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We study a class of supergravity models where an observable sector is separated from a hidden sector

in the superspace density which defines the supergravity Lagrangian. It

is shown that soft

supersymmetry-breaking mass terms for squarks and sleptons vanish at the tree level if the cosmological
constant vanishes. Since their masses are induced by radiative corrections mostly due to gauge interac-
tions, the sfermions with the same gauge-quantum numbers are highly degenerate in mass, which is re-
quired for the suppression of the flavor-changing neutral currents. By a numerical calculation, we find
that the SU(2), XU(1)y gauge symmetry can be broken by quantum corrections for suitable values of
the free parameters. Some phenomenological features of this model are investigated. In particular, this
model predicts right-handed sleptons below 150 GeV.

PACS number(s): 12.10.Gq, 04.65.+e¢, 14.80.Ly

I. INTRODUCTION

The striking agreement [1] on the electroweak mixing
angle sin’8,,(m;) between the prediction of supersym-
metric (SUSY) grand unified theories (GUT’s) [2] and the
experimental result has caused renewed interest in the
low-energy SUSY standard model. However, there are
two potential problems in the low-energy SUSY model;
one is the presence of lower-dimensional operators
(d =4,5) for baryon-number violation [3], the other is
the unsuppressed flavor-changing neutral currents
(FCNC’s) [4].

Observed suppression of FCNC’s suggests an accurate
mass degeneracy of squarks and sleptons in different fam-
ilies [4,5]. However, in the general framework of N =1
supergravity [6], no symmetry guarantees the mass de-
generacy. Indeed if gauge singlets in a hidden sector [7]
which are responsible for the SUSY breaking couple to
the squarks and sleptons in the Kahler potential, the
masses of the squarks and sleptons are not generally de-
generate [8,9]. In order to avoid the disastrous mass
splitting, one often considers supergravity models where
the hidden and observable sectors are separated not only
in the superpotential but also in the Kahler potential.
Since gravitational interactions do not distinguish the
flavors of the matter fields, the soft SUSY-breaking
masses are all degenerate at the tree level. The so-called
minimal supergravity model [10] belongs to this category
and it has been investigated closely.

In this paper we will consider an alternative class of
models in which the decoupling between the observable
sector and the hidden sector is realized in the superspace
density which defines the supergravity Lagrangian, instead
of the decoupling in the Kihler potential. This class of
supergravity models includes an SU(n,1)/SU(n)XU(1)
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no-scale model [11] as a special case as explained later.
We investigate the structure of soft SUSY-breaking terms
[12] in a scalar potential. It turns out that chirality-
conserving soft SUSY-breaking mass terms mjg} @, for
scalar components ¢, of chiral supermultiplets vanish if
and only if the cosmological constant vanishes. At the
same time, soft SUSY-breaking trilinear couplings also
vanish in this type of supergravity.

We apply this class of supergravity models to the
minimal SUSY standard SU(3). XSU(2); XU(1)y mod-
el. We show that the electroweak gauge symmetry can be
spontaneously broken by radiative corrections [13] for
suitable values of free parameters. In this radiative
breaking scenario, we find indeed a parameter region con-
sistent with the present experimental limits. We will also
discuss some characteristics of low-energy predictions of
our models. We note that the squarks and sleptons in the
first and the second generations acquire their masses
mostly through gauge-multiplet loops. Since the gauge
interactions are family blind, the particles with the same
SU(3) XSU(2), XU(1)y quantum numbers are highly
degenerate in mass and therefore we have no FCNC
problem.

The plan of this paper is the following. In the follow-
ing section we develop theoretical aspects of the class of
supergravity models we propose. In Sec. III we investi-
gate some phenomenological features of this model in the
radiative electroweak-breaking scenario. Section IV is
devoted to conclusions.

