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Cutoff quantization and the Skyrmion
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The putative classical soliton in the minimal nonlinear o. model (no Skyrme term) is known to be un-

stable to collapse. We note that the imposition of a short-distance cutoff (which is anyway physically
reasonable for a nonrenormalizable model) yields a stable classical soliton. We further suggest that this
cutofF, carrying as it does some implicit dynamical information, be treated as a quantized dynamical
variable. The resulting one- {experimentally fixed) parameter model agrees with experiment roughly as
well as the simple ~ model Lith the Skyrme term. We interpret this feature as an indication of the
robustness of the description of the nucleon as being dominated by a hedgehog-type meson cloud. It is
suggested that the same approach might be useful in some other situations where the long-distance
description of the physics is more precisely known than is the short-distance description.

PACS number(s): 11.40.Fy, 12.40.Aa, 14.20.—c

I. INTRODUCTION

Uo(x) =exp[ix rF (r) ] (1.2)

with F(0)=m, F( ao ) =0, and treats the baryons as excita-
tions of the variable A (t) defined from

U(x, t)= A (t)U, (x)A (t)

with A = A '. The "profile" F(r) is determined by the
minimization of the static Hamiltonian derived from
(1.1).

Since the first term in (1.1) is the one which is most
definitely established, it is clearly of interest to investigate
a possible baryon excitation associated with just this term
alone. However, as observed long ago by Skyrme [1],the
classical profile F(r) in such a case is unstable to rescal-
ing of the coordinates ("Hobart-Derrick" [2] collapse).
To overcome this he added a particular four-derivative
term. It seems to us, though, that it is still interesting to
pursue the question of solitons in the simple nonlinear o.
model (no extra terms). Several reasons can be given.
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There is now general agreement that the low-energy
effective Lagrangian for @CD has the leading term

2

I.= — Tr(t) UB U )+
F

(1.1)
8 P P

where F„=132MeV is the "pion decay constant" and
the 2X2 unitary, unimodular matrix U(x) describes the
pions. For simplicity, strange degrees of freedom and the
nonzero value of the pion mass are being neglected.
Physically, the leading term represents "long-distance"
e6ects. Including terms with more derivatives and addi-
tional fields should bring in short-distance dynamics. Re-
markably, baryons may be treated as solitons of the pure-
ly mesonic L,. One makes the classical Skyrme ansatz

(i) There is no special reason to expect that the Skyrme
four-derivative term is the only additional one. In fact, it
is rather likely that many, many others come into play at
short distances (not to mention explicit degrees of free-
dom). One would not like to mortgage one's theory to a
particular choice of additional terms.

(ii) The predicted collapse occurs at the classical level.
Can quantum fluctuations prevent this collapse as they
prevent the collapse of the S-wave state of the classical
hydrogen atom?

(iii) The simple o model may be a paradigm for several
other theories of interest. In particular, a topological ex-
citation ("geon") of pure Einstein gravity has similar
characteristics [3].

Recently an investigation [4] was made of the effect of
quantum fluctuations in a collective scaling variable in
the simple nonlinear o. model. It was found that, if one
assumed some a priori "reasonable" profile (which, of
course, could not be a classica1 solution of the equations
of motion), then, at the classical level, the energy func-
tional could be reduced to zero by collapsing this vari-
able, in agreement with expectations. However, quanti-
zation of the scaling variable definitely prevents collapse
in this mode. This is not the whole story since the field
theory contains an infinite number of collective modes
and one must check stability for all of them. In fact, it
was noted that there is an additional instability at the
classical level associated with allowing the profile to per-
sist for large values of r. It was suggested that a
confinement-type ansatz might solve this problem at a
phenomenological level. At a deeper level one would like
to investigate the full quantum theory with more than
just the scaling variable quantized. The full problem
seems very difficult. In the Appendix we give a heuristic
discussion which suggests that, at the level of two addi-
tional quantum modes, one still requires a confinement-

type ansatz. A similar program was, unbeknownst to the
authors of Ref. [4], earlier proposed by Carlson [5] using
a path-integral formulation.

In the present paper, we would like to take a slightly
different, though closely related track. We start by
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E=mF f r dr
E

2
dF 2+—sin F
dl'

p
2 (1.4)

stressing that the simple nonlinear 0. model is an effective
rather than a fundamental one. Indeed, it is not renor-
rnalizable. Hence, it seems rather plausible to work with
a short-distance cutoff e in the theory. The static energy
functional then takes the form

its analogy with the damped pendulum. Though a relat-
ed, but slightly different, observation has been made be-
fore in the literature [7], our approach in the presence of
a cutoff leads to a more transparent picture. One clearly
sees the existence of a classical solution when there is a
cutoff and its absence as the cutoff is removed.

