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We study multidimensional Einstein-Yang-Mills cosmologies. The stability of the compactifying solu-
tions in the radiation-dominated period that followed the inflationary expansion of the external dimen-
sions is examined. It is shown that for suitable values of the multidimensional cosmological constant the
compactifying solution is the true ground state of the system.
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I. INTRODUCTION ~4+ d RX—G ext /H ext X G int /H tnt (1.2}

In multidimensional field theories, commonly referred
to as generalized Kaluza-Klein (GKK) theories, the extra
dimensions serve the purpose of unifying different four-
dimensional fields. The metric and gauge fields can, for
instance, be seen in four dimensions, as different manifes-
tations of one single multidimensional object, namely, the
metric [1—3]. Alternatively, a gauge field in a multidi-
mensional spacetime can lead in four dimensions to a
gauge field and a Higgs field with a self-interacting
symmetry-breaking potential [4—9].

Of course, agreement between GKK theories with our
everyday experience requires that the extra or internal di-
mensions must have a very small characteristic size. It
has been proposed by Cremmer, Scherk, and Luciani [10]
that the smallness of the extra dimensions could be the
result of a spontaneous symmetry-breaking phenomenon
in the multidimensional theory. These authors found
that in a multidimensional Einstein-Yang-Mills (EYM)
theory the symmetry between all the dimensions could be
spontaneously broken by the existence of solutions corre-
sponding to a factorization of the spacetime in

E+ =~ XI

M being the four-dimensional Minkowski spacetime andI a d-dimensional compact space with a size of the order
of the Planck length, L t=&16n.k =10 cm, being k
the four-dimensional gravitational constant [2,7—10].

However, for a given compactifying solution to corre-
spond to the ground state of the theory it must be stable
both with respect to classical and quantum fluctuations.
It has been shown that some of the compactifying solu-
tions in EYM systems are stable against symmetric [7—9]
and general [11—13] small classical fluctuations.

In a cosmological setting the multidimensional space-
time is considered to have, in large scales, the form

admitting local coordinates x "=(t,x', g ), where
is=0, 1, . . . , 3+d; i =1,2, 3; m =4, . . . , d+3, R denot-
ing a timelike direction and G'"'/H'"' (G'"'/H'"') the
space of external (internal) spatial dimensions realized as
a coset space of the external (internal} isometry group
G'"' ( G'"'). In this approach spontaneous compact-
ification occurs if, as a result of the cosmological evolu-
tion, the scale factor a (t) of the external space increases
up to its observed macroscopic value while the scale fac-
tor b (t) of the internal space is kept static or slowly vary-
ing and very small (see, e.g., [9,14—17]}. The classical
stability at zero temperature of some solutions of this
type in EYM theories has been proved in Refs. [9,17]. In
Ref. [16] these solutions were found to survive semiclassi-
cally a period of inflationary expansion of the external di-
mensions for the different models of inflation: old, new,
extended, and chaotic.

We shall assume that temperature can be introduced in
a multidimensional EYM cosmological model by consid-
ering gauge fields with nonvanishing external space com-
ponents of the strength tensor. These components are as-
sumed to be associated, after inflation, with the radiation
that dominates the energy density of the Universe and
fixes its temperature. This approach is complementary to
the phenomenological treatment developed in Refs. [18]
on which one generalizes to d dimensions the usual four-
dimensional thermodynamical arguments.

This paper is organized as follows. In Sec. II the
dynamical equations of multidimensional EYM cosmolo-
gies are derived and some of their properties are studied.
In Sec. III we show that the effective potential for the di-
laton field depends crucially on the temperature. At zero
temperature the solution corresponding to compactified
internal dimensions is (for suitable values of the cosmo-
logical constant of the multidimensional theory [9]}clas-
sically stable but semiclassically unstable; however, this
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solution for a nonvanishing temperature becomes the true
ground state of the dilaton field. In Sec. IV the stability
of compactification along the directions of the internal
gauge-field components is discussed. Section V contains
our conclusions.

