the necessary steps.
The stress tensor for the network of infinite strings and
string loops may be written as the integral

T""(t,y)=p, a (t)fdo(ex "x" e'x—'"x'")

X 5 (x(o, ri ) —y), (3.2)

where an overdot and a prime are derivatives with
respect to g and 0., the temporal and spatial parameters
on the world sheet of the cosmic string [20]. The vector
x(o, rj) gives the coordinate position on the cosmic-string
world sheet. The integral over o. runs over the entire net-
work of long strings and loops. Upon averaging over the
cornoving volume, and using the gauge condition which
defines e,x =6(1—x '), we find the equation of state for
the long strings to be

p„=—,'p„[2(u2) —1], (3.3)

&loops =O (3.4)

The loop equation of state is similar to that of dust.
The rate of loop formation may be calculated using the

conservation of the cosmic-string stress-energy tensor.
The cosmic-string network does not directly interact with
any of the particles which comprise the cosmological
fluid; the only effect the string network has on the fluid is
indirect (through its effect on the expansion rate of the
Universe). Therefore, the stress tensor of the cosmologi-
cal fluid and that of the cosmic-string network are sepa-

where (v ) is the mean-squared velocity of the long
strings. In the case of ultrarelativistic strings (( v ) =1)
the equation of state is p„=p„/3; the infinite strings
behave like radiation. On the other hand, slow moving
or static strings ((v ) =0) have the equation of state
p = —p„/3. In this case, the cosmological expansion
pumps energy into the long strings, which rapidly dom-
inate the Universe. The numerical simulations of Bennett
and Bouchett find that the long strings have the values
( v ) =0.43 in the radiation-dominated era, and
(v ) =0.37 [30] in the matter-dominated era; we have
used these values in our calculation, smoothly interpolat-
ing between the two when the Universe undergoes the
transition from radiation- to matter-dominated expan-
sion. In the case of loops, which are by definition smaller
than the horizon radius and do not feel the effects of the
curvature of spacetime, ( v ) =1/2 in the c.m. frame, so
that

rately conserved. From the conservation of the string
stress tensor (3.2), we find the equation of energy conser-
vation:

—[a '(t )(p+p ) ]=pa '(t ) .d 3

dt
(3.5)

Here, an overdot indicates a derivative with respect to
time t. In this equation, p =p +pl, ,+p, and

p =p„+pg, /3. Now, the long strings form loops, which
then radiate gravitational waves. The rate at which the
long strings form loops is independent of whether the
loops emit gravitational waves, save for the indirect effect
of p, on the rate of cosmological expansion. Therefore,
we may ignore the gravitational-radiation terms in Eq.
(3.5) in solving for the rate of loop formation. Using the
long string equation of state, we may solve for the loop
energy which is related to the number of loops by the
differential equation

Eloops 2 loops=pf„al(t)c
dt dt

Thus, we find that the rate of loop formation is

(3.6)

sloops
dt

p„+2—p„[1+(v )]
pal(t )c

(3.7)

Here, N~oo, (t) gives the total number of loops produced
up to the present time t within the volume V(t), and ( v )
refers to the mean squared velocity of the long cosmic
strings.

We may now use the differential equation for the rate
of loop formation to determine the relationship between
the parameters a, B, and A. While past work has often
made order-of-magnitude estimates of B, an exact expres-
sion for B may be given. The number of loops formed
per horizon time is

B= I (t ) dNloops A=2—[1 m(1+(u ))], —
V(t) dl a (3.8)

where m = 1/2 in the radiation-dominated era, and
m =2/3 in the matter-dominated era. This expression is
given only for comparison with the earlier work present-
ed in Sec. II. Equation (3.7), rather than expression (3.8)
is used in all our calculations.

Emission of gravitational radiation by string loops

The model of the emission of gravitational radiation by
cosmic-string loops, necessary to calculate the energy in
cosmic-string loops and cosmic-string loop-produced
gravitational waves, is composed of the following three
elements.

(1) A loop is assumed to radiate energy at the constant
rate dE/dt= —yGp c. Recent numerical simulations
suggest that y =50 [23] is a reasonable value for the aver-
age loop produced by the cosmic-string network. It fol-
lows that the length at time t of a loop formed at time t'
is L(t, t')=f„al(t') yGp(t —t')/c. Su—ch a loop will
have lost all its energy and thus disappear, or "evapo-
rate" at a later time t"= t'/P( t '), where we define
P(t') =[1+f„al(t')c /y Gpt'] '. Because loops never
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fragment in this model, a loop at time t is uniquely
identified by its time of "birth" or by its time of "death. "
It will be easier to discuss the birth and death of loops if
we define the following functions. First, tD(t)=tIP(t)
gives the time of death of a loop which formed at time t.
Second, tz(t) gives the time of birth of a loop which eva-
porated at time t. Here, the time t~ is found by solving
for the root of the equation tD [ts(t ) ]= t.

(2) The frequency of the gravity waves emitted at time t
by a loop formed at time t ' is given by
f„(t,t')=2n IL(t, t'), where n =1,2, 3, . . . labels the os-
cillation mode.

(3) The power emitted in each mode of oscillation at
frequency f„ is described by the mode coefficients P„,
where the total emitted power is P=g„",P„Gp c. Re-
cent studies by Allen and Shellard [23] indicate that
P„=yn /gk, k ~ is a reasonable description of
the distribution of power per mode of emission. Because
this sum converges slowly, higher emission modes con-
tribute significantly to the total power. Our calculation
includes a11 modes of emission.

We may now construct the differential equation
describing the rate of change of the energy in loops
present in a volume V(t) at time t. The energy in
cosmic-string loops is p times the total length present in
loops. This may be written as the integral

(3.9)

The lower bound of this integral is the time of formation
of the oldest loops still present in the network at time t.
We are interested in finding a differential equation for the
rate of change in loop energy. Taking the derivative of
expression (3.9), we find

E„,~,(t)=pf„al(t)c yGlJ, cC„, ,(t) .— (3.10)
dt

The first term on the right-hand side (RHS) represents
the rate of change in energy by loops formed in the time
step from t to t+dt. The second term represents the rate
of change in energy due to the emission of gravitational
waves by the loops present throughout the time step. We
have defined

C„, ,(t ) =N)„,(t ) —N)«, (max[tf, t~ (t ) ] ) (3.11)

E (t)s= — E,(t)+yGp c )—„C,(t) .
Q

(3.12)

to be the total number of loops still present at time t.
[The difference N „1,(t )

—C&„,(t ) is the total number of
loops which have evaporated by time t.] The differential
equation (3.10) may be integrated in order to find

p&„~,
=E&„~,( t) / V( t ), the loop energy density. A

description of the numerical integration, and the special
handling given to Eq. (3.11) is found in Appendix A.

