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Nucleation and bubble growth in a first-order cosmological electroweak phase transition

K. Enqvist*
Nordita, Blegdamscej 17, DK 2100 Copenhagen, Denmark

J. Ignatius, t K. Kajantie, ~ and K. Rummukainen~
Department of Theoretical Physics, Siltavuorenpenger 20 C, 00170 Helsinki, Finland

(Received 16 August 1991)

We study the kinetics of first-order cosmological phase transitions assuming a four-parameter form for
the Higgs potential driving the transition. This leads to a phenomenological equation of state for elec-
troweak matter with a stable high-T phase for T) T, and a low-T phase for T& T, . The nucleation
probability of low-T bubbles, both critical and subcritical, is computed and their growth and coalescence
is simulated. We show that they can grow as deflagrations and that detonations are unlikely. Possible
front velocities and entropy production are studied. The results are applied to parameter values conjec-
tured for the electroweak phase transition and compared with those obtained for the quark~hadron
phase transition.

PACS number(s): 98.80.Cq

I. INTRODUCTION

Recently it has become increasingly evident that the
electroweak phase transition will play a significant role in
the generation of the cosmological baryon asymmetry

[1,2]. The symmetry breaking and CP- and B-violating
details of the finite-T phase transition are unknown, but it
clearly has to be of first order to provide the necessary
condition of thermal nonequilibrium. The purpose of this

paper is to study the kinetics of this electroweak (EW)
phase transition in cosmology.

Nonequilibrium phenomena can only be studied after
equilibrium phenomena are under control. In view of
this, the first task is to develop a phenomenological equa-
tion of state (EOS) for EW matter with the desired prop-
erties: a high-T phase h and a low-T phase l separated by
a first-order transition at T=T, and with associated
metastable superheated and supercooled branches.

The crucial parameter of the EOS is B ( T), the free en-
ergy density difference between the two phases. By
definition of T, it satisfies B ( T, ) =0. To obtain B ( T) we
shall use a mean-field expansion of the free energy density
of the electroweak system [3]. The mean field is the order
parameter P, which may be identified with some linear
combination of the Higgs fields, but in principle contains
also all the other fields in the electroweak theory. The
expansion is valid for T near T, and depends on four pa-
rameters, which, in principle, are to be determined by ex-
periment. By construction they thus are gauge indepen-
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dent.
The quark~hadron phase transition is also assumed

to be of first order and the associated cosmological phase
transition has been studied in detail [4—7], especially in
view of its effects on light element nucleosynthesis [8].
This transition is characterized by the fact that the latent
heat is very large, almost equal to the energy density of
the high-T quark phase at T„and that the number of rel-
ativistic active degrees of freedom changes considerably
at T = T, . The phenomenological EOS often used in this
context is the bag EOS, which in its simplest version cor-
responds to choosing B ( T)= ,'L (1—T /T—,), where
L =latent heat=48, B =bag constant. One-loop calcu-
lations of B(T), based on certain assumptions of the
QCD vacuum, have also been attempted [9—12]. In the
EW theory the latent heat L = —T,B'( T, } is small, much
less than the energy density of the high-T phase at T„
and the effective number of degrees of freedom g, is
essentially unchanged at T, . With the B ( T}derived from
the mean-field expansion our EOS will also apply better
the smaller L /g, is.

The form of the free energy expansion we choose can
also be motivated by considering the q-state d-
dimensional Potts model [13],which is known to have a
first-order phase transition for q &3. This is a lattice
model in which the spin on each site can have the value
o.; =0, 1,..., q

—1 and the energy of a link is —E if the
spins are the same at the ends of the link, zero otherwise.
If x; (with gx; = 1) is the probability of cr, , we can define
an order parameter s, O~s & 1, by

1+(q —1)s 1 —s
+i+0 (1.1)

q

so that the system orders itself to the state 0 (s ~ 1) for
T~O. The mean-field expansion of the free energy per
site then becomes
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f (s)—f (0)= — IC ds + Tin[1+(q —l)s]+ (1 s—)Tln(1 —s)q
—1 z 1+(q —1)s q

—1

g
—1

(qT —2 dk)s —,' T—(q—1)(q —2)s + ,', T—(q—1)(q —3q +3}s+

The crucial term giving rise to a first-order transition is
the cubic one, with its negative coefficient ——T. Our
mean-free expansion will contain a similar cubic term.

The parametrization of the effective potential V(P, T)
and the properties of the free energy-density difference
B ( T) following from it are discussed in Sec. II. Knowing
B (T) permits us to simply write down the EOS for EW
matter near T =T, in a simple form. This EOS can fur-
ther be approximated by including just the terms linear in
T —T, in B (T). Knowing V(P, T) permits one to com-
pute the nucleation probability. %'e show in Sec. III that,
in spite of it depending on four parameters, it can when

properly scaled be expressed as a function of one variable
only. Our formulation also permits us to discuss a re-
cently presented scenario [14] for first-order phase transi-
tions including subcritical bubbles in rather explicit
terms. Section IV discusses how bubbles are nucleated,
grow and fill the space. They can grow as deAagrations
or detonations and the possible velocities and associated
entropy production are discussed in Sec. V.

II. EFI'L'CTIVE POTENTIAL AND THE EQUATION
OF STATE

Qualitatively, we expect the equation of state of the
electroweak system to be like that shown in Fig. 1. The
system can exist in two phases, a symmetric high-T phase
with pressure pz(T) (= F/V ) (h—for high) and a low T-
phase with broken symmetry and pressure p1(T) (1 for
low). At the transition temperature T„

gM (T)= ~$ (T) (2.3)

V(P, T) can be written in the form
2

4 3A,
(2.4)

and there is a second degenerate minimum. Thus a solu-
tion of Eq. (2.3) defines T, . If M ( T)=y( T To ) a—nd