II. VANISHING COSMOLOGICAL CONSTANT
AND MASSLESS SQUARKS AND SLEPTONS

We start with a brief review of the scalar potential of
supergravity. The relevant terms of the supergravity La-
grangian are given by [14]

[ d*x d*0 E |(5,5)+Re

1
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where S is a chiral supermultiplet, £ is a superspace
determinant, and R is a chiral scalar curvature superfield.
® is a real function of S and S and the superpotential W
is a holomorphic function of S. After eliminating auxili-
ary fields, we obtain the standard form of the scalar po-
tential [15]:

v=e%P, P=G,G H4GE-3, )
where we have defined the total Kahler potential as
G(x,x*)=—31Ind(x,x*)+1In|W(x)|?, (3)

and G ,=0G /dx 4, etc., and x is the first component of
the superfield S. Unless mentioned explicitly, we set
M=mp /Y 87=1, where mp),, is the Planck mass.

Let us assume that we have two sectors which decou-
ple from each other in the superpotential: one is a hidden
sector {z®} and the other is an observable sector {y'}.
The hidden sector fields are assumed to be gauge singlets
and responsible for the SUSY breaking. Throughout this
paper we consider the F-term breaking of the SUSY and
do not consider the Fayet-Iliopoulos D term. The hidden
sector fields are characterized by

oG

<Ga>=<—>51 , 4)
0z¢

where ( A) denotes a vacuum expectation value of a
quantity A. The observable sector includes ordinary
quark, lepton, and Higgs supermultiplets. It may include
singlets which are usually superheavy [16]. In this ob-
servable sector, we assume [17]

(Gi>=<§C—;.>=O or at least <<1 . (5)
ay'

When a scalar in the hidden sector couples to squarks
and sleptons in the Kahler potential K= —3In®, the
mass splitting of the sfermions occurs in general. A way
to avoid this notorious nondegeneracy is therefore to
completely separate the hidden sector from the observ-
able sector in the Kahler potential. A typical example for
this type of decouplings is minimal supergravity [10], in
which the following Kahler potential is taken:

K=z*z%yp*y’, (6)

leading to the canonical kinetic terms. In this model, all
masses of the squarks and sleptons are equal to a gravi-
tino mass when the cosmological constant vanishes.
Low-energy properties of minimal supergravity have been
widely investigated in the literature.

In this paper we propose an alternative way of separat-
ing the hidden sector from the observable sector; i.e.,
consider the following separation in the supergravity La-
grangian (1):

D=1I(z,z*)+J(y,y*), @)

where I and J are real functions of z and y, respectively.
This separation seems quite natural, since the hidden and
observable sectors couple with each other only gravita-
tionally at the superspace density level [18]. Notice that
the Kahler potential of an SU(n,1)/SU(n)XU(1) no-

scale model [11,19] is a special example of our ansatz (7),
where I and J are given by

I=z+z*, J=—yp*y'. (8)
Concerning the superpotential W we take
W=h(z)+g(y), 9)

as mentioned earlier. Therefore a totality of our assump-
tions is a separation of the hidden and observable sectors
at the superspace density level (1) and Egs. (4), (5), and
(12) given below. Under our ansatz (7) and (9), we calcu-
late a low-energy scalar potential consisting of light parti-
cles in the observable sector and study the structure of
the soft SUSY-breaking terms in it.

Before proceeding we calculate the effective superpo-
tential which is relevant at low energies, postulating that
the gravitino mass lies at the Fermi scale which is much
below the Planck scale. In order to do this we consider
the bilinear terms of chiral fermions in the supergravity
Lagrangian [14]

eXG,;+G,G;—G G Gl =U ¢y , (10)

where 1 is a chiral fermion in the observable sector. The
indices A and B run over both the observable and hidden
sectors. Define

1 =AU =my (G ) —(G,){(GF)) ,

(11)
Fix=CU Y =m; (G ) +0(my,, /M),
where m3,=(e%?) is the gravitino mass and
msy,;, <<M =mpjq /V 8. In deriving the above equa-
tions we have normalized the Kahler metric as

(GiY=8", (G%)=62,
o prTR (12)
(GL)Y=(G*)=0,

and have used Eq. (5). Then at low energies, Eq. (10)
reduces to

(i +fijkyk)1/’i'/’i ’ (13)

and therefore we can see that the effective superpotential
of the low-energy global SUSY theory is given by

g =1p,; Y'Y/ +1f, Y'YV, (14)

where Y’ is the superfield whose first component is y'.
Notice that the effective superpotential g is generally
different from the superpotential g presented in the super-
gravity Lagrangian [20]. One might think that the cou-
pling constants in Eq. (14) vanish at the supersymmetric
limit m;,,—0. However it is not the case. In order to
see this we should note that