The differential equation for the rate of change of the
energy in gravitational waves may be obtained from the
conservation of the string stress tensor. Using Eq. (3.5)
and (3.10), with p=p„+p|„~,+ps, and p=p +ps, /3,
we find

The first term on the RHS represents the rate of change
in energy of gravitational waves due to the redshift. The
second term represents the rate at which new radiation is
emitted by the cosmic-string loops present. This
differential equation may be integrated in order to find

ps, =Es,(t)/V(t), the gravitational-wave energy density.
The numerical integration of Eq. (3.12), and the method
by which we calculate the power spectrum of gravitation-
al radiation, are discussed in Appendix A. An analytic
approximation to p, is given in Appendix B.

Cosmological model

We will now construct a cosmological model which
will serve as the framework for the evolution of the
cosmic-string network. Expressions for the evolution of
the energy of the cosmic strings and gravitational radia-
tion were given above. In the following discussion, we
will present a method for computing the energy density
of the cosmological fluid which surrounds the cosmic
strings.

The energy density used to determine the expansion of
an FRW spacetirne in the presence of the cosmic-string
network is composed of (1) the energy density of the long
strings p„, (2) the energy density of the loops pi« „(3)
the energy density of the loop-produced gravitational ra-
diation p „, and (4) the energy density of the cosmological
fluid Pfl„;d. Thus, the total energy density is

Ptotal Pfluid+P oo +Ploops+Pgr ' (3.13)

The cosmological fluid, which is the focus of the follow-
ing discussion, is composed of a relativistic component
and a nonrelativistic, matter component

Pfluid Prel+Pmatter '

The matter term is simply

pma«er( ) pmatter( f )

'3
a(tf )

a(t)

(3.14)

(3.15)

g(T)T
30

(3.16)

The sum is the over the i species of fermions and bosons
present in the cosmological fluid, each of which may have

a different temperature and number of degrees of free-
dom. (See [10] for a complete discussion. ) The effective

number of energy degrees of freedom of the relativistic
gas is g(T). Here, m;, T, , and g,. are the mass, tempera-

ture, and number of degrees of freedom of the ith particle
species respectively, and x, =m,. /T. The plus and minus

signs in the denominator of the integrand are for Fermi-

where p,«„(tf ) is a constant, which will be discussed in

the next part of this section.
The energy density of the relativistic part of the

cosmological fluid, a gas of relativistic particles in
thermal equilibrium at a temperature T is

4
g; t

~ tt Qtl x;dQ

2m ~ e +1
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Dirac and Bose-Einstein statistics, respectively. For the
particles in a minimal GUT model (see Table VI), we may
numerically integrate Eq. (3.16). It then follows that for
a given temperature, the energy density of the relativistic
gas may be computed.

In order to determine p„& as a function of time rather
than temperature, we will take advantage of the conser-
vation of entropy by the relativistic component of the
cosmological fluid. When the temperature of the relativ-
istic cosmological fluid drops below the rest mass of any
of the various particle species, the equilibrium abundance
of that particle will rapidly drop to zero. As this occurs,
the characteristic interaction times of the particles in
question are always smaller than the characteristic ex-
pansion time a /a. For this reason, the entropy

'0 3

S(t, T)= V(r)T'g
T 2~

Particle

Higgs boson
zo

F—
b
+

S

p
d
Q

e*
7~ &e ~ &g ~ &g~g

Mass

100 GeV
92.4 GeV
90 GeV
81 GeV
4.7 GeV
1.784 GeV
1.5 GeV
200 MeV
140 MeV
105.7 MeV
9 MeV
5 MeV
0.511 MeV
Massless

TABLE VI. Particles and masses in a standard, minimal,
GUT model.

u2+«2 ~2+ &(u2 2)3/2

XfdQX. Q+ 1

= &(&) gs(T)T' (3.17)

of this Quid will remain constant throughout its evolu-
tion:

S~T, t S~T, t (3.18)

The e8'ective number of entropic degrees of freedom,
gs(T), for the particles in a minimal GUT model (see
Table VI; note that the massless particle g is the gluon}
may be found by integrating Eq. (3.17). Then for a given
temperature, the entropy of the relativistic gas may be
computed. The sole purpose of gs(T) in this calculation
will be, for a given T~, t„and t2, to invert Eq. (3.18) and
solve for the new temperature T2. Therefore, given T,
and t „we may find p„&(tz) at any later time t2.

The behavior of this cosmology is determined by the
total energy density given in Eq. (3.13), through the
di8'erential equation

' 1/2

a(t ) =a(t ) p„„,
8~G

(3.19)

for the cosmological scale factor. It is clear that, because
of the presence of the cosmic strings, the expansion of the
Universe will not be purely radiation, a(t)~t'~, or
matter, a ( t }~ t ~, driven. For this reason the horizon
radius will deviate from l(t) =2ct in the radiation-
dominated era, and l(t)=3ct in the matter-dominated
era.

Initial conditions

We will now describe the initial conditions for the evo-
lution of this cosmology. We will show how to find the
initial temperature Tf and energy density p,«„(tf ) when
the cosmic-string network begins to evolve at time tf.

We begin by determining the time tf. The cosmic-
string network will move freely of the friction of the

cosmological Quid when the force of friction becomes
weaker than the string tension. This will occur [34,35] at
time tf =tp~ kc /G p . Thus, the choice of linear mass
density p determines the initial time tf.

The temperature Tf is determined by matching the to-
tal energy density before and after the time tf. Prior to
the free evolution of the cosmic-string network, the
cosmological fluid was a radiation-dominated gas. The
energy density was p«„~=3c /32G~tf . The initial value
of the horizon radius was l(t)=2tf, which allows us to
determine the initial value of p„. Matching the energy
densities

P«t, ~( tf ) =P ~ ( tf ) +Pm&( T& ), (3.20)

we may solve this equation for the temperature Tf at
which the cosmic strings begin to evolve freely of the fric-
tion of the cosmological fluid.

Another initial value needed to evolve our system of
equations is p,«„(tf), which through Eq. (3.15) deter-
mines the matter component of the cosmological fluid en-
ergy density. The presence of this term brings about a
smooth radiation-to-matter transition, and determines
the critical energy density at the present time. When the
cosmological fluid cools to T=2.74 K at the present
time, all but 1 part in 10 of the total energy density is in
nonrelativistic matter. Then, the equation

3c
&tPmatter' present ' n ~ 0 (3.21)

may be used to solve for the Hubble parameter h, where
H0=100h km/sec Mpc. Thus, our choice of p,«„(tf)
determines the value of h. We have chosen the initial
value p,«„(tf ) such that h = 1 in all our calculations.

We have now specified the initial time tf and tempera-
ture Tf, and the initial values for ps„;d(Tf ),p (tf ), and
l(tf }. The remaining initial conditions, used in the in-
tegration of the difFerential equations (3.7), (3.10), and
(3.12} are, N~„,(tf ) =E~„,(tf )=E,(tf ) =0 and
a(tf )=1.
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Chiral transition and neutrino decoupling

The thermal history of the standard
SU(3) X SU(2) XU(1) particle-physics model, which
determines the behavior of the energy density of the rela-
tivistic fluid, is not complete without a discussion of the
chiral transition and the neutrino decoupling.