Minimization of (1.4) leads to the following equation
for the profile F:

where the ansatz (1.2} was employed. With nonzero e
and the boundary conditions F(e)=m, F( ~ }=0, it is
easy to show that there is, in fact, a unique classical solu-
tion which minimizes (1.4). This solution does not exist
in the e~O limit, as is well known. We incidentally point
out that the analysis can be greatly simplified by noting
that a change of variable converts the equation of motion
resulting from (1.4) to that of the ordinary damped pen-
dulum (Sec. II). In addition, we explicitly check that the
static solution to (1.4) is stable (Sec. III).

As it stands, the present proposal has the advantage
that it yields a unique classical solution which can be
used as a starting point for the conventional semiclassical
quantization. The disadvantage is that it depends on the
quantity e. To overcome this problem we further argue
that a cutoff generally contains, if only by default, some
dynamical information. In the present case it gives a
schematic description of the short-distance dynamics we
have chosen not to include. As a carrier of dynamical in-
formation it seems logical for the cutoff to be treated as a
dynamical variable e(t) and to be quantized. This yields
a Schrodinger-like equation similar to the one discussed
in Ref. [4], but with a slightly different interpretation:
the scaling variable now measures the size of the short-
distance region rather than the size of the nucleon. Phys-
ical observables are, of course, to be obtained as expecta-
tion values with respect to the wave function for the e
variable. Since e is now a variable, there is only one pa-
rameter F in the model. Interestingly, we find that the
numerical results for the nucleon as a soliton in this mod-
el (Sec. IV) are very similar to those of the two-parameter
Skyrme model. We choose to interpret this feature as an
indication of the robustness of the concept that a "pion
cloud" plays an important role in the low-energy descrip-
tion of the nucleons.

The underlying spirit of the present model for the case
of the nucleon is clearly similar to those of the "chiral
bag" or "chiral quark" variety [6]. However, our ap-
proximation is a cruder one in the sense that we have
chosen to ignore the finer details of short-distance dy-
narnics. We feel that the present way of looking at things
is rather illuminating and furthermore, may be profitably
applied to various other theories of interest (Sec. V).

II. CLASSICAL BEHAVIOR:
ANALOGY WITH THE PENDULUM

As we noted in the Introduction, there is a unique clas-
sical solution minimizing the energy functional with a
short-distance cutoff given in (1.4). The presence of a
cutoff prevents collapse and leads to a stable classical
solution. In this section we check this fact by exploiting

r =sin2F .d 2dF
dr dr

(2.1)

This is a nonlinear differential equation, to be solved
respecting the boundary conditions F (r =e) =mand.
F(r = ~ )=0. Near the boundaries it can be linearized,
leading to simple differential equations. As r ~ ao, sin2F
can be approximated by 2F, while for r near e, it can be
approximated by 2(F—m. ). This yields the following be-
havior:

CX 1' E'F(r~e)-n. —————,F(r~ao )-P—,
3 E' 7.2 2

(2.2)

where a and P are two constants that do not depend on e.
To study (2.1) further, we look for an analogous system
whose behavior can be inferred from intuition. Introduc-
ing new variables r= ln( r /E) and 8=2( n —R, we can
rewrite the above as

d8 d8+ =2 sin8.
dr

(2.3)

In this form the equation is identical to that of an ordi-
nary damped pendulum. 8 is the angle measured from
the top, the unstable equilibrium point, of the pendulum's
orbit and ~ is time. The boundary conditions for the
profile are now translated into those of 8 as 8(v=0)=0
and 8(r= ~ )=2m. That is, as "time" runs from zero to
infinity, 8 covers the range from zero to 2n.. In other
words, the pendulum, pushed from the top, returns to it
asymptotically after making one full revolution. We wish
to argue that such a behavior is possible for a special
value of the initial velocity at which the pendulum is
pushed. Before we come to this, we may note that this
kind of motion is not typical for the pendulum. Being
damped, it will almost always end up losing all of its po-
tential energy and eventually reach stable equilibrium
hanging at the bottom of its orbit. Thus, the generic case
will rather satisfy the boundary conditions 8(r=0)=0
and 8(r= ao )=m.. In terms of the profile, what we have
just observed is that the generic solution of (2.1) ap-
proaches m/2, rather than zero, as r tends to infinity (this
is similar to the case of no cutoff, see Ref. [8]). We
checked this fact numerically, and the profile is plotted in
Fig. 1(a}. We find that the profile (or the pendulum)
swings past n. /2 (or the bottom of the orbit} before it ap-
pears to settle down.

We want the pendulum to return to the top in the dis-
tant future. If we push the pendulum from the top a little
harder, it will swing further past the bottom before it set-
tles down. This suggests that, if we push it with the right
velocity, it will swing just enough to reach the top. Then,
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yo'=o. —o —2cos2F. (3.7) not a suitable eigenfunction of the Schrodinger operator
in (3.4).