II. CLASSICAL DYNAMICAL EQUATIONS

S,[g ]= f dx+ —g (P —2A),
16~k

(2.1)

where g =det(g» ),P is the scalar curvature, k and A are,

respectively, the gravitational and cosmological constants
in D=4+d dimensions. Assuming that the spacetime
has the factorized form (1.2) and that the space of inter-
nal dimensions G'"'/H'"' is a compact space with a very
small size, then it follows that the theory (2.1) leads to an
effective four-dimensional Einstein- Yang-Mills theory
with a gauge group K(E C G'"') and a multiplet of scalar
fields [1—3]. However, this theory has serious drawbacks
as it lacks stable compactifying solutions and from it one
cannot obtain the correct chiralities and masses for the
fermions in the reduced theory. One must therefore con-
sider either alternative theories of gravity or theories
with a more complicated bosonic sector including, in ad-
dition to the metric, gauge and other bosonic fields in the
multidimensional spacetime. These are the GKK
theories referred to above. Of course, this procedure
raises doubts on the motivation of the GKK theories as
consistency with observations requires that the D-
dimensional theory is almost as complicated as the four-
dimensional one. It can be argued, however, that GKK
theories and in particular the multidimensional EYM
theory, correspond to the bosonic sector (or at least part
of it} of a superstring theory. Furthermore, since the ex-
istence of extra dimensions is not in contradiction with
observations, one should anyway study this possibility,
aiming to understand, for instance, the reason the dimen-
sionality of macroscopic spacetime is four and not any
other number.

As mentioned previously we shall consider multidi-
mensional EYM theories. In these theories the basic
difficulties of pure Einstein theories can be naturally cir-
curnvented [7—17]. Let the gauge group K of the D

In this section we shall obtain the equations describing
the dynamics of a multidimensional EYM cosmological
model. An important point to emphasize is that since we
are interested in the post inflationary period, for which
the three-dimensional external Universe is radiation dom-
inated, we shall not set to zero, as done in Refs. [9,16,17],
the external-space components A; of the gauge field.

We shall consider that the large-scale dynamics of the
post inflationary Universe is dominated by the bosonic
sector of the multidimensional theory. Though this may
not seem a very good assumption we believe that the in-
clusion of fermions will not lead to any qualitative change
in the analysis of the stability of the vacuum.

Following the original Kaluza-Klein idea [1—3] we
would expect the bosonic sector of the multidimensional
theory to be that of pure gravity with dynamics described
by the action

dimensional theory be a simple compact Lie group. The
action is given by

S[gIrq, A}r,y]=Ss, [g}rq]+Ssr[ A@,g»]
+S;„r[X,g}r~],

where S,[g»] is given by (2.1):

(2.2)

(2.3a)

S;.f[X gp, ]= J—„,dx & g—[-,'(~/&'+ ~(i )],
(2.3b)

P»=r)&A& —r}&A&+[A&,A~], e is the gauge coupling
constant, y is the inflaton field responsible for the
infiationary expansion of the external space, and 0(j) is
the potential for j. It is assumed that the potential 0(g)
is bounded from below, has a global minimum and that
without loss of generality 0;„=0.

To study cosmological models associated with action
(2.2) we must restrict ourselves to spatially homogeneous
and (partially) isotropic field configurations, which means
that these are symmetric under the action of the group
G'"'X O'"'. To find these configurations we shall use the
theory of symmetric fields [3—9, 12, 13,19]. Let us for
definiteness consider the case with the gauge group
E=SO(N), N~3+d and

E + =IRXS XS", (2.4)

where S (S } is the three- (d-)dimensional sphere. The
group of spatial homogeneity and isotropy is, in this case,

G '= SO(4) X SO(d +1),

while the group of spatial isotropy is

(2.5)

H =SO(3) XSO(d), (2.6)

which is in agreement with the alternative realization of
E4+"as

E + =RXSO(4)/SO(3) XSO(d+ I)/SO(d)

=IRX[SO(4)XSO(d+I)]/[SO(3)XSO(d)] . (2.7}

ro~ ~=o '(y)do(y) . (2.8)

The form co takes values on so(4)&so(d+1)
=Lie[SO(4) XSO(d+1)], the Lie algebra of the group

SO(4) X SO(d + 1), and therefore can be decomposed as

In the theory of symmetric fields a central role is played
by the so-called Cartan one-form which, in the present
case is defined as follows. Let o(y)ESO(4) XSO(d+1),
ye [SO(4)XSO(d+1)]/[SO(3) X SO(d)]=S XS be
some choice of representatives in the cosets y, such that
[o(y)]=y, i.e., a (local) section in the principal bundle

SO(4) X SO(d + 1)~S XS . The Cartan one-form on
S XS" is defined as the pullback of the canonical left-
invariant form on the group SO(4) XSO(d + 1) [20]:
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d+3 T(4)
to= +to T + g co'

a=1 1 i &j&3

T(d+1)
mg lllll

21&m &n&d
(2.9)

&to'to' and g~+3~to to coincide with the standard
metrics dQ3 and dQd in the three- and d-dimensional
spheres, respectively. For later purposes, we perform the
following conformal change of the variables that charac-
terize the four-dimensional part of the metric:

(T(i ')i'j'=5, ,'5JJ' 5J—'5;.1, (T' „+") .„.=5,5„„,—5 „.5 „ is a basis in the Lie algebra so(4}iso(d +1)of
GHI and

Ta4
(4)

T = for a=1,2,3,
it '(t) =

'd
bo

a (t).