The composition of the relativistic fluid changes
dramatically when the chiral symmetry of the SU(3) field
is broken near the temperature T,h;„j-250 MeV; the
gluons and up and down quarks freeze into pions. Thus,
the number of effective degrees of freedom changes rapid-
ly in the short temperature span I -100 MeV of this
transition. It is important for both a realistic model of
the chiral transition and the accuracy of the numerical
integration that the number of effective degrees of free-
dom g ( T) is continuous at T= T,„;„~.Thus, for tempera-
tures T,„,„,+-,'I & T& T,„,„,——,'I, the contributions of
g, u, and d to g(T) are "Boltzmann suppressed" as their
abundances diminish. Simultaneously, the contributions
of m ' —+ are exponentially increased as their number densi-
ty grows to an equilibrium value. We model this behav-
ior with the expression

g(s „d )(T)=g(s „z)(T)—,'(I+tanhh)

+g( ) ( T ) —,'(1 —tanhb, ), (3.22)

where b = ( T T,h;„,&
) /I —. Our model of the effective

number of degrees of freedom is similar to the function
g( T) shown in Ref. [10],Fig. 3.5, p. 65.

At low temperatures, T & m „, the light neutrinos
decouple from the cosmological fluid. Since the thermal
equilibrium can no longer be maintained, the temperature
of the neutrinos, T„becomes different from the tempera-
ture of the photons, T~. Still, the neutrinos continue to
contribute to the relativistic energy density p„~ of the
cosmological fluid. This phenomena, and the method we
use to calculate the effect of the neutrino decoupling on

g( T) and gs( T), is described in [11]and [10].
The final synthesis of the cosmic-string one-scale mod-

el, the model of gravitational radiation, and the cosmo-
logical model presented in this section yields a method
for computing many physical quantities of interest in the
evolution of a cosmic-string network in a realistic
universe. We now possess the "tools" to evaluate the nu-

cleosynthesis and pulsar timing constraints on cosmic
strings. We may numerically integrate Eq. (3.12) from
the time tf to the time when the temperature drops to
T=1 MeV, to determine the gravitational-wave energy
present at the onset of nucleosynthesis. The nucleosyn-
thesis constraint, which depends on the total energy in
gravitational waves, in all frequencies, is determined by
Eq. (1.2). It is straightforward to integrate Eq. (3.12)
from tf to the present time, when the temperature drops
to T=2 74 K. The constrai. nt equation (1.1), however, is
frequency dependent; we must compute the
gravitational-wave power spectrum, not simply the total
gravitational-radiation energy density, in order to deter-
mine the energy density present in the logarithmic fre-
quency interval at f,b, for the pulsar timing limit. The

methods by which we numerically integrate the
differential equations, and compute the power spectrum
are given in Appendix A.

IV. RESULTS AND INTERPRETATION

The final products of the numerical computation out-
lined in the preceding section are the equivalent number
of neutrino species represented by the cosmic-string grav-
itational radiation at the onset of nucleosynthesis, and
the spectrum of cosmic-string gravitational radiation at
the present time. We have produced numerical data for a
large range of values of a and p. We shall present and
discuss the data first with respect to the nucleosynthesis
constraint. Next, we will describe the gravitational-
radiation power spectra produced by the numerical cal-
culation, and then present the pulsar timing constraint.

The nucleosynthesis and pulsar timing limits on cosmic
strings are best displayed as contours of constant 0, in

log, o(a) —log, o(p) parameter space. The general shape of
such contours depends on the constraint considered; 0, „
(nucleosynthesis) and Q „(f,b, ) (pulsar timing) depend
differently on the parameters a and p. To leading order,
both Qs, and Qs,(f,b, ) are increasing functions of p. In
the limit of small a, 0 „the fractional energy density in
gravitational radiation at all frequencies, decreases to a
minimum value. Thus, in the case of the nucleosynthesis
limit, the contour lies at a constant value of p for
a & yGp/c, then slopes downward for yGp/c & o, .
However, A, (f», ) depends on the parameter a in a
more complicated manner, discussed later in this section.
We will see that 0,(f», ) increases for a approaching
yGp/c from either side. Thus, in the case of the pulsar

timing limit, there is a maximum in the constraining con-
tour near a=yGp/c . Also, as pointed out by Bennett
and Bouchet [19],for a((fob, t „„„,) ', there is no limit
on p,' the entire gravitational-wave power spectrum lies at
frequencies above f,b, .

We may thus express the restrictions on cosmic-string
models in terms of a "minimum" constraint on p. This
minimum constraint occurs near the intersection of the
line e =yGp/c with the nucleosynthesis and pulsar tim-
ing limit contours. This nucleosynthesis minimum con-
straint on p must be satisfied for all values of a. Howev-
er, the pulsar timing minimum constraint on p holds only

(fobs present

The requirement that the cosmic-string gravitational-
radiation energy density lies below the equivalent energy
density of N —3.0=0.4 excess neutrino species at the
time of nucleosynthesis results in a simple constraint to
the cosmic-string model. In Fig. 1, the points which lie

below the contour satisfy this constraint. For small

values of e, the contour becomes flat as the dependence
on a diminishes. In the limit a~0, the long cosmic
strings lose their energy directly into gravitational radia-

tion, rather than loops. The asymptotic limit of this con-
tour is in excellent agreement with the limiting curve
given by Bennett and Bouchet for the case a «yGp/c .
At the minimum expected value o.=yGp/c, the nu-

cleosynthesis bound requires Gp/c ~ 7 X 10 . While
the constraint on p depends on a, a conservative upper
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limit using the bound on p at a=yGp/c may be set.
Thus, for all reasonable values of a nucleosynthesis con-
strains Gp/c 7 X 10

The value Gp/c =10 has historically been a favor-
ite value for successful large-scale structure forming
cosmic-string scenarios. At this value of p, we find that
nucleosynthesis constrains a & 8 X 10 . Thus, the early
cosmic-string models which found u-0. 1 would have
disagreed with observation for Gp/c =10 . More re-
cent simulations find a 0.01.

Should the nucleosynthesis constraint on the number
of excess light neutrino species change in the future, or
should the present quoted limit of N &3.4 prove un-
reasonable, additional contours of constant N„
equivalent to constant 0, through Eq. (1.2), have been
plotted in Fig. 2. In this event, one may simply refer to
Fig. 2 to determine the new limits on a and p.