5( T)=aT are as given in (2.2) a solution

T2-
C

exists if

TO

2 cx
1 ——

9 ky

(2.5)

a 9
(2.6)

ky 2

We shall later argue that a /A, y actually should be less

ii p(T}

the form (2.2) of the free energy follows from the usual
large T/M expansion ([4] and Eq. (2.27) below) of the
free energy of an ideal gas of particles with mass M-((}.
Here we regard it as a phenomenological expansion with
physical and gauge-invariant expansion coefficients, and
we shall neglect any possible higher-order terms in the
expansion for V(P, T). If

pj, ( Tc ) =pt( T, ), L = T, [pz ( T, )
—p (T1, ) ] & 0, (2.1)

where L is the latent heat and p'(T) =s(T) is the entropy
density. For To &T & T, the system can exist in a meta-
stable supercooled symmetric phase and for T, & T & T+
in a metastable superheated broken-symmetry phase. We
shall write down an explicit phenomenological EOS at
the end of this section and study first its most essential
feature: the difference B(T) of the free energy densities
of the two phases and the effective potential leading to
this.

i& V(Q)

T(} T(- T+

(b)

A. Expansion of the eftective potential

An expansion of the free energy density leading to the
above phase structure is, in analogy with Eq. (1.2),

V($, T)= —,'M (T)P —
—,'5(T)P + ,'AP4—

high T low T
phase phase

v (T)
—B(T) ------------------—

v(T)=
—,'y(T To)P ,'aTQ + ,'—A,P———(2.2}

where $~0 and y, n, )I., and To are parameters [3].
~hen T ) To V(p, T) has always one minimum at /=0,
where V=O and the symmetry is unbroken. Note that

FIG. 1. (a) The equation of state with a first-order phase

transition and with two metastable branches; (b) the shape of
the effective potential (u(T), u (T), and B(T) are given by Eqs.
(2.9) and (2.14)].
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than about 2. Using Eq. (2.5) one can replace the com-
bination a /A, y of the parameters by the more physical
temperature ratio f'o ——To/T, (we shall often denote
quantities scaled by T, by a hat). It will prove convenient
to use Eq. (2.3) to define a function

v(0)=
1/2

TQ—
1/2

2 cx

9(1—f'o )

From (2.9) one finds the special values

(2.11)

9&M (T) 9 Ay To

$2( T) 2 az Tz

(2.7)

a 2 Q 1 au(T )= T—v(T )= —T—v(T )= —T-
3A, '' + 2A,

(2.12}

where the last form holds for cosmological expansion
with constant g~, tT =t, T, =tQTQ. The T dependence
of the results can often be expressed in terms of the func-
tion A, ( T), which satisfies A, ( T~ )=0, A, ( T, ) = 1,
X(T+ )=—', .

Parenthetically, it is also conceivable that
5( T)=const =a T„where T, is some fixed temperature
scale. Then, independently of TQ,

2 2
T2 —T2 l+

9 A,y

for all parameter values.
We shall next consider in turn the following quantities

of interest derivable from the potential (2.2).
(i) The value U ( T) at which the second minimum of the

potential occurs This. is the expectation value (P) of the
order parameter ("Higgs field" ) ((}.

(ii) The value —8(T)= V(v(T), T) of the potential at
this second minimum. This is also the difference between
the free energy densities of the two states of the system:

and Fig. 2 shows the full T range. One observes that
u ( T) always starts increasing from T =0 and that it has a
maximum at the temperature

9(1—f'o }T2= ' T2=
91'o —1 4A,y /a —1

(2.13)

For TQ ~ T, the increase stops at small T far below the
metastability range and v ( T) starts decreasing with in-
creasing T as in Fig. 2. For To/T, =V5/3, T, =To,' de-
creasing T /T, to 1/3 moves T„ to ac. For these small
values of o, v ( T) actually increases practically linearly
with T over the metastability range. Again, this is rather
unnatural and would imply that the higher-order terms in
the expansion (2.2) are important. Hence To/T, should
not be too small.

For minus the value of the potential at the second
minimum one similarly obtains

8 ( T)= —V(v ( T), T)

pt (T) ps (T)=& (
—T),

sl ( T)—ss ( T)=B'(T) .
(2.8)

T4 [ —'X ( T)——3A, ( T) + 1+[1——'X( T) ]

(2.14)

(iii) The correlation lengths in the low- T phase,
lI = 1/V V"(U ( T), T) and in the high-T phase,
lh =1/M(T).

For v ( T}one finds

with the special values

(2.9)

The maximum of V (Fig. 1) is at U (T), obtained by
changing the sign of the square root. Thus a second
tninimum only exists if X( T) ~ —'„ i.e., for

8TQT2& T2
9TQ —1

(2.10)

Above T+ the superheated metastable low-T phase does
not exist. One observes that the parametrization (2.2)
does not permit one to fix the physical temperatures TQ,
T„and T+ independently. Second, when TQ/T, de-
creases, T+ increases and even goes to infinity when
TQ/T, =

—,'. It is physically quite unlikely that the meta-
stable superheated I phase could exist at T&&T,. We
thus conclude that the parametrization (2.2) should not
be used for too small TQ/T„certainly not down to
TQ/T, =

—,'.

0 i -TB (T)

t

0.2 O.I.
I

08
T

1

Tc

FICx. 2. The functions v(t) [scaled by aT, /(2A, )], B(T),
TB'( T) [scaled by —a T, /(4A')) and l„lz [scaled. by

V 2A/(aT, )] plotted for TO=0.9T„T+=1.015T,. The curves
are plotted for the whole range 0( T (T+ although the meta-
stable phase only exists for T ) To.
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B(0)= 7, 8(T )= ) 7
4A,

'
4g2

7 = &(T2—7 2)

a4
48(To)=, T(),

12K.

a4
B(T,)=0, 8(T+ )= — T4+,

192K.

(2.15)

which replaces (2.6). Physically, this is the same condi-
tion as the usual condition for the validity of the Landau
free energy expansion: this is an expansion in the order
parameter, which thus should be small compared with its
value at T =0, which implies that T should not be too far
below T, . Note that for second-order transitions there is

also an upper limit: T must not be so close to T, that fluc-

tuations would lift the system back to the high-T phase.
Now these fluctuations back are suppressed by the poten-
tial barrier.

8 '( T)= [ yT+—,
' av ( T—)]v ( T) (2.16)

where Tb defines the extremum of 8 (T) [see Eq. (2.17)].
Its derivative is given by

B. The equation of state

With the above definitions we can now write down our
form for the EOS for EW matter near T =T, :

8'(0)=—a1

3
TO, 8'( Tb )=0,

and has the special values
3/2

pi(T)=aT +B(T), p&(T)=aT

si(T)=4aT +8'(T), si, (T)=4aT

ei(T)=3aT +TB'(T) B(T)—, ei, (T}=3aT

(2.22}

TvB'( Tv ) = ——', (3f'v —1)1'iiL,

4 ~'r—T,B'(T, )=—
2 TDT, =latent heat—:L,

(2.17}

9(3f'v+ 1)
T+8'(T+)= L .