(W>=0(m3/2) ,

(15)
(G,) ,(K,-_,-) ,<K,-7) ’<Kijk>51 ’

and
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_ ( Wi ) to an irrelevant overall normalization.
<G )= <K )+ (W) Let us now calculate the scalar potential for the light
(g.) particles in the observable sector at the flat limit, i.e., tak-
— (K. )+ 8ij ’ ing M=mp,, /V 87— with m,, fixed. For this
Y (W) purpose we will evaluate the coupling constants of the re-
( Ge y=( K-‘}) (16) normalizable interactions in the scalar potential
! v (V] )=(3%V /3y;*3y’), (V;; ) =(3*V /3y'dy/), etc.
(G y=(K. )+ (W) We first calculate ¢ V’) which corresponds to
Gij ijk (W) chirality-conserving scalar mass terms. Differentiating
(&) Eq. (2) twice we obtain
=(Ky )+ . , _ ‘
KT AW (VD=(V)(GH+(e)(P})

Then it is easy to see that pu;; and f; in Eq. (11) survive

even at the SUSY limit m;,,—0 and in this limit the

effective superpotential g coincides with the original g up A straightforward calculation shows
J

=(V)8i+m3, (D)) . (17)

(D)) =8,+(G ) ((GTHEN(G*) + (G ) ([(GHELi ) (GP)

+(Ga)((G_‘)j"")-%-(G"k)(ij)+<Ga)((G’1)‘,§,j)(G"i)+(Ga)(ij’i). (18)
Using
(G cY=—(GE), (GTHE12)=(GE N (GEPY+(GTE)(GE)—(GE2) (19)
the above equation reads
(P))=8+(G (GG —(GEI(GP)+({G*) —(G=)(G¥))((Gy; ) —(Gp)(GE)) . (20)
Therefore, noticing Eq. (11), we find
(V=¥ +m3,)8 +m2,{ G ) {(GEN(GE) — (G5} GP) +uku,, . @1)

Here p'* is the complex conjugate of y1;;,. In our ansatz (7) one can see that

(GE(GE;)—(Ggl)=—1888) . (22)
Substituting this into Eq. (21) we obtain

(V))Y=2V)8 +puy; . (23)

The second term of the right-hand side (RHS) is a SUSY-invariant mass term which is zero for squarks and sleptons.
The soft SUSY-breaking term is proportional to the cosmological constant { ¥') and therefore { ) =0 results in the
vanishing soft SUSY-breaking mass terms for the squarks and sleptons. From now on, we consider the case of the van-
ishing cosmological constant { V') =0.

Next copsider £ v, ). .In the.winimal STISY. standard.model, this.term is allowed anly. for a mixing.term of twa Higgs__
scalars. A similar calculation gives

<Vij>=m§/2(i>ij):m§/2 2<G ) — (G )(Ga)+<Ga><Gua)
(G (GJ G (G (GG +(G )G T15,;)(GP)), 24)

which are generally nonzero and expected to be O(m3 ), ).
A SUSY-breaking trilinear coupling (¥, ) is computed as

(Vijk)=m3/2<ﬂjk>=m3/2[3<Gijk)+(Gijka)<Ga>—((Gijl><G£zk )(Ga>+permutations)] . (25)
—
Note that (G ), {G3,)=0(m3/). Our assumptions  Then
(7) and (9) lead to (Vi Y=m3 (G M 3—(G*){(G,)}

(gix) (hy) 2
(Guka>=_ (gI;:) (w) otma A
(h.) G V)+0(m3,, /M)
(G Y 7y TOM) o6 =0(m},/M), @7
(Gl y=— (I,) where we have recovered M from the dimensional
ka /™

(¢) analysis. Therefore the trilinear coupling also vanishes at
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the flat limit M — oo with the vanishing cosmological
constant.
Other terms are calculated as

< V ) ftjl.u' (28)
( Vlljd) =fijmf"lk1 ’ (29)

at the flat limit. u” and fY* are the complex conjugates
of u;; and f;;, respectively. One can easily check that
the hard SUSY-breaking terms { ¥, ) and (¥}, ) vanish
at the flat limit.