'd
bo

N '(t) = N'(t),
b(t)

(2.12a)

(2.12b)

(d+1)
T = for a=4, . . . , d+3,

(2.10) The SO(4) X SO(d + 1)-invariant ansatz for the
inflation field y reads

y(t, x', g )=y(t) . (2.13)
with the standard commutation relations.

The one-forms to, a=1, . . . , d+ 3 in (2.9) form a local
moving coframe in S XS . In this coframe the com-
ponents of a SO(4) XSO(d + 1)-invariant metric on
S XS~ are independent of the local coordinates (x', g ).
Moreover the most general form of a SO(4) XSO(d+1)-
invariant metric in E +"reads

3 d+3
g= N(t)dt —+if (t) g to'to'+b (t) g to to

m=4

(2.11)

where tt(t), b(t) and the lapse function N(t} are arbitrary
nonvanishing functions of time. Notice that in (2.11)

I

To fix a sector of SO(4) XSO(d+1)-symmetric gauge
fields one must choose a homomorphism A, of the isotropy
group SO(3) XSO(d) to the gauge group SO(N) [4-9]:

A, :SO(3}XSO(d) ~SO(N) . (2.14)

Here we choose A, to be the simplest embedding defined
by the branching rule

NJz(so(3~xso(d)}=(3, 1)+(I,d)+(N —3 —d)(1, 1) .

(2.15)

Then the SO(4)XSO(d+1)-symmetric ansatz for the
gauge field is [4—9, 19]:

N —3—d

X ( ) 3+'d+~3+d+q
p, q=1

3 3

+ 2 ~fo(t) g el@, TJ'k '+
j,k=1

+ 1 ~ T(N) ij+ ] ~ T(N)- m —3n —3
2 ~ ij 2 mn

1&i & j&3 4&m &n &3+d

N —3—d d+3 N —3—d

ft, (t)T,'d'+3+t, to'+ g T' g gq(t)T~ d+3+q to
p=1 m =4 q=1

(2.16)

where f (t), p=0, . . . , N 3 d; g (t—), q—=l, . . . , N 3 d; Bt'q—(t),—1&p &q &N —3 —d are arbitrary functions and
T~~q ', 1 &p & q & N are the generators of the gauge group SO(N).

By substituting (2. 11}—(2. 13) and (2.16}into action (2.2) we obtain a one-dimensional efFective action for the func-
tions of time t that parametrize the symmetric field configurations:

2 2 '2
S' =S' [a,g,fo, f,g, y, N, S]=16qr f dtNa3 3 1 a 3 1 1 |ij 1+ +—-' +——

8m'k g N 32+k g 2 N 2

de 3 1 1

4e2 g2 2

'2 . 2.
fo
N 2 N

2' d 1 1

4e2 b2

r '2
ig

N ,a,fof g, (2.17)

where k=klv&bo, e =e Ivdbo, P=&16qrkld(d+2), vd is the volume of S for b=l, with /=13 'ln(blbo) and
y=+vdbo y denoting the dilaton and the inflaton fields respectively. In (2.17}the dots denote time derivative and 2)
is the covariant derivative with respect to the SO(N —3 —d ) gauge field k(t) in R:

Xl, f(t)= f(t)+B(t)f(t),=d

, g(t) = g(t)+(t)g(t),=d
dt

(2.18a)

(2.18b)
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~here f=[f~), g=[g~J, p=l, . . . , N —3 —d, and 8 is the (N —3 —d)X(N —3 —d) antisymmetric matrix 8=(8 ).
The potential Win (2.17) is given by

r

gpss 2' 1 d(d —1) 1 4pp 1 d(d —1)
V ( )+ A +U( )

4 b b 8

+e P~ (f. )+e P~ V(f f)
a2b2 4 8e2 a4 4e2

(2.19}

where A=UgboA U(g) =Uybo&(pl+uzbo ) and

V (f f }
—I [(f2 + f 2 1 )2+4f2 f 2j

V2(g) =-,'(g '—1)' .