An improved calculation of the nucleosynthesis con-
straint by [9] yields N„~ 3.3. This translates to the con-
straint Gp/c ~6X10

Recent interest in the possibility of an inhomogeneous
QCD phase transition has led to estimates that the num-
ber of excess light neutrino species may be as high as
N —3.0=0.7 without contradicting observation [28,29].
In this case, we find the minimum constraint imposed is
Gp/c 1.2 X 10

Uncertainties in the nuclear reaction rates suggest that
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FIG. 1. The restrictions on cosmic-string parameters a and p
due to the nucleosynthesis and pulsar timing constraints are
shown. The contour of constant Qg, at the time of nucleosyn-
thesis, for N =3.4, is given by the AC Nucleo line. The con-
tour of constant (f /p, „,)(dpg, /df ) at the present time, in the
logarithmic frequency interval at f,b,

= (7.1 yr) is given by
the AC Pulsar line. This paper finds that points which lie below
these two contours, and the line a=yGp/c, represent cosmic-
string scenarios which are in accord with observation. The line
a=yGp/c intersects the AC Nucleo line at Gp/c =7X 10
and intersects the AC Pulsar line at 2X 10 . Constraints to the
cosmic-string parameters, based on the nucleosynthesis and pul-
sar timing limits found by previous authors, are shown for com-
parison. The Brandenberger-Kung pulsar constraint is valid for
a))yGp/c . The Bennett-Bouchet pulsar and nucleosynthesis
lines are valid in the limit a ~ yGp/c . (A more stringent pul-
sar timing constraint has been obtained using recent, unpub-
lished observational results [36]—see Figs. 7 and 8.)

Nucleosynthesis Constraints
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FIG. 2. Nucleosynthesis constraints to cosmic strings are
shown. Curves a, b, c, d, e, f, g represent contours of constant
N„ for 3.1, 3.2, 3.3, 3.4, 3.6, 3.8, 4.0, which intersect the line
a=yGp/c at Gp/c =2,4, 6, 7, 10, 13,16X10, respectively.
The present limit requires N„& 3.4. Because of the uncertain-
ties in the standard model of nucleosynthesis, speculation re-
garding an inhomogeneous QCD transition, and the possibility
of a spectrum of relic gravitons, the limit on N„may change.
Thus, an array contours of constant N„are shown.

the limit N 3.4 may be overly optimistic. Rather,
N & 3.6—3.8 may be a more realistic, or at least a more
conservative bound [37]. In this case, the "standard" nu-
cleosynthesis constraint is, similar to the inhomogeneous
nucleosynthesis constraint, N &3.7. This requires that
Gp/c 1.2X10 at a=yG(tt/c .

It is also possible that there exists a thermal back-
ground of relic gravitons which decoupled from the
cosmological fluid at very early times (see, for example,
[10]). In this case the relic gravitons are described by a
blackbody fluid with temperature T„~„=[3.91/
106.75]'~ Tr contributing 0.1 light neutrino species to
the cosmological fluid at the time of nucleosynthesis. (At
the present time, this temperature would be T„l;,=0.91
K.) To adjust the limits on a and p in the event that this
relic gravitational radiation is present, one may simply
refer to the next contour of constant N, . Thus, the limit
on cosmic strings would change from N & 3.4 to
N & 3.3. At a=yGp/c, it is required that
Gp/c ~ 6X 10 in order that cosmic-strings agree with
observation.

In contrast with the constraints from nucleosynthesis,
the constraints arising from pulsar timing noise depend
very strongly on the way in which loops emit gravitation-
al waves. One of the features distinguishing our work
from others is that the spectrum of P„'s that we consider
contains a larger fraction of the gravitational-wave ener-
gy at higher frequencies. Our model of the emission of
gravitational waves by loops used in this paper has al-
lowed us to produce the power spectrum of the gravita-
tional radiation emitted by the loops of a cosmic-string
network for any set of parameters (as described in Ap-
pendix A). Before discussing the pulsar timing constraint
on cosmic strings, we will describe the characteristic
shape of the power spectrum, and discuss the behavior of
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time 2'(t „„„,) has present length

=(yGp/c )t „„„,.
Hence, the frequency of this peak is

f „k=2c /y GIJ,t „„„,. The amplitude of the peak in the
spectrum diminishes to a limiting value for decreasing a.
In Fig. 5, three spectra at fixed a and varying Gp/c are
shown. Both the location of the peak in the spectrum, as
well as the amplitude of the power spectrum, the energy
density in gravitational waves, are strongly affected by
the value of p. It should be clear from these figures that
both a and p play significant roles in determining the
amount of energy density within the frequency interval to
which the pulsar timing noise is sensitive.

It is straightforward to describe the effects on the
power spectrum (Fig. 4) for further decreases in a. Note
that the total gravitational-wave energy density produced
during the matter era approaches a nonzero limit for
a &yGp/c . Hence, if a is decreased below this value,
the shape of (and total energy under) the spectrum does
not change. However the entire curve moves to the right
(up in frequency). This results in a marked increase of
the energy density in the frequency interval at f,».
Hence, for a & yGp/c, the constraints arising from pul-
sar timing noise become more restrictive than for
a=yGp/c .

The constraint imposed by the millisecond pulsar ob-
servations serves to restrict the amount of gravitational
radiation which may lie within the logarithmic frequency
interval at f,b, . A contour in log&0(ct) —log, o(p, ) parame-
ter space of constant gravitational-wave energy density

Qs,(f,b, ) is shown in Fig. l. Along this contour, the
gravitational radiation produced by the cosmic-string
network in the logarithmic frequency interval at f,b, is
the maximum allowable by the pulsar timing, at the 95%
confidence level. (This confidence level is associated with
the statistical methods used to analyze the observational
pulsar timing data. ) As explained above, points which lie
below the contour satisfy this observational constraint.
For large values of a, the contour lies near the limit pro-
duced by Brandenberger and Kung [31]. Notice that our
curve yields a weaker constraint than their work. For de-
creasing loop size a, the contour flattens out. At
a=yGplc, the constraint is Gp, /c 2X10 . The
asymptotic limit to this contour is well below the con-
straint given by Bennett and Bouchet, in the limit
a « yGp/c . This is partly due to the different model of
gravitational-radiation emission used in our calculation,
as will be explained below. We also find that for
n ) 8 X 10, Gp/c = 10 is inconsistent with observa-
tion.

The dramatic tightening of the pulsar bound in com-
parison to the results of Bennett and Bouchet, as was
shown in Fig. 1, comes about for two reasons.

First, we have used a different model of the emission of
gravitational waves. Most previous studies assumed that
all power is emitted in the n =1 mode of oscillation. In
our model the power emitted in each mode of oscillation
n behaves as P„~n . In Fig. 6 we reproduce the pul-

Dependence on P„
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FIG. 6. The pulsar timing constraints for different power-law

dependencies of the power coefficients P„are shown. P„~n

for q=7/6, 4/3, 3/2, 5/3, 10 are shown. For increasing q, the
sum of the P„'s converges more rapidly. Also shown is the con-
straint produced by Bennett and Bouchet [19]for which q~ 00;

all power is emitted in the n = 1 mode of oscillation.

4X10 h at 95% confidence,
9X10 h at 68% confidence . (4.1)

The new figures, after 8.2 years of observation, are [36,39]

Q,[f,b, =(8.2 yr ')]
T

1X10 h at 95% confidence,
2.5X10 h at 68% confidence . (4.2)

sar constraint of Bennett and Bouchet, and the contour
of constant Q,(f,b, )=4X10 for models of the emis-
sion of gravitational radiation in which P„~n ~ for
q =7/6, 4/3, 3/2, 5/3, 10. As q increases, the fraction of
energy radiated in the n = 1 mode approaches unity, and
the position of the contour moves upwards. In our model
of emission, the first three modes of oscillation roughly
span a frequency interval fE [f,ef ]. For
q =7/6, 4/3, 3/2, 5/3, 10 these first three modes represent
=27%,47%,60%,70%,99% of the total radiation emit-
ted. For small values of q, it is a poor approximation to
assume that all the power is emitted in the n = I mode.