To summarize, we obtain the scalar potential of light
particles in the observable sector as

V= 2|§,-lz+%D“D“

+ LV I+ L (VDypryt (30)

where we have added the D terms D¢ which we had not
taken into account [21]. The first line of the RHS of the
above equation is supersymmetric, while the terms in the
second line are the soft SUSY-breaking terms.

Concerning gauge fermion masses, we will assume a
universal gauge fermion mass (which should be justified
for a GUT). The masses of squarks and sleptons are
mainly induced by the gauge interactions and therefore
they are degenerate in the different families, which will
result in the sufficient suppression of the FCNC'’s.

Finally we should comment on a crucial difference be-
tween our model and the no-scale model. In the no-scale
model [22], the scalar potential identically vanishes, since
the constant superpotential in the hidden sector is as-
sumed. The SUSY-breaking scale and consequently the
gravitino mass and the other SUSY-breaking terms are
not determined at the tree level but determined through
loop corrections. On the other hand, in our model we as-
sume a nontrivial superpotential in which the SUSY-
breaking terms are determined at the tree level. Further-
more we introduce a SUSY-invariant Higgs-boson mass,
which admits a relatively heavy top quark (see Sec. ITI).

ITII. PREDICTIONS AT THE FERMI SCALE

In this section we will investigate phenomenological
features of our model. We begin with a brief review of
the Higgs sector in the minimal SUSY standard
SU@3) XSU(2), XU(1)y model [23,24]. In this model,
there are two chiral superfields H, and H,, which trans-
form, respectively, as H,;=(1,2,—1) and H,=(1,2,1)
under the SUQ3)- XSU(2), XU(1)y gauge group. The
Higgs potential is given by

V= L( Alr, 4, +Alr 4 )2+g—(ATA,—A A,)

+m24l4,+miala,—mi(4,4,+ 4t 4}),
31)

where 4,(A,) is the first component of H, (H,), g[g'] is

the gauge coupling constant of SU(2), [U(l)y], and 7,

represents a Pauli matrix. m? and m? in Eq. (31) are

written as

mi=ml+A?, mi=ml2+Al. (32)

Here m; is a SUSY-invariant mass term of Higgs fields
and A%(A2) is a soft SUSY-breaking mass term of 4,
(A4,).

The stability of the potential requires

mi+m3>2\mi|. (33)
The SU(2); XU(1)y gauge symmetry breaks down to the

U(1),, symmetry if the condition

m$>m3m3 (34)

is satisfied. We define an angle 6 by a ratio of the vacuum
expectation values of the two Higgs scalars

tanf=(A4,)/{(4,) . (35)
Then 0 satisfies
sin20=2m%/(m{+m3), (36)
and the W-boson mass is given by
5 m2—m?
2 __ 8 2 ! 2 2
= —mi— 37
My, ei+g? | cos20 mi—m; (37)

at the tree level.

Let us now apply our supergravity model given in the
previous section to the minimal SUSY standard model
with three generations and the two Higgs doublets. We
have m?=m2=m? at the renormalization point p=My
(we take as My the GUT scale which is of order 10'®
GeV in this case) and the SU(2); XU(1)y gauge symme-
try is not broken at the tree level because Eq. (34) cannot
be satisfied while keeping Eq. (33). Therefore the gauge
symmetry is expected to be broken by radiative correc-
tions [13]. Here we will study this possibility.

The soft SUSY-breaking parameters and other cou-
pling constants follow their renormalization-group equa-
tions (RGE’s) [25] and their values at u~My, are ob-
tained by solving the RGE’s. In our numerical analysis
we neglect all Yukawa couplings but for the top quark.
As input parameters we use [1]

al=127.9, sin’§,(m,)=0.2334 . (38)

Let us summarize the boundary conditions on the pa-
rameters at the scale My, which we use when solving the
RGE’s (we follow the notation in Ref. [26]).