(2.20a}

(2.20b}

g+3 g —2Pj—g= —e '" -"Pt'
a b02 2 Bg

1 3—(g f)f,a'4 (2.24c}

Notice that the effective Lagrangian in (2.17) does not
depend on the time derivatives of N and k This means
that these variables play the role of Lagrange multipliers
associated with local symmetries of (2.17}. The lapse
function N is associated with the invariance of S' with
respect to arbitrary time reparametrizations while 8 is re-
lated with local SO(N —d —3) invariance [19]. The equa-
tions of motion can be easily obtained by applying the
variational principle to (2.17). These equations are iden-
tical to the equations that one obtains by substituting the
Ansatze (2.11)—(2.13) and (2.16) directly in the multidi-
mensional equations of motion meanin that the Ansatze
are consistent. In the "gauge" N =1, =0 one finds the
following equations.

(i) Friedmann equation:

d 1 + 8n.k

a 4a 3 2 2

x=x' f0=f0
f=f ", and g=g'

is a solution of equations (2.23) and (2.24) if

(2.25)

U =0,
BX r=r"

av, =0,
de f0=f0, f=f"

p=o, . . . , N —3 —d
(2.26a}

8V2 =0, p=1, . . . , N —d —d,
Bgp

3b02e'~+2+&(f f f f„—)+da (g&g&
—g g )=0 . (2.24d)

Aiming to examine the stability of compactification we
now turn to the study of solutions of equations
(2.21)—(2.24) corresponding to static configurations of
the gauge and inflaton fields. The static configuration

+ 1 gpss 6 fo f
8e a 2 2

and

(f "g")=0 . (2.26b)
2

Gf 1 2' g
4e~ b2 2

(ii) Klein-Gordon equation for the dilaton field:

(2.21)

Substituting the static configuration (2.25) in (2.21) and
(2.22) the equations for a (t}and g(t) become

2
1 8@k+ +Q(f, a ), (2.27)

4a 3 2

f2

/+3 f= — +P— e P~ +
a Qg 4e2 a2 2 2

p
d 1 -2' g

b~ 2

(iii) Klein-Gordon equation for the infiaton field:

i+3—~= —e
a. & BU
a ax

'

(2.22)

(2.23)

0

g+ 3—P=-
t2 8@

where

gpss 2pt, 1 d (d —1) 1

16m'k 4 b2

4py 1 d(d 1) A

b 0 8e 8mk

(2.28)

(iv) Yang-Mills equations:

1 aV,
f0+ f0+de'fo =—

a
(2.24a}

f+ f+d13gf = — ——e ' 'P~ (f g)g,
a a2 ~f 4b

(2.24b)

de 1 3
Vi

a 4e
(2.29)

with v, = V, (f0, f '), v2= V2(g ") and we have assumed

that U(y") =0.
During inflation the scale factor a (t}of the external di-

mensions grows exponentially and therefore one can
neglect the last term in the effective potential (2.29) for
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C) C2

16rrk 16@k
(2.30)

the dilaton. Let us briefly recall this situation, which was
studied in detail in Refs. [9] and [16]. If vi=0, as in the
case of pure gravity, there are no stable compactifying
solutions, i.e., solutions for which b=b"=v 16mk. If
v2) 0 then the shape of the potential Q„(g)=Q(g, GG )

depends on the value of the cosmological constant A of
the multidimensional theory [9]. Notice that although in
our case the only extremum of V2(g) [see (2.20b)] with

v2&0 is the unstable local maximum g "=0, models with
an absolute minimum of V2 for which v2 & 0 can be easily
found by considering either nonregular embeddings A, or
internal spaces G'"'/H'"' with a nonsimple isotropy
group H'"' (see discussion in Sec. IV below). For A)c2/16nk (c2=[(d+2) (d —1)/(d +4)]e /16v2) there
are no compactifying solutions (see Fig. 1) and for

in(n(1(, ~))-
0—

-6
0

I

b/b,

[ci=d(d —1)e /16v2] a compactifying solution exists
which is classically stable but semiclassically unstable
(Fig. 2). Nevertheless, it has been shown [16] that this
solution survives the inflationary period without tunnel-

ing to the true decompactified vacuum. This occurs as in
the thin-wall approximation [21]; the tunneling rate of
the inflaton field is much greater than the corresponding
one to the dilaton field [16]. A value of A&ci/16m. k
leads to a negative value of the effective four-dimensional
cosmological constant A' '—the value of 0„8~k at the
local minimum. Since the four-dimensional cosmological
constant must satisfy the bound

~A("~ & 10-'" (2.31)
16@k

'

it then follows that the multidimensional cosmological
constant A=A/vzbo has to be fine-tuned in such a way
that

(2.32)

FIG. 2. Potential Q„(1() for d =6 and c, /16m k & A

& c2/16m k [c,=d(d —1)e /16vz].