Second, Bennett and Bouchet obtained their constraint
by considering only the contributions to the gravitational
radiation produced during the radiation era. The con-
straints they obtain are of course correct; however our
constraints are tighter because we also include the effects
of the gravitational radiation produced during the matter
era. In fact, when a is slightly larger than 10 this
makes our constraints nearly three orders of magnitude
more restrictive. We have verified this explicitly in Fig.
7, where we show the constraint obtained for large q from
only the gravitational radiation produced in the radiation
era: we exactly reproduce the result of Bennett and
Bouchet.

Recent (unpublished) pulsar observations and analysis
have yielded an updated limit to the gravitational-wave
energy density. The current published limits are [5]

Q,[f,b,
=(7. 1 yr '

) ]
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Current Pulsar Constraints
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FIG. 7. The constraint curves are shown for all values of a,
including those much smaller than yGp/c . Note that these
curves all have their maxima near the dotted line a=yGp/c .
Various cases for the behavior of the power coeKcients
P„~n ~ are shown. The estimate curve shows the contour ob-
tained by using the analytic expressions derived in Appendix B,
with q = 10; this estimate yields the minimum constraint
Gp/c ~3.6X10 '. This is very similar to the limit obtained

by Bennett and Bouchet, as the gravitational waves are chiefly
emitted in the fundamental, n=1, mode. The exact curve
shows the contour produced by our numerical calculation for

q = 10; this calculation yields the minimum constraint
Gp/c &2.2X10 '. The back reaction of the cosmic strings
and gravitational radiation on the expansion rate results in a

slightly tighter constraint than does the analytic approximation.
The next two curves show the q =4/3, 7. 1 and 8.2 year observa-
tional constraints at the 95%%uo confidence level. The 8.2-yr con-
tour yields the minimum constraint Gp/c ~ 3 X 10

Future Pulsar Constraints
~
"'

I

The improvement by a factor of nearly 4 over previous
limits is much more than one might expect from the sim-
ple scaling discussed at the beginning of Sec. II. The add-
ed improvements beyond T scaling come mostly from
reduction in the "white noise" level of the experiment
[39]. The limiting contours for the above four cases are
shown in Fig. 8. Already, after 8.2 yr of observation, the
cosmic-string scenarios which require Gp/c —10 are
restricted at the 95% confidence level, and prohibited at
the 68% confidence level, under the assumptions of our
calculation. (Note that these limits were obtained by sta-
tistical analysis, assuming that the energy spectrum of
gravitational radiation had a frequency dependence of
II(f ) ~f, whereas our spectrum behaves like
Q(f) ~f '~ . This small change in slope should not
influence the pulsar timing limits on Q,(f,») by much
[39].) It is generally believed that the length scale of
structure on the long strings is limited to a fraction
yGp/c of the horizon length. For this reason, one
would not expect the size a of loops chopped off the long
strings to be much smaller. It is possible that the subse-
quent fragmentation of loops into smaller ones further
decreases a, although numerical studies of this effect by
Scherrer, Quashnock, Spergel, and Press [40] suggest that
the fragmentation process does not change the order of
magnitude of the length scale. However, for complete-
ness we show in Fig. 7 the limits of p for the entire
reasonable range of o;. (We assume that the fragmenta-
tion occurs after the loops have redshifted away their
peculiar velocities. ) As described earlier, the constraints
tighten considerably for a very small a.

It is interesting to ask how the pulsar timing limit
might improve in the future. In the absence of gravita-
tiona1 waves, and barring some unforeseen improvement
in the sensitivity of the pulsar timing measurements, it is
expected that the gravitational-wave limits will continue
to gain in sensitivity only in proportion to T 2 (rather
than T as mentioned in Sec. II). This is because the
observations have more or less reached a limit in which
"red noise" components with spectra f or thereabouts
will begin to dominate the timing residuals [39]. There-
fore, one might expect the 95% confidence limit to im-

prove with observation time as

-11
-6

log, o(tx)

I

-2 (4.3)

FIG. 8. Present and future constraints to cosmic strings due

to pulsar timing are shown. The present contours for 7.1 years
of observation (a) and 8.2 years (b) at 95%%uo confidence are
shown. The contour for 7.1 years of observation (c) at 68%%uo

confidence intersects the line a=yGp/c at Gp/c =3X10
Under the assumption that the pulsar timing limits will decrease
with observation time T in proportion to T beyond the 8.2-yr

limit, the 95%%uo confidence contours after 10 (d) and 15 (e) years
of observation are shown. The 10- and 5-yr projections intersect
the line a=yGp/c at GLM/c =2X10 and Gp/c =5X10
The contour 8.2 years (f) at 68% confidence intersects the line

o.'=yGp/c at Gp/c =5X10 . If Gp/c ) 10 is required
for a successful cosmic-string scenario, then the pulsar timing

limit may presently rule out cosmologically interesting cosmic
strings.

The constraining contours after 10 and 15 years of obser-
vation are also shown in Fig. 8. After 10 years, under the
various assumptions of our calculation, one may expect
the pulsar timing limit to prohibit scenarios which re-

quire Gp/c ) 10 . After 15 years, one foresees that

Gp/c ) 5 X 10 will disagree with observation.
In this paper, we have assumed that all the loops cut

off the string network at time t have the same length

al(t). This is an idealization: in a realistic string net-

work, the loops would have a distribution of sizes (as was

included in [18]). Here, we estimate the possible effects

that this distribution of sizes would have on the
gravitational-wave background.

For a one-scale model of a cosmic-string network, the
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distribution of loop sizes can be modeled by a probability
distribution function f(a). The probability that a loop is
cut off the network with a length in the range
[al(t), (a+da)l(t)] is given by f(a)da. Since loops are
strings shorter than the horizon length l(t ) the range of a
is aE[0, 1]. Because the total probability is unity, one
has fJ'(a)da= 1. One may now crudely estimate the

contribution to the gravitational-wave energy from a
family of loops whose sizes fall in the interval [a,a+da].
The initial energy of the loops is proportional to a, and if
a & yGp then the lifetime of the loops is also proportion-
al to a. During the lifetime of the loop, the energy densi-

ty of loops scales like a; after the loop has been con-
verted into gravitational waves, the energy density of
gravitational waves scales like a . Hence the total ener-

gy density of gravitational waves contributed by the farni-

ly is proportional to a f(a)da during the radiation-
dominated era, and a ~ f(a)da during the matter-
dorninated era.

Our assumption in this paper, that all the loops cut off
the string network at time t have the same length al(t ),
will yield the correct radiation-phase energy density in
gravitational waves (to within a factor of 2) if there exists
a value a „„forwhich

f ""a ~ f(a)da) —I a ~ f(a)da .
+mean 2 0

(4.4)

This "mean" value is then the appropriate one to use for
the purpose of these calculations.