(i) The gauge fermion masses:

My=Myy=Mx =My . (39)
(ii) The supersymmetric Higgs-boson mass:
m(My)=myy . (40)
(iii) The soft SUSY-breaking masses for scalars:
Ay =Alx=m¥g,)x=m*@,)x=m*d,)x
=m¥I,)y
=m?e,)y=0, (41)
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where r (r=1,2,3) denotes the generation.

(iv) The soft SUSY-breaking trilinear top-
squark —top-squark — Higgs-boson coupling:
miox =0 . 42)
(v) The Higgs-boson mixing term:
my Ay =miy . 43)

Here A;y =ym;,, where the coefficient ¥ depends on the
detail of the hidden sector.
(vi) The Yukawa coupling for the top quark:

h(My)=hy . (44)

As was shown in the previous section, all chirality-
conserving SUSY-breaking mass parameters and the tri-
linear scalar coupling vanish at u~My.

On the above parameters we must impose the stability
condition of the Higgs potential (33) at the GUT scale.
In our model, it reads

mszx>|mgxl . (45)

We have four parameters My, m., m3y, and hy.
However, one of the combinations should be fixed so that

)

the correct Fermi scale is produced. In practice, it is
convenient to determine the Yukawa coupling from Eq.
(37). Therefore we have three free parameters My, my,
and m3,. Notice again that the SUSY is softly broken by
only two mass parameters M,y and m .

It is instructive to mention some of the properties of
solutions of the RGE’s. The gauge fermion masses
M (i=1,2,3) at =My, are easily obtained as

M =3Mng?/g% ,
M, =My xg*/8% , (46)
M, =nggc2/g§ ’

where gy is the unified gauge coupling constant at

pu=My. The soft SUSY-breaking mass parameters for
the sleptons are given by
m¥T)=MX[3(1—g*/gx)/2
+(1—25g"/9g%)/22],
2 2 4 1004 @47
m*(e,)=Mg2(1—25¢"/9gx)/11 (r=1,2,3)

and those for the squarks are

mAg,)=MX[—8(1—g2/g%)/9+3(1—g*/gx)/2+(1—25¢*/9g%)/198] ,
m¥a,)=M4[—8(1—g2/gx)/9+8(1—25¢"*/9g%)/99] , (48)
m(d,)=M2%[—8(1—gl/gx)/9+2(1—25¢"*/9g%)/99] (r=1,2).

The masses for the top squarks are smaller than those for
the squarks in the other generations because of the top-
quark-loop contributions. Numerically we obtain the re-
lations

M,/M,=2.01, M;/M,=17.19,
m(T)/M,=1.78 , m(g,)/M,=0.95,
m(g,)/M,=6.60 ,

m(#@,)/M,=6.40 , m(d,)/M,;=6.38 .

(49)

The physical masses m for the sleptons and squarks are
then given by

mAT ), =m¥T)+M%cos26(tan’dy,,+1)/2 ,
mAT.),=m*T )+ Mcos26(tan’dy, —1)/2 ,
me,)=m%e,)—M}cos20tan’0y, ,
mAg,),=mAg,)—M}cos26(tan’0,, /6—1) ,  (50)
mAg,),=mg,)—M}cos26(tan’0y, /6+1) ,
mA#,)=mX#@,)+2M},cos20tan’6,, /3 ,
mAd,)=m*d,)—M}cos20tan’0,, /3 .

To the solutions of the RGE’s, we impose the following
cuts.

A. Experimental cuts

We require that the obtained mass spectrum is con-
sistent with the following experimental limits: top-quark
mass: m, >89 (GeV) [27]; gluino mass: m, > 150 (GeV)

[28]; squark masses: m, > 170 (GeV) [28,29]; chargino
masses: m > 45 (GeV) [30]; selectron mass: m,>43
(GeV) [31]; contribution of sneutrino to the Z width [32],

I'(Z —>w) .
T(Z o) <0.18 ; (51)
contribution of neutralinos to the Z width [32],
I'(Z—>NN')
T Z o) <0.18, (52)

where NN’ represents all pairs of neutralinos relevant to
the Z decays.