2+ Cy

1 —Cy
(3.8)

where the constant C depends on the boundary. Hence,
we will look numerically for possible solutions of (3.7)
obeying

Hence, finding any suitable cr will guarantee stability.
We note that, since cos2F~1 both as y~1 and as
y ~ ao, one has, near the boundaries,

IV. QUANTIZING THE CUTOFF

In the Introduction, we suggested that the cutoff pa-
rameter e be treated as a dynamical variable E(t). The
profile F(r) will then depend on t implicitly through e(t).
If we now follow Ref. [4], using the previously obtained
classical solution for the profile and taking account of the
angular variables A (t), we obtain the following
collective-coordinate Lagrangian from (1.1):

o(1)=finite, o(00 }=—1 . (3.9)

It is easy to find that a family of such solutions exist, a
few of which are shown in Fig. 2. Thus, we have checked
stability for classical solutions in the cutoff model with
the ansatz (1.2}.

A further remark must be added if the variation g goes
to zero at infinity as 1/3/y or slower, since, in that event,
the added term (3.5) is nonzero. However, from (3.9) the
added term is seen to be negative, so that 5 E is still posi-
tive as required for stability.

It might be amusing to note that the function u(y)
defined by

o (y) = —y ln[u (y) ],d
dy

(3.10)

0.0

—1.0

~ —2.0
b

—3.0

—4 0

In(yj

FIG. 2. Some solutions for the auxiliary function o for
different choices of initial conditions.

converts the Ricatti equation (3.7) into the Schrodinger
equation (3.4), but with A, =O. At first, one might there-
fore think that we are finding a zero-"energy" eigenvalue
of (3.4) by obtaining a nonzero o. However, it can be
seen that the u (y} obtained by integrating (3.10) and us-
ing the obtained cr(y) is not normalizable and, hence, is

L„i=ox —bx +cx Tr(AA ), (4.1)

b =~F'.f "y'dy dF 2 . 2+
2

sin F(y)
y

(4.2)

c = F f y dy sin F(y),
3 1

where y =r/e as in the previous section. Numerically,
we find their values to be 1.46, 0.78, and 0.91 GeV, re-
spectively. As in Ref. [4], we may now make a rough es-
timate for the energy using the uncertainty principle.
Neglecting the angular variables, we minimize the result-
ing effective energy

4ax
(4.3)

with respect to the mean value x. We obtain for the
ground-state energy a value 0.94 GeV that is quite close
to the mass of the nucleon. The cutoff e, given by x
turns out to be 0.18 fm; too small to agree with the size of
the nucleon (0.72 fm). This is, however, what we should
expect since the cutoff is a carrier of short-distance dy-
namics. The main contribution to the size of the nucleon
should come from the "size" of the pion cloud. If we es-
timate the isoscalar charge-squared radius from the iso-
scalar density 8(r) = —(2/m)F'sinzF, using the classical
F, as

(r )=f r dry(r)

2 2 dF. 2= ——f y dy sin F(y)e =3.42@3, (4.4)
1

we get, for the size of the nucleon, (r2)'~2=0. 33 fm,
which is still small. More careful analysis gives better
agreement, as we will see.

To obtain reliable results, one should solve the
Schrodinger equation for the problem at hand. The
Hamiltonian operator derived from the Lagrangian (4.1)
reads [4]

1 8 3 8 +b 2/3+ I(I+1)
( )

4ax 3

where the dot refers to differentiation with respect to t
and x is related to e as x =e . The coefticients a, b, and
c are given by

'2
4m F2 ~

4d dFF ydy
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which is in good agreement with the observed value of
1.23.

It is clear that the predictions of this one-parameter
model are of similar quality to the ones obtained in the
usual [10] two-parameter Skyrme model with the Skyrme
term. As in that model, the nucleon mass is predicted
somewhat too high when the physical value of F is used.
Multiplying F by 0.61 would bring the N(940) and
6(1232) into agreement, but there is no special logical
reason to do so.

V. DISCUSSION

Our intention has not been to propose a model which
gives a better numerical fit than the standard Skyrme
model, but rather to demonstrate that the main results of
the Skyrme model are not very sensitive to details of the
short-distance physics. Certainly, the addition of detailed
models for the "core" region containing various higher-
derivative terms, vector and perhaps other mesons or ex-
plicit quarks involves new parameters which can be ex-
pected to enable one to fine-tune some of the predictions.
In common with other models which do not include ex-
plicit quarks in the core region, the nucleon mass comes
out substantially higher than experiment. Physically
[ll], explicit quarks can occupy negative-energy levels
and overcome this problem. This might be mocked up by
an overall energy subtraction. From a practical point of
view, the present model has some similar features to
those [12] in which the breathing mode is quantized —the
"radial" wave function now refers to the cutoff or "core"
size rather than to the actual nucleon size. It should be
remarked that the only numerical parameter in the
present model is F, which is taken from experiment.
One might regard the choice F(e)=nas a speci.fic value
of F (E), considered as a parameter; however, it is certain-
ly a natural choice.