The numerical simulations done to date have not given
clear or conclusive information about f(a). In two of the
three simulations (Allen-Shellard, Bennett-Bouchet) f(a)
cannot be determined: the loops are all formed at (or
quickly fragment to) the smallest size allowed by numeri-
cal resolution. In the third simulation (Albrecht-Turok)
the loop distribution functions "show evidence of scal-
ing. " Our prejudice is that loops probably fragment
quickly to very small sizes, and thus that a-yGp is like-
ly. However, further investigation is required to deter-
mine if this is really so.

We have also considered how the presence of small
scale structure (kinks) on the long cosmic strings may
change the rate of loop production, thus affecting the nu-
cleosynthesis and pulsar timing constraints on cosmic
strings. It has been shown that under certain conditions
the number of kinks per horizon-sized cosmic string
grows rapidly after the formation of the cosmic-string
network, reaching a constant value within —10 e-
foldings after tf. If the loop formation is primarily due
to the small scale structure, then at later times one might
expect a loop size of order a-yGp/c . The effects of
such behavior on the nucleosynthesis and pulsar timing
constraints is minimal: a network for which a-1 initially
and then drops rapidly to -yGp/c is not noticeably
different from a network which has a-yGp/c at all
times.

The gravitational radiation emitted by the long cosmic
strings and loops was examined in the recent numerical
simulation work of Allen and Shellard [23]. During the
(relatively) short time span of the simulation, they found
that the radiation rate per unit physical length of the long

Pcrit
(4.5)

In this equation, the values of a and p determine the con-
stant of proportionality and the exponent k, which
smoothly decreases in the interval k E [1,0] as
a &)yGp/v . Now, the pulsar timing bound behaves as
Qs,(f,b, ) rrh . Therefore, the pulsar timing limit on
Gp/c weakens for decreasing h. The limit roughly
weakens by the factor -6.5,2.5 for h =0.5,0.75, respec-
tively. Therefore, from Fig. 9, at a=yGp/c, the 7.l-yr
limit becomes Gp/c ~ 10 for h =0.5, and
Gp/c ~5X10 for h =0.75. The 8.2-yr limit becomes
Gp/c 2)(10 for h =0.5, and Gp/c 8X10 for
h =0.75.

Uncertainties in the values of the dimensionless param-
eters A, y, ( v ), and f„which we have used in our calcu-
lation will result in an uncertainty in the limits on a and
p. The uncertainties in the parameters are
A„d;„;,„=52+10,A „„,=31+7,y=50+15, (v )„d;„;,„

+0.04. By examining Eqs. (B2) and (B3) of Appendix B,
we can see the leading-order effect of a variation of these
parameters. The dominant effect is due to the uncertain-
ty in 3 and y; one finds that p, lies in the range
ps, & [0.54, 1.6]. To leading order, p „~[aGp/c 2]'~2.
Hence the error bars of our (log, o(p), log&0(a))-space
contours of fixed 0, extend 0.53= —2 log, o(0.54) below
and 0.41=21ogio(1.6) above our given contours. The

strings was fairly constant. This behavior appeared to re-
sult from the presence of small-scale wiggles on the long
strings, at a fixed physical length scale. If one can extra-
polate for several more orders of magnitude of expansion,
it indicates that the radiation rate by the long strings
might eventually catch up to that of the loops. However
the effects of gravitational back reaction on the long
string network should prevent this radiation rate from
becoming larger than the energy loss rate due to loop
production. In our paper, we have chosen to ignore the
effects of any radiation directly from the long strings, be-
cause this facilitates comparison with the existing litera-
ture, and because any such effects should not change the
value of Q, by more than a numerical factor of order 2.
This is because back reaction limits the minimum length
of any structure on the long strings to yGpt/c, so the
effects of long-string radiation are similar to those models
in which loops form with small a and then evaporate im-
mediately due to gravitational-radiation emission.

While we have chosen to present our results for a
cosmology in which the Hubble parameter h = 1, we have
also considered how the pulsar limits may change for
values h E [0.5, 1]. The gravitational-radiation energy
density during the radiation era is independent of the
value of h; the nucleosynthesis constraint is independent
of h. The energy density in gravitational waves present in
the matter era, however, does depend on h. We find that
the gravitational-radiation energy density as a fraction of
the critical energy density, present in the logarithmic fre-
quency interval at f,b, at the temperature T=2.74 K,
has the following dependence on h:
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Dependence on Hubble Parameter
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FIG. 9. The dependence of the pulsar timing constraint on
the value of the dimensionless Hubble parameter is shown. In
this paper, we have chosen to carry out the majority of the cal-
culations using h = 1.0. For smaller values of h, the pulsar tim-

ing constraint weakens. Curves a, b, c show the limiting con-
tours for the 8.2-yr pulsar timing constraint for
h =1.0,0.75,0.5, respectively. Curves d, e, f show the limiting
contours for the 7.1-yr pulsar timing constraint for
h = 1.0,0.75,0.5, respectively.

cumulative effect of using h =0.5,0.75 and the uncertain-
ty in the dimensionless parameters weakens the pulsar
timing limit minimum constraint on Gp, /c by factors of
—10,4, respectively.

V. CONCLUSION

The principal conclusions of this work are the follow-
ing. (1) The current model of nucleosynthesis requires
Gp/c &7X10 for a=yGp/c . This constraint tight-
ens for larger values of a . (2) The current observations
of noise in millisecond pulsar timing require
Gp/c &2X10 for a=yGp/c . Newer observations
of noise in millisecond pulsar timing require
Gp/c +3X10 for a=yGp/c . This constraint also
tightens for both larger and smaller values of a. (There is
no constraint if a (10;this value, however, is probably
unreasonably small. ) The pulsar timing constraint on
Gp/c weakens by factors -6.5, 2. 5 for choices of the
dimensionless Hubble parameter h =0.5,0.75. (3) The
millisecond pulsar constraint provides the tightest bound
on cosmic-string parameters a and p yet. We have
shown that much of this improvement over past calcula-
tions is due to our model for the emission of gravitational
radiation by oscillating loops. The motivation for this
model has been the results of the recent numerical work

by Allen and Shellard [23].
There is an additional constraint on cosmic-string net-

works. The experimental limits on the isotropy of the
microwave background radiation constrain the tempera-
ture perturbations that the strings would leave imprinted
on the microwave sky. These limits have been considered
by other authors [41] who obtain the bound
Gp/c ~5X10 . The limits found in this paper are
marginally tighter.

In the early work on cosmic strings, it was thought

that galaxies and clusters might accrete around string
loops. For historical reasons, Gp/c =10 was con-
sidered the minimum value for a cosmologically interest-
ing cosmic-string scenario. We have found that for
a ) 8 X 10, Gp/c ) 10 disagrees with observations.
This indicates that, given our assumptions regarding the
one-scale model of cosmic strings, and gravitational radi-
ation by the loops, cosmologically interesting cosmic-
string scenarios are ruled out for o; ) 8 X 10 . The
current belief is that these loops are too small to play an
important role. However the role of the long strings is
currently under investigation; wakes formed behind the
long strings may serve to initiate gravitational instability
and accretion [42,43]. While these wake models of struc-
ture formation appear very promising, it remains to be
determined what range of values of p are acceptable.
(The value used in recent work on wakes [43] is

GA/c =4X10 .)