Note that we do not impose any condition on the
neutral-Higgs-boson masses, because it has recently been
recognized that the mass of the lightest Higgs boson may
receive large radiative corrections due to top and top-
squark loops [33] and becomes easily above the experi-
mental lower bound.

B. An astrophysical cut

Since the lightest superparticle (LSP) is stable in the
minimal SUSY standard model, we require that it should
be SU(3)c XU(1),,, neutral.
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C. A theoretical cut

When solving the RGE’s, we neglect the Yukawa cou-
pling h, for the bottom quark. The ratio of the Yukawa
couplings and that of the quark masses are related as

h m

L =P tang . (53)

h, m,;
Thus when tan@ is large, our approximation of neglecting
the bottom-quark Yukawa coupling is invalid. Therefore
we impose that (h, /h,)?> <0.1 at u=My, as a theoretical
cut.

Here we should note that a similar analysis was done in

10° e

10° E3

mgx (GeV)

10 "‘

101 ,...“u} {
10! 10% 10° 10*

ms3x (GeV)

Ref. [34], where only the gaugino mass is assumed as a
SUSY-breaking term, which corresponds to the m;y =0
case in our models. They used experimental constraints
on the masses of superparticles, etc., and searched the al-
lowed region of the parameter space. However, recent
accelerator experiments give stricter constraints than
those imposed in [34]. Therefore the lower bounds on the
masses of the superparticles, etc., predicted by our
analysis are more severe than those given by [34].

We have searched solutions for the radiative
breaking scenario in the parameter range of |MgX|,
Imgyl, Im;x|<10 TeV. In our convention we take
M,y >0,m3x>0. On the other hand, m. can be posi-

10* — -t
] (b)
g 10° ¥ T
>$ -4
£ 102+ +
101 JA.....‘t + ...u..§ s
10! 10 10° 10t

Mgx (GeV)

m3x (GeV)

10! 10 10° 10* 10! 10 10° 10*
mgx (GeV) -mgx (GeV)
10° e
] (e)
> 102 +
@ ]
%
B ot
10° e ol
10! 10% 10° 10*
ng (GCV)

FIG. 1. Allowed regions for the parameters at M,y. In our convention we take Mx,M;x >0. (a) and (b) show the (Mx,my)
plane for positive and negative m.y, respectively. (c) and (d) show the (m.,m;yx) plane for positive and negative my. (e) is the
(M,x, m;y) plane.
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FIG. 2. Low-energy predictions of our model. Masses of various particles are plotted versus the gluino mass. (a) indicates the
top-quark mass, (b) the mass of the lightest Higgs boson h and that of the pseudoscalar Higgs boson A4, (c) two chargino masses, (d)
the sneutrino mass, (e) the mass of the right-handed sleptons &g, and that of the left-handed sleptons &, (f) the masses of the squarks
in the first and the second generations, and (g) the top-squark masses.
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tive or negative. We find that there exist solutions which
survive the constraints A-C. In Figs. 1(a)-1(e), we
show the allowed region of the parameters at My. We
observe that

80S | My | S400 GeV
605 |myy| $2000 GeV , (54)
05 |m;x] S500 GeV .

An important feature is that the allowed region of the
universal gauge fermion mass at u=My is tightly re-
stricted from above, which results in relatively light gau-
gino and slepton masses.

It is worthwhile to observe what determines the boun-
daries in the figures. Let us consider, for example, Fig.
1(a). We can see from Eq. (49) that a gaugino mass pa-
rameter M, is slightly larger than the right-handed scalar
electron mass parameter my - The lightest neutralino

consists of a mixture of the neutralinos in our case and it
becomes lighter than 2, due to the mixing effect. Howev-
er when the gaugino mass is large, the mixing effect
reduces and hence the lightest neutralino becomes
heavier than @;. Indeed this is the case in the region 4
of Fig. 1(a). This means that the charged particle e, be-
comes the LSP and therefore this region is astrophysical-
ly excluded. The region B is excluded because the sneu-
trino is too light to satisfy I',_/T",, <0.18. In the region
C, the chargino becomes the LSP. The region D invades
the lower limit of the top-quark mass 89 GeV. Finally in
the region E, we cannot find a solution of the radiative
SU(2); XU(1)y breaking. Remark that the experimental
limits on the masses of the gluino and the squarks have
not been used to restrict the parameter region. Namely,
in the allowed region, the experimental constraints on
their masses are automatically satisfied. Similar observa-
tions can be done for other figures but will not be stated
here.