(9 —1)

The graphs of TB'( T) and 8 ( T) are also plotted in Fig.
2. Since B(T) is the difference between the stable and
metastable minima, one expects it to increase when T de-
creases below T, . However, this happens only until Tb,
below which 8 ( T) decreases when T~0. Again, this un-

physical behavior is kept far from the range of metasta-
bility if Tv /T, is not too small.

For the correlation lengths one obtains, in the low-T
phase,

—= V"(v(T), T)1

j'2

2

T~[1—
—,'k( T)+ }/ 1 —

—,'A( T)] (2.18)

and, in the high-T phase,
2—=M (T)= T —A(T), To& T .

2A, 9
(2.19)

These are also plotted in Fig. 2. At T = T, both correla-
tion lengths are, as a special property of this quartic pa-
rametrization of the effective potential, equal:

cz 4
2A, 9

(2.20)

We have thus seen that, in the parametrization (2.2),
v ( T) and 8 (T) decrease when T increases from To to
wards T, if To) &5/3T, or To) T, /&3, respectively.
This is what one physically expects: more symmetry for
increasing T. The former condition To )0.74T, is

stronger and implies

Thus the range of validity of the EOS increases with de-

creasing L and increasing number of degrees of freedom
-a.

In view of the complexity of 8 (T) it is also useful to
present an even simpler version based on the approxima-
tion

T L T2
8(T}=L 1 — =—1—

T, 2 T2

The quadratic form is more convenient since then only
T and T appear in p and e. This leads to the EOS

4 L T
p (T)=aT +—1—,p (T)=aTI 2 T2 h

C

s, ( T) =4aT3 L, sh( T) =4a —TT
C

(2.23)

where a =g, m /90, g, =106.75 for the minimal stan-
dard model (SM) (so that a =11.7). B(T) is attached
with the l phase since both exist only up to T=T+.
Note that due to the requirement 8 ( T, ) =0 and the equal
pressure condition (2.1) we must choose the same a for
the two phases in (2.22). This does not mean, without
specifying 8 ( T), that particles would be massless in the 1

phase. Many particles will get their masses at T„but
provided that v ( T, ) & T, the masses can be neglected at
the phase transition and hence all the relevant effects are
within the range of validity of (2.22) collected in 8 (T).
Note also that the mass of the quantum associated with
the order parameter is also less than T, in both phases if
r(1. This EOS cannot be valid for T((T„and for
some parameter values s& may become negative. The
least we should require is that si ( To ) )0, which accord-
ing to (2.17) implies

2

(3f'v —1) =(31'()—1) ~
& 1 .

a (2,
Ar

(2.21)
4 L T

e (?')=3aT —1+, e (—T)=3aT
h

C
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The expression for the entropy density of the 1 phase is
positive only for

one then obtains

T~
4aT4

1/2

Tc (2.24)
y = —/+3g +g' +2g

16 3 M2
(2.28)

Thus again the domain of validity increases with decreas-
ing L/a. In cosmological applications later the numbers
are such that Eq. (2.24) implies T R0. 10T,. This lower
limit is also seen in the sound velocity v, =dp/de:

T L/(4—aT, )

3T~—L/(4aT )

However, one can phenomenologically proceed even one
step further and approximate

r. T4
B(T)=—1— (2.25)

4 T4

This leads one directly to the usual bag EOS, used for the
quark~hadron phase transition, and conventionally
written in the form

p&(T)=a&T, pz(T)=aqT B

s&(T)=4a& T, s~(T) =4a~ T

&e(T)=3a& T, e (T)=3a T +B,
(2.26)

where q and h denote the high-T quark and low-T hadron
phases, B =L/4 is conventionally appended to the q
phase, and a&

—az =B/T, . Equation (2.26) is, in prac-
tice, much simpler than (2.22) and the reason for this is
obvious upon comparison of (2.25) with (2.14). The EOS
(2.22) can thus also be used to model the quark~hadron
transition, but then B ( T) has to be determined by some
other means [9—12]. Instead of (2.25) one may also use
[16—18] an approximation which amounts to replacing B
by AT, A =another constant.

C. Parameter values

From our point of view the parameters y, TD, a, and A,

are phenomenological parameters, to be determined by
experiment or observation. In principle, they are deriv-
able from the full microscopic theory. However, one can
estimate their magnitudes by using the one-loop finite-T
effective potential [15]and the large-T expansions

V~=T d3k
(1

—v k +M /T)
(2m )

2 2 3
T4+ M T —M T

90 24 12m

ln 1+e + +~
(2n. )

2 2
T4+ M T

720 48

(2.27)

where M depends on the mean field P. For the Higgs sec-
tor M may be negative and gauge dependent. To get an
estimate, we include the Higgs field simply as one scalar
field with M=v'2A, P. For the minimal standard model

(2g )3/2+ 2g 3+ (g 2+g i2)3/23 8

3277 3

We have above argued that one should not extend the ex-
pansion (2.2) down to T=O, it is only valid near T=T, .
Thus the coupling k appearing there need not be the
same as the usual zero-temperature four-point self-
coupling A, , related to the Higgs-boson mass in the
minimal SM by A, =—,'g M&/Ms . We shall use the rather
small number A, =0.006, to satisfy the baryon-number re-
tention bound [19], together with (2.28) evaluated for
g =0.6, g'=0 and M, =M~, as reference values:

y =0.1125, a=0.01934, A, =0.006 .

From (2.5) and (2.10) they lead to

TD =0.9364T T+ = 1 ~ 0089T

and to the combinations

(2.29)

2

=0.554,
Ay

a
A,

=41.6,

2
=1 17

A,
2

Q 3

5/2 2. 59

a4

A.
3

=0.648,
(2.30)

relevant for f'v, L, B (T), nucleation probability and sur-
face energy, respectively.