The present approach may be useful in other problems
where, either for simplicity or lack of knowledge, one
wants to suppress information about the physics at short
distances. There are many possible examples: One might
like to include vectors in a simplified way in the chiral
Lagrangian, thereby presumably pushing the unknown
region [i.e., (e) in Eq. (4.7)] to still smaller distances.
One might want to investigate higher winding-number
solitons with the quantized cutoff. One might like to
study possible solitons in the electroweak theory wherein
the quantized cutoff could describe something like tech-
nicolor physics. As already remarked in Sec. I, the tech-
nique might enable one to study the dynamics of gravita-
tional solitons, e representing either an unspecified
short-distance modification of Einstein gravity or a non-
perturbative effect of that theory which would enforce
stability.

In this paper we have discussed a concept related to,
but not identical with, quantum stability for solitons in
the minimal nonlinear o model. We did, however (see
the Appendix), give a heuristic discussion of the "pure"
quantum stability problem in which two parameters
characterizing the profile were treated as quantum vari-
ables. The suggestion was that a "confinement"-type an-
satz was still required for stability.
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APPENDIX

Here we present a brief heuristic discussion of the
quantum stability [4,7,8, 13,14] of the soliton for the sim-
ple nonlinear o model [first term of (1.1)] without cutoff,
but where tao quantum degrees of freedom are taken into
account. In Ref. [4], it was shown that a "reasonable"
profile leads to a soliton whose classical collapse would be
prevented by quantum fluctuations of a scaling variable.
But, if the profile were allowed to develop a tail behaving
like r ~ for small 5, it was shown that the soliton
could be collapsed. However, 5 was treated as a classical
parameter rather than as a quantum variable. It was
speculated that a "confinement" ansatz restricting the
profile size might lead to a satisfactory picture. In Ref.
[13], it was shown that a different parameter C could be
varied to collapse the soliton. Again, this was not a true
test of quantum stability, since C was not quantized.

We now consider the profile shown in Fig. 5 character-
ized by the variables R

&
and Rz. Note that the length of

the straight line hinged at F(0)=n is taken to be n. This
choice enables us to investigate the possibility that the
profile itself may collapse to the two axes (when R t

—+0).
Explicitly,

(6 FQ )' —r &R),

(~2 F2~ 2 )1/2]
R) —R2

0, r&R2 .

R) (r (R2,

(A 1)

Rg

FIG. 5. Profile for the heuristic discussion of the two quan-
tum variables case. r is in units of E
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Making the approximations

R, «, R, «R2F„' (A2)

setting

12m . 4m

R 3R 3F6 '
R 4R 2F6

——sin F2 2
2

(which clearly do not interfere with a possible collapse of
the profile itselfl and substituting into the Lagrangian

2 2
dF dF

o dt dr

Finally, using this in the Hamiltonian arising from (A4),
we find an expression for the quantum energy"

8~E „(R„R~)=
R iR2F

yields

(A3) ++F
F~ )R2+1 R)+

3 4m
(A7)

F4 3R
z

20m

7r' F
+1 R) — 2R )R2

4m

(A4)

F~'R2 . F'~'R2 .
mF2 5 30~2 & 20~2 2

For orientation, note that, if either R
&

or R 2 is held fixed,
there will be a stable nonzero minimum of E „with
respect to the other variable. This more or less corre-
sponds to the old result. The crucial question is whether
one can reduce E „ to zero when both R, and R2 are al-

lowed to vary. Inspection of (A7) shows that it is possible
to do so along paths in R, —R 2 space satisfying

1 1
~2

R) '
R2

(A5)

in natural units. This type of substitution was noted in
Ref. [4] to yield the correct order of magnitude in the one
variable case. With the neglect of the tr R, R i j5 term in

(A4) (which can be a posteriori justified}, it amounts to

We are neglecting the "rotational" (spin, isospin} degrees
of freedom here. The canonical momenta are computed
from (A4) in the usual way, as P, =tJL lt}R,. In order to
obtain a heuristic treatment of the effects of quantum
fluctuations in R, and R 2, we simply substitute

2 Rk
(A8)

and taking R
&
~0. For such paths, R2~ ~ in the limit.

Thus, the profile itself collapses to the axes in this model.
It is amusing to note that a "confinement" hypothesis
would keep R2 finite by fiat and prevent the complete col-
lapse. Of course, the above result on quantum stability
must be considered highly tentative, both because only
two out of the infinite number of variables in the problem
were studied and because the two which were retained
were quantized heuristically.
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