Figure 2 shows low-energy predictions of this model.
The main characteristics of our model are the following.

(a) The gluino mass is predicted as 250 GeV < m, <1
TeV. The lower and the upper bounds of it are given as
explained above. The upper bound of the gluino mass
m, < 400 GeV was also derived by Ellis and Zwirner [34].
This upper bound comes from the imposition that the

neutralino LSP solves the dark-matter problem; i.e., the
contribution to the cosmic density from the LSP is equal

to the critical one. However, this imposition also pre-
dicts a light top quark with m, <90 GeV, which is very
unlikely at present [27].

(b) Our model has little predictive power on the top-
quark mass [Fig. 2(a)] [35]. The upper bound merely
reflects that the Yukawa coupling blows up before the
GUT scale if the top-quark mass violates the bound.

(c) In Fig. 2(b), the lightest Higgs-boson mass m,, is 10
GeV Smj;, 590 GeV at the tree level. As mentioned in
the constraint A, we have not imposed an experimental
lower bound on the mass, because radiative corrections
easily raise the mass above the experimental limit [33].
The mass of the pseudoscalar Higgs boson m , lies in the
wide range of 90—-800 GeV. The mass of the other neu-
tral scalar boson is found to be almost degenerate with
m 4. The charged-Higgs-boson mass m,+ is given as
m;‘;i =mf, +mfyi.

(d) There are two charginos ¥ and 5. The mass of
the lighter one is below 300 GeV and that of the heavier
one is below 600 GeV [Fig. 2(c)].

(e) Figures 2(d) and 2(e) indicate that the masses of the
sleptons almost linearly depend on the gluino mass. This
is because the soft SUSY-breaking slepton mass parame-
ters are given as a function of the universal gaugino mass
M,y as can be seen in Egs. (47) and (49). We find that
they are relatively light and, in particular, the right-
handed selection which is the lightest slepton in our mod-
el weighs less than 150 GeV.

(f) Because of the QCD corrections, the squarks are
generally heavier than the sleptons. Their masses (except
for the top-squark mass) also linearly depend on the
gluino mass and 200 GeV Sm, 51 TeV [Fig. 2(f)]. The
top-squark masses are widely distributed [Fig. 2(g)] since
the left-right mixing term gives an extra contribution.

(g) The mass of the LSP is predicted as 2 GeV
Smygp S150 GeV. The lighter LSP survives the con-
straint from the Z decay because it is dominated by the
photino. In many regions of the parameter space, the
LSP and the right-handed scalar electron are almost de-
generate in mass. We find that the LSP heavier than 40
GeV are occupied by a b-ino. For the b-ino LSP, we cal-
culated the cosmic density  and found that
0.01h52SQ50.2h % where hj is the present-day Hub-
ble constant in the unit of 100 km~!s™!Mpc. Photino-
dominant LSP gives a slightly large cosmic density. With
the astrophysical observations 0.55hy,<1, 251 is au-
tomatically satisfied. In Ref. [34], it has been pointed out

TABLE I. Predictions of the masses of particles for the right-handed selectron mass mg = 80 GeV.

As explained in the text we should not take m, at a face value, since it receives a large radiative correc-

tion [33].
m, 90-190 GeV m, 110-140 GeV
my 20-90 GeV mEL 130-15 GeV
m, 170-720 GeV m; 410-490 GeV
m 4 190-720 GeV m; 450-550 GeV
H 3
mg 470-540 GeV me 270-340 GeV
m_4 70-170 GeV mysp 60-80 GeV
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that if the top-quark mass is above 90 GeV the density (2
is always smaller than the critical density =1 and
therefore our result is consistent with theirs.