If the extension of (2.2) to T=O were allowed, one
could use the measured value v(0)=246 GeV and Eq.
(2.11) to relate the parameters by

T0=&t(,/y246 GeV . (2.31)

III. NUCLEATION PROBABILITY

The formula for the rate of tunneling from the metasta-
ble minimum at /=0 to the stable minimum at P= v(T)
(for TD(T(T, ) contains a dimensionful determinant
factor as well as a dimensionless exponential barrier
penetration factor [3]:

(r)
—s( ) (3.1)

Although this is not in the spirit of the present approach,
it may be of interest to give a set of parameters corre-
sponding to the minimal SM with M~=80. 6 GeV,
Mz=91.2 GeV, M, =M~=100 GeV. Then A, =0.0826
and from Eq. (2.28), a =0.0343, y =0.1844. From (2.5),
(2.10), and (2.31) then Tv = 164.6, T, = 166.1, and
T+ =166.3 GeV. The nucleation analysis of Sec. III
with a/A, =1.45 will show that the phase transition
takes place at Tf =166.0 GeV. However, for this set of
parameters the energy of the sphaleron configur-
ation, which is responsible for baryon-number-violating
transitions, is found to be E, z,&„,„(T,)/T,=1.56(4~/g)(2a/3A, )=8.4 and not )45 as required if
the 6B generated is to be retained [19].
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The former has not been calculated for the general pa-
rametrization (2.2), but one expects it to be of the order
of T . The barrier factor has been discussed in [3]; here
we observe that it can be written in a compact form by
expressing it in terms of the function A,(T}defined in Eq.
(2.7).

In general, in this effective theory, S(t) is the ex-
tremum of

'2

S(t)=—f dad x — +—(VP) + V(P, T)
1 Ã 3 1 d$ 1

fi 0 2 d7. 2

105

103

10'
r V/2

10-1

(3.2}

S3S(r)=
T

a 2m ~3/P(T)
g3/2 3

X f dpp [(f') +P g+ ,'—A(T)P—]

in the space of functions periodic in ~, and with the ap-
propriate boundary conditions. Simple approximations
are obtained by considering the large- and small-T limits.
In the large-T limit ptrt~0, fi cancels and, scaling the p
and x in (2.2) and (3.2) by /=3M g/25 and x =x'/M,
one obtains

10-3
0.0 0.2 0.4 0.6

A =(t,-tI/(t, -t, j

0.8 1.0

FIG. 3. The high-temperature classical approximation S3/T
to the barrier penetration factor, scaled with a/A, , together
with the two approximations in (3.3). For cosmological EW
transition nucleation takes place [Eq. (4.5)] when S3 /T
= ln(Mp&, „,k /T, ) = 160. For reference parameter values
(2.29) a/A, ' =41.6 so that nucleation happens at
A. =(to —t)/(to —t, )=0.5. For the set of parameters after Eq.
(2.31) a/A, ' '=1.4 and at nucleation A, =0.93.

29/2~ g3/2( T) SSC,
3 [A,( T) 1]—

4. 57K, ( T) LSC .
(3.3)

where

16~ o

[L (1—f')]

23/2 ~3
T3

4 5/23

(3.4)

(3.5)

Here the two approximations to the large-T approxima-
tion are valid in the small supercooling (SSC)
(T, —T « T, when the nucleation takes place) and large
supercooling (LSC) (T is somewhere in the middle of the
range Tc, T, ) limits. In the SSC limit we also have the re-
sult of classical nucleation theory:

temperature. Their ratio is plotted in Fig. 5. One sees
that S4 has the best chance of dominating when the sys-
tem has supercooled at least half way into the metastabil-
ity range T0, T, . Detailed statements can be made only
after giving explicit values for the parameters. This holds
also for the conditions S3/T »1, S4 &) 1, which must be
satisfied for the whole approach to be valid. For refer-
ence parameter values (2.29) these conditions demand
A( T) &)0.03 for S3/T and X( T) )&0.0001 for S„.

The standard nucleation mechanism of first-order
phase transitions is based on the consideration of true ex-
tremum bubbles. When the system is cooled towards T,
from above it remains entirely in the h phase even for
T, (T (T+, where the metastable I superheated phase
exists. True extremum bubbles start to exist only for
T ~ T, : for SSC they are of the thin-wall type
[P(r}=u(T)8(r„;,—r)] while for LSC they approach
Gaussians in r.

107

1 m A(T)
6 [A(T) —1]3

—45. 4A, ( T} LSC .1
(3.6)

is the energy/area of the interface between domains hav-
ing /=0 and P=v(T). The numerically computed ex-
tremal of the integral in (3.3) as well as the two approxi-
mations are plotted in Fig. 3.

In the low-T limit one similarly has

X T)S(t)=S4= f dpp [(Q') +P —g + —,'A(T)g ]

105-

Sl, g 103

101-

10-1
0.0 0.2

I

0.4
I

0.6 0.8

0/
0,~'

0,~'o
0

00
oooppO

000
pp 00000

ooppp .. . ..000
~qO . .--- --

00

1.0

This is plotted in Fig. 4.
The smaller of S3/T and S4 determines the nucleation

FIG. 4. The small-T O(4)-symmetric approximation S4 to the
barrier penetration factor in Eq. (3.2), scaled with 1/A, , together
with the large and small supercooling limits.
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0.05

0.04-

0.03-
Sg
T

s, vT
0.02- 0

0.01-

OOQOOOQQ
00 000

00 0
0 00

00 0
0 0

0 000 0
0 0

0
0 0

0 0
0

0
0

0
0

2/12

y, (r) =u(T)e
—r 2/Ih2

Pi, (r)=u(T)(1 —e "),
(3.7)

work out the kinetics of this scenario rather simply. As

in [14] we neglect the shrinking of false-vacuum 1 bub-

bles, which conceivably is the main objection to this

scenario.
Subcritical bubbles are defined as the configurations

0.00
0.0 0.2

I I

0.4 0.6
I

0.8 1.0

FIG. 5. The ratio S, /(TS4), scaled with a/v A, [=0.25 «r
reference parameter values (2.29)].