Finally let us comment on the possibility of achieving
inflation driven by the dilaton without the need of intro-
ducing the inflaton. The exponential form of the poten-
tial (2.29) leads to a power-law behavior of the scale fac-
tor a (t)=aoti' with p &1. In Ref. [22] it has been sug-
gested that the inclusion of a phenomenological viscosity
term would imply in a flow of energy from the dilaton to
radiation improving considerably the power-law behavior
such that one could easily obtain p &1. However, this
flow of energy cannot in principle be obtained in a funda-
mental way by considering the interaction of the dilaton
with radiation described by the external components of
the gauge field [see action (2.17)]. Actually, this interac-
tion leads to a interchange of energy between the two
fields without a preferred direction [23]. We therefore
think that to achieve a successful period of inflation one
needs necessarily to consider an inflaton sector.

In the next section we shall use the analogue of Eq.
(2.28) to study the dynamics of the dilaton field in the
radiation-dominated period that follows inflation.

in(n(q, ~))-
III. STABILITY OF COMPACTIFICATION

AFTER INFLATION

—6
0

I

b/b0

FIG. 1. Potential 0„(g) for d =6 and A )c, /16vrk
(cz=[(d+2) (d —1)/(d+4)]e /16vz).

After the period of accelerated expansion of the exter-
nal dimensions and subsequent reheating the Universe be-
came radiation dominated. We shall model this situation
by considering that the main contribution to the tempera-
ture comes from nonvanishing external-space com-
ponents of the gauge field P„(p,v=0, 1,2, 3). From the
left-hand side (LHS) of (2.19) and (2.21) we see that the
contribution of the external components of the gauge
field to the energy density is given by (we assume that f is
orthogonal to g)

'2
2

pEG~= e 0 + + Vi(fo f) . (3 1)
1 3 /pe 2 fo f

g 4p 2 2

Therefore after a period of inflationary expansion of the
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4~k & d

3 0
(3.2)

extra dimensions, during which e~~=1, the contribution
to the energy density from the static solution fo

=f0,
f= f ' of the previous section becomes negligibly small.
For the Universe to be radiation dominated after inflation
we assume that the vacuum energy density is transformed
into thermal energy described by (3.1) via large nonstatic
vacuum expectation values for f0 and f.

Let us now study the dynamics implied by the system
of Eqs. (2.21)—(2.24) in the post-inflationary period. We
assume that both the inflaton y and the internal com-
ponents of the gauge fields described by g are given by
static configurations y", g" corresponding to the extrema
(minima) of the associated potentials [see the first and
third equations in (2.26a)]. The stability of the compacti-
fying solution along the g direction is studied in Sec. IV.
For these configurations and choosing f=fu, where u is
a fixed unit vector orthogonal to g ", we solve Eqs. (2.23),
(2.24c), and (2.24d) exactly and obtain from (2.21), (2.22),
(2.24a) and (2.24b) a simplified system of equations for a,

fp and f. These equations can then be solved approx-
imately as follows. We suppose that the kinetic energy of
the dilaton is small

which implies that

PEG' =
C dpi'

a4
(3.3a)

where c is a constant approximately equal to the first in-
tegral of Eqs. (2.24a), (2.24b) being given by

3 fo f'c= a + +V(f, f)
4e2 2 2

(3.3b)

pEG~=o. T e "~~ (3.3)

with o. =c/5 being a constant of order one and after
inflation T & 10 /v'16m. k.

Thus we get for the dilaton field the dynamical equa-
tion

where

T BQ
T 8@

(3.4}

By introducing the temperature associated with the exter-
nal components of the gauge field, T=5/a, where due to
inflation 5 is a large constant, 5 & 10, we obtain

Q(g, T)=e 2e p(4)
( ~~ —1) + +crT e

d(d 1) v (16%k)
(3.5)

and assuming that v2 & 0 we have set bo =4m kd(d —1)v2/e . For this choice of bo the point /=0, i.e., b =ho, is very
close to the minimum of (3.5) corresponding to a solution of spontaneous compactification. We see then that the
influence of the scale factor of the external dimensions in the dynamics of the dilaton is twofold. On one hand it
changes the effective potential for the dilaton by turning it temperature (T-1/a } dependent (see difference between