The masses of the squarks in the first and second gen-
erations are highly degenerate. On the other hand, the
masses of the top squarks are different from those of the
squarks in the other generations. We checked, however,
that because the relevant elements of the Kobayashi-
Maskawa matrix are very small (for a review, see [36]),
the contribution of the top squark to the K-K mixing
through the W-ino exchange is small enough and is con-
sistent with the experimental value.

The right-handed selectron whose mass is roughly
below 90 GeV can be searched at the CERN e e ™ col-
lider LEP II. In Table I we show the predictions of our
model for mER =80 GeV. We can see for a given mék,
other masses of the superpartners can be well determined
in our model.

IV. CONCLUSIONS

In this paper we have considered a supergravity model
in which the observable sector and the hidden sector are
separated in the superspace density. This separation
guarantees the mass degeneracy of the squarks and slep-
tons, as required for the suppression of FCNC’s. This
model has a special form of the soft SUSY-breaking
terms. That is, at the tree level, mass terms of the
squarks and sleptons and the cosmological constant
simultaneously vanish. At the same time, soft SUSY-
breaking trilinear couplings become zero.

We have performed a phenomenological analysis on
this model. Namely, we have combined this supergravity
with the minimal SUSY standard model and have found
that the SU(2);, XU(1)y gauge symmetry can be radia-
tively broken for suitable values of the free parameters.
An interesting feature of our models is that LSP (which is
mostly a neutralino) is nearly degenerate with the right-
handed scalar electron in the wide region of the parame-
ter space. When the gaugino mass M,y at My is large,
the neutralino becomes heavier than the right-handed
selectron, which is forbidden by an astrophysical reason
since the charged particle becomes the LSP in this case.
Thus our models have an upper bound of the universal
gaugino mass M,y <400 GeV and consequently an upper
bound of the masses of the gluino, squarks, and sleptons.
In particular the right-handed scalar electron which is
the lightest slepton in our case weighs less than 150 GeV.
The selectron with mg <90 GeV can be explored by the

LEP II, although the whole range can be covered by
e*e™ collider experiments in the next generation. On
the masses of the squarks and the gluino, our models pre-
dict 200 GeV S mg, . <1 TeV. The masses up to, say, 300

GeV or so will be covered by the Collider Detector at
Fermilab (CDF). Heavier squarks and gluino will be
searched by new hadronic accelerators.

There is an alternative possibility [37] of realizing
massless scalar bosons at the fundamental scale. That is,
in a nonlinear 0 model coupled to supergravity [38], the
Nambu-Goldstone bosons remain massless, if the total
Kahler potential is invariant under relevant transforma-
tions [39]. In this case, soft SUSY-breaking trilinear cou-
plings do not necessarily vanish. However, we may ex-
pect that the Nambu-Goldstone hypothesis will share
main features such as the presence of light sleptons in the
present model.

We would like to mention that the Higgs potential may
receive large effects associated with the top-squark mass
threshold [40,33] when the Yukawa coupling A, is consid-
erably large. Then the tree-level relation (37) must be
modified by taking account of the threshold effects. This
will shift the estimate of the top-quark Yukawa coupling
and consequently the top-quark mass in our numerical
calculation. However, the change of the top-quark mass
does not affect much the bound of the gaugino mass.
Since the gaugino mass is the most responsible for yield-
ing the main results in our models, we expect that the
threshold effects will not change our present results drast-
ically except for the lightest Higgs-boson mass. These
threshold effects, however, deserve further study and will
be discussed elsewhere.

Finally we should stress that the presence of the light
sleptons below 150 GeV is common in a large class of
models including the no-scale model [11], the Nambu-
Goldstone hypothesis, and the minimal SUSY-breaking
model with gaugino mass [24,34]. If the sleptons are not
found below 150 GeV in future experiments, we believe
that all these models as well as ours will be confronted
with a serious difficulty.
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FIG. 1. Allowed regions for the parameters at M;y. In our convention we take M y,M;y >0. (a) and (b) show the (Myy,m )
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