In [14] a modified scenario for the kinetics of first-

order transitions is suggested. This is based on the con-
sideration of subcritical bubbles. These bubbles of l
phase can be nucleated within the h phase even for

T, (T &T+. If they are nucleated with a suSciently
large probability, the system can be dominantly in the l
phase already at T, and the phase transition is washed

out [14]. Our forinulation of the problem permits one to

3I =—eh l4
h

(3.g)

siinilarly for I'I, where, inserting Eq. (3.7) into (3.2) and
(3.3),

where the first is a bubble of low-T phase I within high-T
phase h and the second vice versa. The bubbles have
Gaussian shape, size = correlation length of the phase
within the bubble, and central strength = u ( T). For
T, & T & T+ the I phase is only metastable and the Pi(r)
bubbles disappear rapidly. However, if the rate is large
enough, thermal equilibrium between false-vacuum Pi(r)
and true-vacuum Pi, (r) bubbles will be established. The
rate I'h(1/rn s) of nucleating a bubble (3.7) of / phase in

h phase can be estimated by

S3 S3 '" " a 3n' (1+z)'/2
16

1+ 1 —z
6z

2 &2(1+z)+
48z

(3.9}

S3 a 377 / (1+Z)
I

a'" S~Z v'1 —z

25/21+'
3

1+ 1 + 2
1 + 2 1 + 1+ 3 1 + 1 1+z

35/ 1 —z 25/2 33/2 32

(3.10)

where

z =+1—
—,'X(T) . (3.11}

dNI = V, ( NiI'i+Ns I'„—),
dt

(3.13)

The two actions (3.9)—(3.10) are equal =3.030a/A, / for
T=T„z=

—,'. They are plotted in Fig. 6. Since at the

transition temperature the correlation lengths are equal,
also the rates at T = T, satisfy

where V, =1/T3. Thus, in equilibrium,

10

r =r = T' -'"""'".
I h F1~2 c (3.12)

8

Comparing with the action for true extremals of low-T
bubbles in high-T phase in Fig. 3, one observes that the
numerical values are similar, about 2. 5a/A, /, in the
middle of the T0, T, range. Then the true extremal
configurations also resemble the Gaussians in (3.7).
Closer to T, the true extremum action is much larger; the
Gaussian configurations (3.7) are not extrema.

Consider now the numbers Nh and Nl of h and l bub-
bles in some large volume with N =NI+Nh =const. We
shall from now on assume that a11 correlation lengths are
lh =li =l =1/T, . Evidently NI satisfies the kinetic equa-
tion

4-

2

0.96

lip h

0.98
Tl Tc

I

1.00 1.02

FIG. 6. The actions S, /T of Eqs. (3.9) and (3.10), scaled by
a/A, , for subcritical bubbles of high-T phase h in low-T phase
I (and vice versa). The figure is for To =0.9T„corresponding to
T+ = 1.015Tc.
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d( —A) I l

where, taking T, —100 GeV and 1'o =0.9,

Thus

0 c ~Planck

Qg„T,
I 34—1 =e
0

34—s" /'T 34—s"zz —(s' —s')/'T &I=e ' —e ' (1+e ' '
)N d( —A) 1V

with the initial condition Nt [A, ( T+ ) =—', ]=0.
Using the numerical value from Eq. (3.12) or Fig. 6 we

thus have essentially two cases:

a )34 ~Nt(t) =0,

Nt'q(t) =N r„+r,
It is simple to write down the general solution of the
linear equation (3.13). To see the structure, it is con-
venient to change into the dimensionless variable
A, =(to t)/—(to t, )—defined in Eq. (2.7) and write

bubbles [20].
The integral in (4.1) can be estimated with steepest-

descent methods [4—6]. Physically even more transpar-
ent is to note [7] that h (t) is so rapidly varying that only
values of S ( t ') near t' = t matter. Expanding S ( t '

) in
powers of t —t' one obtains

3f
h (t)=exp ——m.u poe [S'(t)]'

provided that

—S'(t)(t t, ) »—1, S"(t)«2[S'(t)]

(4.2)

(4 3)

—S'(t )(t —t )
h (t) =exp( —e ), (4.4)

where the nucleation time tf (giving the corresponding
nucleation temperature Tf ) is determined by solving

For, say, S(t)=C/(t t, )t', —where C,p are constants,
both conditions are equivalent to S(t)»1. For S3/T the
derivative with respect to the scaled time

=( to, t)/( to
—t, ) is —plotted in Fig. 7.

We are interested in the behavior of h (t) when it ap-
proaches 0. Defining tf by h (tf )=1/e we obtain, from
(4.2),

a (34 ~N, (t) =NI"(t) .
(3.14) 4 3 31 s(t )

7TU pp =e
[S'(tf )]4

(4.5)

In the former case the reaction rate is so small that no
appreciable amount of I phase bubbles are nucleated in
the stable h phase, in the latter there is an appreciable
amount of them and, in particular, at T =T„
Nt(t, )=Ns(t, ). For the reference parameter values
(2.29) a/k ~ =41.6 and the reaction rates are by far too
small for any equilibrium subcritical bubbles. Hence sub-
critical bubbles are not very likely to play a dominant
role in the EW phase transition. The rates can be large
enough for small u, which anyway makes the transition
very weakly first order.

Note finally that the entropy density of the I bubbles is
smaller than that of the h phase bubbles [Eq. (2.22)]. At
T„sz(T, )=sI(T, )+L/T, . If appreciable numbers of I
bubbles exist above T„entropy conservation will also
modify the behavior R —I/T-v't of the cosmic scale
factor.

I

I (t) =p (t)h (t) =p (tf )e h (t)

P(tf) dh (t)
S'(tf ) dt

(4.6)

The total number of bubbles nucleated by the time t in a
volume Vthen is

10I

Numerically, the magnitude of the left-hand side is essen-
tially determined by t,po =t, T, =(Mp„„,k /T, ) = 10

Knowing h (t), the fraction of space in which new bub-
bles can be nucleated and the nucleation rate p(t) we can
write the rate of nucleation of bubbles in the form

IV. SIMULATION OF BUBBLEGROWTH
AND COALESCENCE

Bubble nucleation, growth and coalescence has been
studied in different contexts earlier [20—21]. Here we
present an outline of a Monte Carlo simulation of the
event sequence. At time t & t t T 0.3Mp~ g /Qg, ,
the fraction of space still in the unstable high-T phase is

10-1

10-3

10-5

10-7-

h (t) =exp — rru dt'p e "—'(t t')—(4.1)
0.0 0.2 0.4 0.6

(to t)ir(to tc)