Figs. 2 and 3). On the other hand, being dominated by the radiation energy density, the RHS of Eq. (2.21) describes an

expanding Friedman universe with a &0. This means that the second term in the LHS of Eq. (3.4) is a viscositylike
term which makes the stable extrema (two in our case) of the potential Q(g, T) asymptotically stable. Unlike the zero-
temperature case [Q($,0}]the potential (3.5) has now an infinite potential barrier for large f. After inflation one has

that T & 10 /&16mk and ~A' '~ &&16m.kT . In this case the potential (3.5} is of the double-well type and it has two
minima f and g+ (Fig. 3}. The first one is very close to zero,

&d(d+2)d (d —1)v~
(167/k ) 0 T

16e
and, accordingly,

Q =Q(f, T)=crT—
(3.6a)

(3.6b)

For P+ we have

1/2
1 d(d+2)
d 16~k

1 2e
ln

16~kT d(d —1)o

1/2

(3.6c)

and
2 2e cT

2

16m k d(d —1)

1/2

1+ '
V2

(3.6d)

There since Q « Q+, g= f is for 16mk ~A'~'~ && (16nk) T && 1 the t.rue ground state. On the other hand, this cor-

responds to the situation in which the internal dimensions are compactified, that is

4rrkd (d —1 )v2 16~k 4rrkd (d —1 )vz
(3.7)
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mann equation (2.21) which according to our previous
considerations can be rewritten as

r

2

+Q(g, T)
T 3 2

(3.10)

This implies that the solutions (3.6a) and (3.6c) are only
approximate solutions of Eq. (3.4). An argument in favor
of considering g in (3.6a) as a good approximation
comes from the fact that the frequency co of small oscilla-
tions around lt is much larger than

~
T/T I:

-16
0 e~- 5 ~ 10 15

I

b/b,

FIG. 3. Potential Q(1(t, T) for d=6 and T=10 '/v'16nk.

The false vacuum g=f+ corresponds to the situation in

which the internal dimensions are decompactified in the
limit T~O:

' 1/24n.kd(d —1)v2
exp

e

16m.k
d(d —1)

' 1/2

(3.g)

Thus, we see that for 0&16m.kA' '«(16m.k) T «1
(with the corresponding A) the decompactified internal
dimensions are semiclassically unstable. In this situation,
even if after inflation the internal dimensions were
decompactified, the multidimensional Universe would
tend to tunnel to the solution for which the internal di-
mensions were compactified. This result concerning the
metastability of f+ is much stronger than the one related
with the semiclassical stability of the compactifying solu-
tions.

By using the thin-wall approximation [21], we find that
if after inflation the internal dimensions were
decompactified, the lifetime of the f+ state per unit of
volume is given by

e 1N—
d Q(d —1)(d +2)v2 &~k

However, in general and especially for values of 1( far
from 1(, the potential (3.5) should be considered indica-
tive only of the qualitative behavior of g. A more
rigorous approach consists in considering the coupled
equations (3.4) and (3.9) and even (2.21), (2.22), (2.24a),
and (2.24b). To illustrate this let us show the stability of
the compactifying solutions we have obtained after
infiation by studying the coupled equations (3.4) and
(3.10). For convenience [25—27], we consider
Raychaudhuri's equation, which is obtained by
differentiating both terms in (3.10) and using (3.4). The
Friedmann equation (3.10) then plays the role of a con-
straint for the four-dimensional dynamical system in the
variables (g, P, T, T). We obtain therefore a closed sys-
tem of differential equations for the variables
( P, f,H = —T/T ). For simplicity of analysis let us intro-
duce the dimensionless variables (x,y, z) and the dimen-
sionless time g:

Pt

g=P2t,
(3.11)

Z —P2 H

where the prime denotes a derivative with respect to g
and

1/2
3

4mk

(3.11a)
(3.9)

where B =27vr S /2e, and in our case
$=10 '(16~k) ~, the difference of energies between
the two minima s = T (16m.k )

' which gives B= 10
Thus even assuming that the preexponential factor C is of
the order of one in Planck units the P+ state would take
much longer than the present age of the Universe to tun-
nel to the compactified state P, which is, of course, in-
compatible with our everyday experience. This con-
clusion holds even considering spharelonlike
configurations as the probability of over the barrier tran-
sitions is proportional to exp( —E,&h/T) [24] and for

d =6 we get that E, h--10 '/+16m. k.
We emphasize that the temperature in expressions

(3.4)—(3.8) has a time dependence implied by the Fried-

2
' 1/2

e
2m.kd (d —1)(d +2)v2

In these variables we obtain the dynamical system

x'=y,

y'= —3yz — [z —v(x) —y ]-da 2 2 dv(x)
2 dx

z'= —2z —y +4v(x),

and the constraint

8m.k
z —2v(x) —y = pz o'T e

where a=&12/d(d+2) and

(3.12a)