We should also note, in concluding, that cosmic strings
with much smaller values of p may have other interesting
cosmological effects, especially if they are superconduct-
ing, or associated with baryogenesis. It may even be pos-
sible to evade the cosmological constraints we have ob-
tained if (1) cosmic strings decay in some other way than
via the generation of gravitational waves —as might
occur with global strings, or if (2) they are formed during
an infiationary epoch. However, these topics are outside
the scope of the present work.

We have also attempted to predict what the pulsar tim-

ing constraints on cosmic-string parameters might be
over the next decade. Assuming that the residual timing
noise remains constant, after ten years of observation, in

1993, for a=yGp/c, Gp/c )2X10 will be prohibit-
ed in order for cosmic strings to be consistent with obser-
vation. After fifteen years of observation, in 1998, for
a =y Gp/c, Gp/c ~) 5 X 10 will be prohibited.
Therefore, if the assumptions of our calculations are
correct, it appears that cosmic-string scenarios which re-

quire Gp/c )5X10 will be ruled out in the near fu-

ture.
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APPENDIX A

This appendix gives a list of the differential equations
which are integrated in our calculation. We also discuss
the numerical integration scheme, and the procedure
used to determine the number of loops produced by the
cosmic-string network. Finally, we present the method
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a(t ) =a(t )+8m Gp„,(t )/3c

1(t ) = l(t )a(t ) la(t )+c,
Ni„~,(t ) =2p„V(t )

X [cll(t) —(v )a(t)la(t)]/[carpal(t)],

(A 1)

(A2)

(A3)

Ei„p,(t ) =c'1J,f„a1(t)Ni„p, (t ) yGP—'cC„, ,,(t ),

Es,(t ) = Es, (t )a—(t ) la(t )+y Gp, cC„, ,(t ),
a(tf )=1,
1(tf ) 2ctf

Ni«p, ( tf )=0,
Ei„,(tf )=0,
Esr(tf ) =0 .

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)

used to produce the power spectra of the gravitational ra-

diation emitted by the cosmic strings.
The numerical integration scheme used to solve the fol-

lowing five differential equations was taken from [44]. A
fourth-order Runge-Kutta integration routine was used

for testing. A Bulirsch-Stoer integration routine was

used for production runs. We found both integration
methods to be stable; the numerical results were robust.
The Runge-Kutta routine produced results which agreed
to within a fraction of a percent with the results of the
faster Bulirsch-Stoer routine.

The dependent variables of the numerical integration
are a(t), 1(t ), Ni„,(t), Ei„,(t) and Es, (t ); the indepen-

dent variable is time t. The following are the differential
equations and initial conditions:

an array. We set N;(t, }=. 0. Then, up to the time step at

t EI, , N, (t.) total loops have formed since the beginning

of the interval. There are also loops present which were

formed in the previous interval I;,. Thus, the current

number of radiating loops at time t is the number of loops
formed during [te(t), t; ], plus the total number of loops

formed during [t, t]. This may be expressed as

Ci„p,(t ) = [N;,(t; ) N;—,(te(t ) ) j +N; (t ) . (A 1 1)

n 2 1l 2I'„=yf n dn f "n ~dn .
n=n 1

1

(A12}

At any given time, as long as the function P(t) decreases
(this is true for all our calculations), one needs to store
only two arrays of N, : one for the past interval (N;, )

and one for the present interval (N;).
The arrays of data stored at each time step in the past

interval I, , are t~(t'), Ni«~, (t'), and 1(t'). These are all

smooth, monotonic, slowly changing functions; we use

rational function and polynomial interpolation routines

[44] to find these quantities at any time t'EI, , These
values are subsequently used to obtain ci„,(t) in order to
evaluate the RHS of Eqs. (A4) and (A5), and to obtain the
length L(t, t') of all surviving, radiating loops in order to
calculate the gravitational-wave power spectrum.

The problem of calculating the power spectrum pro-
duced by the oscillating cosmic-string loops may be sim-

ply stated: "how much energy does each loop radiate
into a particular logarithmic frequency interval?" Now, a
loop of length L will radiate the power P„Gp c at the fre-

quency f„=2nlL. As was described in Sec. III, the

power coefBcients are given by P„~n . We approxi-
mate the sum of the P„'s from mode nl to n2.

Because the loops formed at any instant have sizes distri-
buted about the mean, replacing the discrete sum by a
smooth integral more realistically models the frequency
distribution of the resulting radiation. One may now cal-
culate the power emitted into any frequency interval

[fi,f2], such as the logarithmic interval bounded by

f,». We store any array of 150 bins, where each bin con-
tains the energy in the logarithmic frequency interval
[foe,foe +']. [With forethought, we choose
fo(t)e =f,»a(t~„)slca(t) so that the I =80 bin,
near the center of the 150 bins, will contain the energy
density used in calculating the pulsar timing limit. ] At
each time step, the frequency f and the energy in each
bin are redshifted, and the energy in gravitational waves
emitted by all loop modes in each frequency interval is
added to the respective bins. Each bin at frequency f
then contains f(dp, ldf ). The total energy in the bins is
in excellent agreement with E „obtained by integrating
Eq. (A5). We follow this procedure until T=2.74 K,
then normalize the energy in each bin by dividing by p„;,
in order to obtain

f dPsr

pcrit df

The above differential equations, except for (A2), were de-
rived in Sec III Equation (A2) is easily found by taking
the derivative of the integral for the horizon radius,
which was given before Eq. (3.1). All physical results are
independent of the choice of a(tf) In the abo. ve equa-
tions, V(t) is the comoving volume V(t)=a(t) L, where
L is a constant (all physical results are independent of L).
The total energy density of the Universe p«, (t ) is given in

Eq. (3.13). The energy density of the long cosmic strings,
p„(t), is given in Eq. (3.1). The mean velocity squared of
the long cosmic strings is (v ). The variable Ci«~, (t),
given in Eq. (3.11), is the total number of loops present at
the current time.

The current number of radiating loops, Ci, ,(t), is
different than the total number of loops, Ni„~, (t), be-
cause loops disappear after radiating all their energy.
The total number of loops produced between time tI and
t is Ni„,(t). In order to easily determine Ci„,(t), the
numerical integration is broken up into successive time
intervals I; =[t, , t, +i], where t;+i= tD(t, )and t—o=tf . As.
explained in Sec. III, tD(t ) is a function which determines
the time of death of a loop formed at time t, and te(t)
determines the time of birth of a loop which evaporates
at time t. The number of new loops formed since the be-
ginning of the interval I, , at each time step, is stored in
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APPENDIX B

+ t, d' r

G 2 a(t")d".
ts(t) dr t' Q(t )

(B1)

The first term integrates over the loops which were
formed between times tf &t'(t~(t), and are no longer
present at the time t. The second term integrates over all
the loops formed after time t~(t ) which are still present
at time t. It is very simple to evaluate this expression at
the time of nucleosynthesis:

In this appendix, we derive analytic estimates for the
energy density in gravitational radiation produced by a
cosmic-string network. These analytic expressions yield
results comparable to the results of the numerical in-
tegration which comprise the core of this paper. These
analytic estimates support the conclusions based on our
numerical calculations. These estimates are also useful
for showing the rough dependence of the energy density
in gravitational radiation on the parameters n and p, as
well as on other parameters which we have not varied,
such as 3 and y.