0.8 1.0

where v is the growth velocity of the bubbles. The initial
stages, when u varies with time, are studied in [22]. The
exponentiation in (4. 1) accounts for the overlap of the

FIG. 7. The inverse of the derivative of S3/T with respect to
k, scaled with a/A, . Including the numerical factors from Eq.
(4.11) this gives the growth time of bubbles and/or Hubble ra-
dius [or from (4.10) the average distance of nucleation centers].
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p(tI)
N „„,(t)=Vf dt'I (t')=V, [1—h(t}], (4.7)

C f
which, using Eq. (4.5}, leads to the final density of bub-
bles: C

0

Pp
bubbles S (t }f

—s(ti) [ S—'( ti ) ]

3!4+v
3

(4.8)

Clearly R„„,& =nb„bb&„defines the average distance of nu-

cleation centers.
The above equations can be analytically solved for the

nucleation time tI (and temperature T&), the bubble
growth time ts„„,b= 1/[ S'(—ti)] and the distance be-
tween nucleation centers R„„,& in the case (3.4) of classi-
cal nucleation and small supercooling. Abbreviating

364m. 0.
(4.9}

3 L T, 3 A f g p
9 7/2 2 A4

where the parentheses refer to the EW case with the
reference parameters, one has

S(t)= A

(t/t, —1)'

tf A 1 /2—=1+ , =1+2 1—
ln' "(M4p„„,„/r,')

1
am~ S (t )

~
1 3/2(M4 /7 4)f p]anck c

R„„,&=(8m)' v/[ —S'(t&)] .

(4.10)

In the general case one has to proceed numerically, first
solving tI from Fig. 3. Then, from the definition (2.7) of

Oo

FIG. 8. A two-dimensional simulation of bubble growth. If tI
is defined by area covered by bubbles =1-1/e, the three frames
of size (40Utg„w, h) show the bubble configuration at times

tf 4 5tg wth, tI 2.5tgrowth ty 0.5tg owth Bubble collisions
are neglected. To convert to physical units for the QCD phase
transition, one can estimate from (4.10) in terms of the Hubble
time t, (taking o =0.1T,'; L =10T, ) t„,w,„=t, /180000,
t, =10 JMs. For the EW phase transition with the reference pa-
rameters (2.29), from Figs. 3 and 7, tg th t /3600, t, =20 ps.

suitably in the simulation. Note that replacing
lnr +(l—nr ) = —1 implies r„+&=in cI+I n(n); if c&
=1/N;„„ the generation is terminated at r-0. (3)
Choose a random location for the bubble within V. If the
location is within an earlier bubble, reject the bubble to
be. (4) Increase the radius of all earlier bubbles by
v (t2 t& ). (5) R—eplace t, by t2 and proceed to 2.

The result of one simulation is presented in Fig. 8. As
far as the conditions (4.3) are satisfied, simulations of all
phase transitions irrespective of the degree of supercool-
ing look the same: the physical units of time are given by
ts„„,„—= 1/[ S'(t/)] —and of length by vts„„,„. (See Fig.
9.)

V. COSMIC EXPANSION AND BUBBLEGROWTH
AS DEFLAGRATIONS OR DETONATIONS

tgrowth

7 o a dS/(a/& ) (4.11}

It is well known that the expanding bubble walls can
propagate as deQagrations or detonations. In their
analysis the most general problem one can study is what
front velocities are allowed by the general conditions of

where the derivative is plotted in Fig. 7.
Consider then simulating bubble nucleation and

growth in a constant volume V—the expansion of the
Universe can be neglected here. The simulation can be
based on the fact that the probability that there are no
bubbles nucleated in the volume Vin the time t, &t &t2
1s

p (t„t2)=exp —f dt Vp (t)
1

(4.12)

p(t„t2)=r . (4.13)

This is the time when the next bubble is nucleated. Writ-
ing r = S'(tI )t the approximate solu—tion of (4.12}is

The simulation can then proceed as follows. (1) Start
from some t& (= —ac ). (2) Generate a random number
0 & r & 1 and solve t2 from

1.0—

0.8—

0.6—

0.4—

0.2—

0.0—

1—exp

I. . . I

—4 —2
-~'(t~)(t- tt)

+I 1z =ln e '+c ln—2 f 4
(4.14)

where cf is a V-dependent constant which can be chosen

FIG. 9. The number of bubbles N, scaled by the final number
N+=20569, in a three-dimensional simulation in a volume

(80utg„„th) . To this accuracy the result of the simulation and
the curve 1 —expI —exp[ —S'(tI )(t t&)]] are ind—istinguish-
able.
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P, =Pg(T, ) =Pi(T, ) (5.1)

and expands by converting dense h phase to less dense l
phase with the energy densities

EH=@I,(T, )=3aT, =EL +L =@&(T,)+L . (5.2)

Tc

energy-momentum conservation and entropy increase.
For the bag EOS (2.26) for QCD matter this analysis has
been carried out in [23]. Here we shall do the same for
the EOS (2.22) [or (2.23)] for EW matter.

Inserting more information on the interface permits
one to make statements on the impossibility of strong
defiagrations and rarity of weak detonations [24]. Ulti-
mately one should be able to determine a definite value
for the front velocity from microscopic considerations.
Here we shall confine ourselves to the general analysis.

An important parameter in a first-order transition is
L/eH, the ratio of the latent heat and the energy density
of the high-T phase at T, . For QCD this is 5 1, for the
EW theory ((1. To assess the effects of this difference,
it is useful to consider the simplest way of going through
a first-order phase transition: one assumes that the tran-
sition is infinitely slow and follows the equilibrium EOS
with no supercooling. In the cosmological situation the
temperature first decreases (Fig. 10) by dilution down to
T, at the Hubble time t, =l/(&16m. aGT, ). After this
the Universe stays at a fixed temperature T = T, and
pressure

The time this takes can, from the Einstein equations, be
computed to be [25]

tP~ tc 4
t 3 p

1/2

arctan
H

Pc

1/2

—arctan

2 a2y To

27a $2 T2
c

1/2
e —LH

Pc

(5.3)

where the approximation holds for L ((eH, Eq. (2.17)
was used for L and the numerical value is for the refer-
ence values (2.29), i.e., a y/A, =1.17, TO=0. 936T, .