(3.12b)
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U(x) = e (e "—1)
1

Su
(3.13)

The constraint (3.12b) means just that the physical region
A ~„ is given by the points satisfying [25,26)

A h=[(x,y, z):z —2v(x) —y ~0] . (3.14)

The region A h is the union of two sets, with z & 0 and
z 0, respectively, intersecting only at the critical point
P=(0,0,0). As we are interested in an expanding
universe we shall consider only the set A~h with z &0
defined by

z —x —y +0(x ) ~0,
z&0. (3.16)

The boundary of the region (3.14), (3.15) is an invariant
manifold of the system (3.12a) describing the vanishing
temperature case studied in Ref. [9]. The critical point
P=(0,0,0) corresponds to spontaneous compactification
of the internal dimensions as x =0 means that
b =b0=+4mkd(d —1)v2/e .

The asymptotic stability of P in the physical region can
be shown by finding an appropriate Lyapunov function.
Notice that close to P the physical region A h corre-
sponds to the cone

A h= [(x,y, z)E A h.z ~0] . (3.15) Consider now the following region U in A ~h/[P]:

U= (x,y, z)E A~h/[P]:~x~ ~ ln, z &1 d+4 & 1 d
2a d ' 2a(d+4) d +4

' 1/4

(3.17)

it is then clear that in UUP the simple function F=z
plays the role of a Lyapunov function: F(0,0,0)=0, F is
positive in U and from the third equation in (3.12a) we
see that dF /d r) (0 in U. Physically, the condition
dz/dry (0 in U implies that the solutions of system (3.12)
are compelled to approach P.

IV. STABILITY OF COMPACTIFICATION ALONG THE
INTERNAL GAUGE FIELD DIRECTIONS

As we have seen above for a stable compactifying solu-
tion to exist the vacuum condensate of the internal gauge
field components must be nontrivial, i.e., v2) 0. In Sec.
II we have obtained, by using the simplest embedding
(2.15) of SO(d) in the group SO(N), an effective potential
Vz (for the functions g that parametrize the internal
gauge field) with two different types of extrema. The first
g":(~g "~~=1 corresponds to a trivial configuration A

(pure gauge with v2=0). In this case the potential for g
does not have stable compactifying extrema. For the
second, g "=0, one has v2= Vz(g "))0 which means that
for suitable values of the multidimensional cosmological
constant [see (2.30)] there are compactifying solutions
which are stable against fluctuations of the inflaton field

However, these solutions are unstable against fluctua-
tions of g as can be seen from the fact that g "=0 is a lo-
cal maximum of Vz(g) in (2.20b). Fortunately for non-
trivial embeddings of SO(d) in the gauge group (second
reference in [8]) or for internal spaces G'"'/0'"' with non-
semisimple isotropy groups [7,9] there are models for
which the absolute minimum u2 of V2 is positive. As is
well known [28] for the absolute minimum v2 to be posi-
tive it is necessary and sufficient that the homomorphisrn
I,' ' of the isotropy group H'"' of the internal space to the

gauge group cannot be continued to a homomorphism of
e group 6
Willing to keep the form (2.4) for the spacetime (the

internal space being a sphere) we shall use the method of
nontrivial embeddings. The analysis of internal spaces
with nonsemisimple isotropy groups (such as the complex
projective spaces CP") can be straightforwardly per-
formed. Following the third reference in [5] we consider
an embedding

A,
' '[SO(d ) ](:SO(N)

defined by the branching rule

(4.1)

Nl (p) =vd+(N vd )1
[so(d)]

(4.2)

In Sec. II we have considered the case v= l. From (4.2)
we conclude that for

v) X—vd (4.3)

the homomorphism A,
' ' cannot be extended to a

homomorphism of SO(d + 1) which implies that the sym-
metric gauge field associated with (4.2) has a potential Vz
with a positive absolute minimum. Therefore we shall
further assume that

p=N —vd &v . (4.4)

The explicit form of X ' ', the embedding of so(d) in so(N)
corresponding to (4.2), reads

(2) (d + 1) (N)
mn ) g 3+(s —1)d+ m 3+(s —1)d n+

s=1

The Ansatz for the SO(4) X SO(d +1)-symmetric
gauge fields is now given by
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A(t) =-,'
p, q=