The one-scale model of a cosmic-string network, de-
scribed in Sec. III, allows us to put together simply an an-
alytic expression for the total energy density in cosmic-
string-produced gravitational radiation. In the following
calculation, we will set l(t ) =2cr in the radiation era and
l(t)=3ct in the matter era, such that
P=[1+f„acl(t)/yGpt] ' is time independent. Then,
t~(t)=Pt, and tD(t)=t/P. Thus, from Eq. (3.7) for the
rate of loop formation, we may write the expression

t~(t) dQl tD(t') a(t

Nucleosynthesis Approximation

BB Nucleo

bQ
Q -6—

-7
-5

logtc(n)

FIG. 10. An analytic approximation to the nucleosynthesis
constraint, as described in Appendix B, is shown. This approxi-
mation displays the same behavior as the exact, numerical con-
straint, differing only by a constant numerical factor caused by
the back reaction of the cosmic strings on the cosmological ex-

pansion rate. The constraint produced by Bennett and Bouchet
[19],which is valid in the limit a @GAL/c, is shown.

calculate the contributions to the spectrum of gravita-
tional radiation in both the radiation- and matter-
dominated eras. Thus, in addition to an expression of the
form of (B1), there will be a similar term for the matter
era, in which tf is replaced by teq and t„u, is replaced by
t „„„,. Making these changes, and integrating Eq. (B1),
the contribution from the matter era is

G 2

gr cnt matter 4~ 4

X[3(P ' ' —1)[13' ' (r„/t „„,„,—)' ']

G 2

P~ I~„„,= Ay ~, [1—(v')]
g crit nuc 9 4

X [(P '"—1)ln(Pr„„,/rf )

+—', (P —1)+1nP] . (B2)

(B3)

In order to sum the contributions to the gravitational-
radiation energy density from both eras, we must evalu-
ate Eq. (B2) at the time of equal matter and radiation,
redshifted to the present. Therefore,

It is important to remember that P depends on p and f„a.
The leading, logarithmic term of this expression gives the
results obtained by Brandenberger et al. and Davis, for
the calculation of the nucleosynthesis constraint. The
full dependence of the constraint on p and a due to this
analytic expression is shown in Fig. 10. In computing
this contour, we have included a numerical correction for
the change in the number of degrees of freedom from the
time tf to the time t„„, Thus, the RH. S of Eq. (B2) is re-
duced by the factor [g(Tf )/g( T„„,) ]'~ =(106.75/
10.75 )'~ =2. 15. We find that the analytic contour
displays the same behavior, and lies very close to the nu-

merically determined contour. The remaining differences
arise from the effects of the back reaction of the cosmic
strings and gravitational radiation on the cosmological
Auid, the cosmological scale factor, and the horizon ra-
dius.

A similar calculation may be carried out to determine
the energy density in gravitational radiation in the loga-
rithmic frequency interval at f,b, . It will be necessary to

—1

PgrPcrit i present PgrPcrit i matter +PgrPcrit eq ( eq + (B4)

Power Spectrum Approximation

-6—
hb

CL

7
CL.

CO

bQo

ct Spectrum

Approximate
Spectrum

-9
-16 -10

log, c(f/Hz)
14

FIG. 11. An analytic approximation to the gravitational-

wave power spectrum is shown, using the cosmic-string parame-

ters ~= 10 and Gp/p =3.2 X 10
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Power Spectrum Approximation Pulsar Approximation
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FIG. 12. An analytic approximation to the gravitational-
wave power spectrum is shown, using the cosmic-string parame-
ters a=10 and Gp/c =3.2X10

gives the total energy in gravitational radiation as ob-
served at present, as a fraction of the critical energy den-
sity, as observed today.

In order to determine the fraction of the total energy
density in gravitational waves which lies in the logarith-
mic frequency interval at f,b„ the radiation- and rnatter-
era contributions are scaled to fit a power spectrum. As
seen in Fig. 3, the radiation-era contribution is limited
roughly to the frequency interval fE [fp„k,f,„].Here

C

f„al(tf) a(tp„„„,)

is the frequency of emission of loops at time tf in the
n =1 mode of oscillation, as observed today. The bounds
of this interval are the lowest and highest frequencies for
which the radiation-era contribution fits approximately
to a Bat spectrum. The matter-era contribution is fitted
to a peaked spectrum which behaves as

f Pgr f, i/3d

Pcrit

also seen in Fig. 3. Thus, given p and a, an estimated an-
alytic spectrum may be constructed using the equation

f dPgr 1 1/3
3 pgrpcri t ~ matter(f peak /f )

Pcrit
—1

+PgrPcrit ~ rad

X[(Z, +1)ln(f,„/f „k)] ' . (B5)

FIG. 13. Analytic approximations to the pulsar timing con-
straint, for both q = 10 and q =4/3, as described in Appendix B,
are shown. The constraint determined by Bennett and Bouchet
[19],valid in the limit a yGp/c, is shown. Overall, the ana-

lytic expressions yield a poor approximation to the exact, nu-

merical result.

A sample gravitational-radiation power spectrum pro-
duced in this way is shown in Figs. 11 and 12 for different
values of a and p. In the neighborhood of f—(7. 1 yr)
the approximate and exact power spectra do not agree
very well. The dip in the power spectrum at frequencies
just above f»a is due to the change in the number of par-
ticle degrees of freedom which occur before nucleosyn-
thesis. For the parameters n = 10 and
Gp/c =3.2X10 used in Fig. 11, the approximate
spectrum mimics the shape, but is not a very good fit to
the exact, numerical spectrum at the frequency f,b, . For
larger values of u, as was discussed in Sec. IV, the slope
of the peak in the spectrum softens rapidly near the flat
portion of the spectrum. The approximate and exact
spectra do not agree as well for large a. For the parame-
ters a=10 and Gp/c =3.2X10 used in Fig. 12, the
approximate spectrum is a poor fit to the exact, numeri-
cal spectrum at the frequency f,b, .

It is simple to determine the pulsar timing constraint
to cosmic strings in this analytic approximation; one need
only evaluate Eq. (B5) at f=(7. 1 yr) '. The constraint
on p and cz due to this analytic approximation is shown
in Fig. 13. For small values of n, the analytic estimate is
seen to be excellent. However, for larger values of a the
limiting contour does not agree as well with the numeri-
cal result. Thus, this analytic approximation has only
limited use.
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