An equilibrium transition would thus last for much less
than the Hubble time. If the transition did not take
place, the Universe would during the time tpy t, super-
cool (Fig. 10) down to the temperature Tp~
=T, —T,L/4tH This .may be very close to the upper
end of the metastability range T, (T & T, . In view of
the earlier nucleation calculations it is quite likely that
the nucleation temperature Tf is actually considerably
below T, within the metastability range To (T (T, [Eq.
(4.5)]. For the reference parameter values (2.29) we
would have Tp& =0.9975T, and Tf =0.97T, . Apart
from a possible entropy increase associated with the
phase transition, the Universe will follow
T- I/R —I/&t. In particular, the Universe will not go
through a period of constant T, . There may be impor-
tant supercooling effects and also detonations, which re-
quire more supercooling than de6agrations, seem to be
possible.

For the quark~hadron phase transition, using the bag
EOS (2.26), az/al, =(37+14.25)/(3+14. 25)=3 (14.25
corresponds to inert electron, muon, neutrinos and the
photon) and

T0 L /e& = (a~ —ah )/(a~ —
—,'ah ) =0.73 . (5.4)

tc tPT The duration of the equilibrium transition is, from (5.3),

(b) tpy —t 4 4a
g

ah

1/2

Tc
g C C X arctan

=0.99,

1/2
aq —1 —arctanv 3

ah

(5.5)

c etc

FIG. 10. (a) The schematic behavior of the temperature as a
function of time (log-log plot) in the EW phase transition. The
dotted line shows the path followed in an equilibrium transition
with no supercooling. In practice the transition takes place at
Tg with an associated small entropy increase. (b) The same for
the quark~hadron transition. After an initial turbulent period
the Universe is reheated approximately to T, .

just about the Hubble time. Now the phase transition
would be nucleated at a Tf which is very close to T, (Fig.
10). The bubbles would grow and fill the Universe with
the very dilute hadron phase almost instantaneously. In
view of the small amount of supercooling, detonations are
hardly possible. However, the Universe has not had time
to expand and cannot accommodate this amount of dilute
hadron matter —at least not without unrealistic su-
perheating. What happens, instead, is that the shock
waves preceding the deQagraton bubbles will reheat the
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Universe to T, and excessive hadron matter production is
impeded. Effectively, only small hadron-matter regions
with an average distance R „„,i [Eq. (4.8)] are formed and
the Universe stays for a long time at T=T, and expands
by converting matter from the dense quark phase to the
more dilute hadron phase —leptons and the photon are
inert.

After this general outline we shall discuss in more de-
tail the phase space available for explosive processes. To
do this, go to the rest frame of transition interface, as-
sumed to be planar, and define variables as shown in Fig.
11. Matter in the h phase with T = Ti, (which fixes pi„si„
and ei, ) enters the interface with velocity ui, and matter in
the I phase with T = Ti (which fixes pi, s&, and ei) leaves
the interface with velocity u&. A solution of the energy-
momentum conservation equations gives

v)

VoUt Vre[
0

0

4

0

T[ Th

(a)

Vdefl —Vh

PI Ph
Vh Vl

I 6h Vh

~h +Pl
~I +Ph

(5.6)

The physically possible values of TI, Th are determined
by vi ~ 1,vh 1 and by the condition of entropy increase
(l is the direction perpendicular to the interface)

FIG. 11. (a) The variables in the rest frame of the interface.
The sole thermodynamic variable T determines p, s, and e for
the two phases h and I via the equations of state (2.22)-(2.26).
(b) The flow lines for a one-dimensional deflagration.

sg =sIP)vh sh Ph Uh 0,
which can be written in the form

si TI 6I +ph

sh Th 6h +pl

The solutions can be divided in two classes,

deflagrations: VI & vh,

detonations: uh & VI,

(5.7)

(5.8)

(5.9)

and a solution with special properties is the one when
matter flows out of the interface with sound velocity:

Jouguet curve: vi =U,I .

To analyze the possible solutions on the Th, TI plane it is
useful to plot the curves

vh
—

Ul
—0, vh —ul —1, ~sl

and the Jouguet curve. This can be done analytically for
the simplified EW EOS (2.23) (and for the bag EOS (2.25)
[23]). The result is

ut, =u, =0: y =x'+L(1—x),
uh =vI=1: y =x —L,2 — 2

hsi&0: (x y) +L(x+y—+xy 'x 'y ) 'L (—1 ——x)&—0—, ——

Jouguet: y =x Lx+ ,'L+ ,'L—+ [ Lx——+(2L+L—)x (2L + 'L )x+ 'L—+ 'L +——'L ]'— —2

3 4 3 3 48

(5.10)

L L
T T 2p, 2aT,

These curves are plotted in Fig. 12 for L/2aT, =0.3.
Then the EOS is applicable only for T &0.38T, [Eq.
(2.24)].

The zero entropy change curve always goes through
the static interface point Th = TI =T, and in these
scenarios the phase transition usually takes place for T
close to T, . It is, therefore, of some interest to give the
behavior of the curves (5.10) for small L and to T close to
T, . One finds that

u„=ui =0: T„—1=(1—
—,'L)(T, —1),

1 ~ Th 1 TI 1 4L (5.11)
hsi &0: TI, —1 + —(1——2L)(T& —1),

T L
16aT,

(5.12)

For the reference set of parameters this demands initial
supercooling only to Th =0.9976T, while the phase tran-
sition is nucleated for Th =0.97T, . At these tempera-
tures there is ample phase space for both deflagrations

where units are as in (5.10).
The main conclusion from above is that for a small L

and large number of degrees of freedom detonations do
not require much supercooling. In fact, from (5.11) one
finds that detonations are possible for
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1.5
L = 0.3

def lag

1.0

0.5— 0.8

I I ~ I

0.6

0.0 0.5 1.0 1.5
0.4 0.6 0.8

Tg

1.0 1.2

FIG. 12. A plot of the curves (5.10) for L/2aT, =0.3.
DeAagrations lie below the hs& =0 curve (dashed) and above the
uz = vi =0 curve (continuous), detonations lie below the hs, =0
curve and to the right of the vt, =ui =1 curve. The dotted curve
is the Jouguet curve. The thick point is the point T& = TI = T,
corresponding to a stable stationary interface between the two
phases.

and detonations.
Consider then the EW EOS (2.22) with full 8(T).