3~+sd+p 3+sd+q+ rf ~ ( )~rs
1 r, s =1

dt+ s g ~ij + s g g Tm~+(s —1)d n +( s—1)d+
l,J m, n s=1

3 P d+3 p v

,'fo—(t) p ejkTjk + ,' p—f&(t)T;3+„d+p C0'+ g 2 g g gps(t)T~j+3+q CO (4.6)
j,k=1 p=1 m=4 p=l s=1

+(»—~d ~(»where T ~k —1 3+( —1)d+k 3+( —1)d+k
By substituting (2 11)-(213}and (4 6) into action (2.2) we obtain an effective action which differs from (2.17) only in

the part corresponding to the internal gauge field components:

,~~ d

4e bp 2

+e-"""~ V(G)+. "' -g g ff~ a
e P 8 s=l p q=1

(4.7)

where G =(gzs )z 1 „., 1 „parametrizes the inter-
nal components of the gauge field,

2), G = G+S(t)G+ C (t)G=d
dt

with S(t}=[St"t(t)].. . „, C(t)=[C)"t(t)]..
and

(4.8)

V2(G)= —,'[Tr(1„—GG ) +v —p], (4.9)

1„being the p Xp identity matrix.
By neglecting the direct interaction between f and G

associated with the last term in the RHS of (4.7)—this
interaction gives as in (2.24c) terms 0(16mkT )—we can
conclude that the dynamics of the internal components of
the gauge field is essentially ruled by V2(G).

The potential (4.9) is as expected positive for v &p:

V(G)" "»0.2 8
(4.10)

The absolute minimum of V3(G)=vz=(v —p)/8 is at-
tained at G' ' such that

G(P)G(P)
p, 7 (4.11}

which can be easily obtained explicitly.
We have therefore solved the problem of finding stable

extrema (minima) G' ' of V2 for which V2(G' '}&0.

V. CONCLUSIONS

In this paper we have studied the stability of compacti-
fying solutions in multidimensional Einstein-Yang-Mills
theories after inflation. Aiming to study the cosmological
setting upon which compactification of the extra dimen-
sions occurs, we have imposed that the relevant fields
were spatially homogeneous. Since we were interested in
analyzing the stability of solutions after inflation, i.e.,
after reheating, we have not set the external-space com-
ponents of the Yang-Mills gauge field to vanish. It is pre-
cisely through this procedure that we are able to intro-
duce temperature into our analysis and generalize the

effective potential (2.29) for the dilaton field —see the
effective potential (3.5). Thus, our discussion is comple-
mentary to the one of Refs. [9,16,17] in which the
external-space components of the Yang-Mills gauge field
were set to vanish.

We find that at zero temperature there exist compacti-
fying solutions of the Einstein-Yang-Mills system togeth-
er with an infiaton field provided A (c2/16m k
(c2=[(d+2) (d —1)/(d+4)]e /16vz) —see the discus-
sion at the end of Sec. II. For c1 & 16~kA & c2
[c)=d(d —l)e /16v2] the compactifying solutions are
classically stable but semiclassically unstable. However,
if A =c) /16m. k the solution corresponding to
compactification is both classically and semiclassically
stable. At a nonvanishing temperature the static dilaton
field configuration for which the internal-space dimen-
sions are compactified is the absolute minimum of the
effective potential (3.5). Furthermore, we find that at a
nonzero temperature the solutions corresponding to
decompactification are semiclassically unstable. Never-
theless, despite this instability, the latter solutions are un-
desirable as their transition rate to the compactified vacu-
um is fairly slow. This implies that if after inflation the
Universe had fallen trapped in the decompactified vacu-
um a major disruption in the cosmological standard
scenario would ensue.

The conclusions above rely crucially on the assumption
that v2= V2(g") &0. For the simplest embedding (2.15)
of SO(d) into the SO(N) gauge group this condition can
be satisfied only for the unstable local maximum of
V2(g "=0). However, as discussed in Sec. IV the condi-
tion v2= V3(g ")& 0 can be achieved for nontrivial
embeddings of SO(d) in the gauge group SO(N) or for
internal spaces with nonsemisimple isotropy groups. For
the former case we have shown that by choosing an
embedding of the isotropy group of the internal space to
the gauge group as defined by the branching rule (4.2)
satisfying the condition (4.3},one can easily obtain stable
minima of V2 for which V2) 0.

As shown in Ref. [16] the classically stable but semi-
classically unstable compactifying solutions of Ref. [9] do
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survive an inflationary period of whatever type. In addi-
tion to these results our analysis reveals that the reheat-
ing process that follows inflation is not a source of in-
stabilities in the compactification process either. On

the contrary, we have shown that the introduction of
temperature turns the solutions corresponding to
compactification classically as well as semiclassically
stable.
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