Since the approximate EOS (2.23) includes terms linear in
T —T, in 8 ( T), difFerences to the more exact EOS (2.22)
appear when values of T further away from T, become
relevant. The first significant effect appearing is T+, the
upper end of the metastable superheated l phase. This is
very close to T, and its existence implies that detonations
allowed by the simpler EOS (2.23) actually cannot hap-
pen.

Results of a numerical evaluation of Eqs. (5.6)—(5.8)
are shown in Figs. 13—17. Figure 13 shows the situation
for the reference parameter values (2.29). In addition to
the curves discussed above the figure shows curves of

1.02

FIG. 14. As Fig. 13 but for A, =0.001. Now Jouguet detona-
tions are possible.

constant UI. For these parameter values T+ =1.008 89T,
is so close to T, that Jouguet detonations Ui=u, i are not
at all possible: they would demand superheating the I
phase to temperatures at which this phase no longer ex-
ists. Since UI grows monotonically going to the left from
the Jouguet curve, only detonations with vi & U, &

("weak
detonations") are at all possible.

To expose the hydrodynamical effects more clearly we
have in Figs. 14-17 decreased A, to 0.001 for which
TO=0. 5113T„T+=1.243T„nad L/(2aT, ) =0.2087.
Curves of constant UI, vh, and v„& are shown in Figs.
14-16. Note how the special role played by the Jouguet
curve is clearly seen in Fig. 15: at fixed Tl„vi, has a
maximum (minimum) for deflagrations (detonations)
along the Jouguet curve.

The amount of entropy created in the interface per unit
area and time is shown in Fig. 17 on the TI, T& plane. It
varies mildly from deflagrations but blows up for detona-
tions approaching the v& =vi=1 line. For deflagrations

1.00 1.2

0.98

0.96

0.94
0.94 0.96 0.98 1.00

FIG. 13. Curves of constant vi on the TI, Tz plane for the
values of parameters marked on the figure. The dashed curve is

the 4s~ =0 curve, the dotted curve is the vi =u, i Jouguet curve
and the thick point is the static TI = TI, = T, point. For
A, =0.006 T+ is so close to T, that Jouguet detonations are not
possible.

FIG. 15. As Fig. 14 but for curves of constant ui„which is
also the velocity of the deflagration or detonation front propa-
gating into h matter at rest at temperature Tq.
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1.2

a = 0.0193
q = 0.113
A,

—0001
~ 0

1.0 1.0

0.8 0.8

0.6 0.6

0.60.4 0.8 1.2
Tt

FIG. 16. As Fig. 14 but for curves of constant U„& which is

also the velocity of the I matter ejected by a deflagration or de-

tonation front propagating into h matter at rest at temperature

Tz. The change in sign implies that a deflagration ejects the
matter in a direction opposite to the front itself [Fig. 11(b)], a
detonation to the same direction.

1.0

VI. CONCLUSIONS

We have in this paper studied the kinetics of first-order
phase transitions using as the starting point a Landau-
Ginzburg-type mean-field expansion of the free energy
density of the system. The expansion depends on three
dimensionless parameters y, a, and A, and on temperature
To the lowest temperature of existence of the high-
temperature phase h. These parameters fix the coex-
istence temperature T, and the highest temperature of

entropy production is maximal (at fixed Tz and varying

TI }along the Jouguet curve, for detonations it is minimal.
The results of this section show that, from the point of

view of general conservation rules and for reasonable pa-
rameters for the cosmological EW phase transition, there
is ample phase space for the phase transition proceeding
either as a deflagration or detonation. One interesting
detail is that the closeness of the upper limit T+ of the
metastable superheated branch of the l phase to T, may
reduce the phase space available for detonations and
leave only weak detonations. To clarify what happens in
these cases one should follow the acceleration of the walls
of the initially nucleated bubble using the numerical
methods of [22].

If one inserts some information on the structure of the
interface [24] one can conclude that processes in which
the velocity of the matter in the new l phase, flowing out
of the interface, is larger than the sound velocity, v~ & v,i,
are impossible. Deflagrations of this type (strong
deflagrations) never occur; detonations of this type can
happen under special conditions. The elimination of
strong deflagrations leaves a weak deflagration with a sin-

gle microscopically determined velocity as a possible
solution. In view of the above remarks on the effects of
T+ detonations may be completely eliminated as a possi-
ble mechanism.

0.4 0.8 1.2
Tc

FIG. 17. As Fig. 14 but for curves of constant entropy flux
Ls J through the interface, in units of T, (or 1/m s).

0.6 1.0
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existence T+ of the low-temperature phase l. The expan-
sion is valid for T near T„and the coefBcients, although

they may also be approximated by the one-loop form of
the finite-T effective potential, are in principle phenome-
nological coeScients to be determined from experiment
or observation.

For equilibrium phenomena the mean-field expansion
gives rise to an equation of state of the form
p&(T)=aT +B(T), ph(T)=aT . We studied the behav-

ior of B(T), B'(T), and U(T}, the value of the order pa-
rameter in the I phase, in detail. It is interesting to note
that also the corresponding quark~hadron phase transi-
tion in QCD can be modeled with a similar EOS, only
B(T) then has to be determined by different means

[9—12,26].
For kinetic phenomena the exponential barrier factors

can be computed in terms of the potential and we showed
that, although the potential depends on four parameters,
the tunneling action is essentially a function of one vari-
able only, the scaled time A ( T)= ( to t) I( to t, ), — —
toTO =t T ~ Bubble nucleation and growth was simulat-

ed and the distance between nucleation centers comput-
ed, also as a function of A, .

The simulation of bubble growth left the growth veloci-
ty open. We studied what velocities are possible assum-
ing only the general constraints of energy-momentum
conservation and entropy increase. Because T+ may be
very close to T„the low-T phase cannot sustain much su-
perheating and corresponding detonations, strong de-
tonations, may be excluded. Since weak detonations can
appear only under very special circumstances, it may be
that the entire detonation family of explosive processes is
eliminated. The phase transition will then proceed as a
weak deflagration with a single microscopically determin-
able velocity.
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