
PHYSICAL REVIE% 0 VOLUME 45, NUMBER 9 1 MAY 1992

Sign of the color-hyperfine splitting in charmonium I' states as a test of yerturbative QCD
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The sign of the difference in energy between the center of gravity of the P levels and the 'P level in

heavy quarkonium is a test of the a, terms in perturbative QCD with a fixed coupling constant. Whereas

this energy difference is zero in the Fermi-Breit approximation and greater than zero in a generalized

Fermi-Breit approximation with asymptotically free potentials, the energy difference is negative in per-

turbative QCD calculations to one-loop order with a fixed u, . For potentials which reasonably agree

with the spin-averaged data, the absolute magnitude of the splitting is calculated to be about 4 MeV or
less in charmonium and 2 MeV or less in bottomonium. Since the energy of the 'P center of gravity in

charmonium is known, a measurement of the energy of the P level is needed to discriminate between

these different schemes. Although the 'P levels in bottomonium will probably be harder to measure, we

also present results for bottomonium.

PACS number(s): 12.38.Bx, 12.40.Qq

Experiment tells us that the spin-dependent forces act-
ing between a quark and an antiquark in a meson are
such that states having spin one and zero orbital angular
momentum ( S states) are higher in energy than the cor-
responding states with spin zero ('S states). Thus, for ex-
ample, the J/f, with a mass of 3097 MeV, lies higher
than the g„with a mass of 2980 MeV. It is commonly
believed that the same forces act to cause the energy
E( P) of the center of gravity of the P levels to be
higher than the energy E('P) of the corresponding 'P
level. However, although this statement is true in some
calculational schemes, it is false in others. Unfortunately,
experimental evidence is lacking.

Our main purpose in this work is to compare two
schemes: one of which predicts that in heavy quarkonia
the energy difference b,Ep=E( P) E('P) is—greater
than or equal to zero and another which predicts that
EEp is less than zero. The first method we call the "gen-
eralized Fermi-Breit" method, while the second is an
evaluation to one loop in QCD perturbation theory. The
energy of the center of gravity of the 1 P levels in char-
monium and of the 1 P and 2 P levels in bottomonium
have already been measured, and so measurements of the
correspondingly 'P levels can discriminate between these
schemes.

Probably, the 1 'P level in charmonium is the best can-
didate for measurement, as we guess that the 1 'P and
2 'P levels in bottomonium wi11 be harder to measure. (In
light mesons the perturbation approximation on which
the various schemes are based is not valid. )

De Rujula, Georgi, and Glashow [I) have pointed out

that the one-gluon approximation to QCD leads to a
color-hyperfine interaction analogous to the hyperfine in-
teraction arising from one-photon exchange in QED.
This approximation, in both QED and QCD, is known as
the Fermi-Breit (FB) approximation. It gives rise to non-
static corrections to the static Coulomb potential of QED
or the static color-Coulomb potential of QCD. (By a
static potential, we mean a potential which depends only
on the distance r between the quark and antiquark. ) The
nonstatic corrections include the color-hyperfine interac-
tion, a tensor interaction, and a spin-orbit interaction,
plus nonstatic spin-independent terms, all of which must
be evaluated (for consistency) in lowest-order perturba-
tion theory.

It is well known [I] that the FB color-hyperfine in-
teraction leads to a splitting of S levels of quarkonium
from the corresponding 'S levels, with the S levels lying
higher. As we have noted, this prediction is in accord
with observation. The contributions of the spin-orbit and
tensor terms vanish in S states in lowest-order perturba-
tion theory. Likewise, in lowest-order perturbation
theory, the spin-orbit and tensor contributions cancel out
of the difference EEL =E( L) E('L) if E( L—) is the
center of gravity of the three triplet states with orbital
angular momentum L )0. Therefore, if lowest-order
perturbation theory is a good approximation, a measure-
ment of AEI is a measurement of the expectation value
of the color-hyperfine interaction.

In the FB approximation, the color-hyperfine interac-
tion H' is given by

0'(FB)= (8vra, /9m, m z )6(r)o, .o z, (1)
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where a, is the strong-interaction coupling constant, m
&

and mz are the constituent masses of the quark and anti-

quark, and o. , and o.
z are Pauli spin operators. This in-

teraction leads to the following formula for EEL ..
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bE~(FB)=32m.a, ~g(0) ~ /(9m, mz), (2)

V(r) = —4a, /(3r) . (3)

A number of authors [2] have generalized the FB approx-
imation so that it will apply to potentials which do not
behave as —1/r In th.e generalized Fermi-Breit (GFB)
approximation (which is often just called the Fermi-Breit
approximation}, if the quark-antiquark potential U(r)
contains a part V(r), which behaves as the zeroth com-
ponent of a Lorentz four-vector, and another part S(r),
which behaves as a Lorentz scalar, then only the vector
part V(r) contributes to the color-hyperfine splitting.
Here U(r)=V(r)+S(r).

In the GFB approximation, K' is given by [2]

K'(GFB)=V' V(r)o, o2/(6m&m2),

and leads to the following expression for AEz.

GAEL (GFB)=2(V' V(r) )/(3m, m2),

(4)

(5)

where the expectation value is taken with respect to the
unperturbed wave function of the particular level. Al-
though only V(r) enters explicitly into the expression for
the splitting in Eq. (5), both V (r) and S (r) are needed to
calculate the wave function in order to obtain the expec-
tation value. If V (r) is given by Eq. (3), then the GFB re-
sult reduces to the usual FB formula.

Because of asymptotic freedom it is reasonable that
V (r) is less singular at the origin than 1/r. One possibili-
ty is to replace the constant a, in (3) by a, (r), which
behaves like —1/lnr as r goes to zero. For example, we
may take a, (r) =(Ar —I)/lnkr, where A, is a positive con-
stant [3]. Another possibility is to take V(r) to be a
power: V(r)= —a/r~, where a and P are positive con-
stants, with P( 1. In either case it is easy to see that the
GFB formula predicts that AEL )0 for all L and that, in
particular, EEL )0.

More generally, for any potential V(r) which satisfies

where P(0) is the wave function at the origin. The value
of f(0) cannot be calculated perturbatively and must be
calculated from a model, usually a potential model. It
can be seen immediately from Eq. (2) that, independent of
what potential is used, EEL (FB) cannot be negative. In
all potential models motivated by QCD (about which we
will say more shortly),

~ P(0) ~

)0 in S states and
~ g(0) ~

=0
in states with LAO. Thus, in the FB approximation, b,Es
is predicted to be greater than zero, in accord with obser-
vation, while all other EEL are predicted to be equal to
zero.

The FB result follows from the fact that in the one-
gluon approximation the static quark-antiquark potential
is Coulomb-like, being of the form

If the QCD static potential V (r) also has this property, as
we conjecture, then we have the general result that
AEL )0 in the GFB approximation.

Eichten and Feinberg [5] and Gromes [6] have treated
the spin-dependent interaction in quarkonium using per-
turbative QCD in an approximation which goes beyond
the FB approximation. In the treatment of Eichten and
Feinberg and Gromes, the color-hyperfine interaction is
not written in terms of V(r), but rather in terms of a new
quantity, called V4(r), which can be evaluated in QCD
perturbation theory. Gupta, Radford, and Repko [7]
(GRR) and Pantaleone, Tye, and Ng [8] (PTN} have used
the prescription of Eichten and Feinberg and Gromes to
calculate the color-hyperfine splitting to order a, . In
their calculations the order- a, contribution vanishes in P
states (because they do not let a, run). Thus their result
to lowest order is the same as that obtained in the FB ap-
proximation, but not in the GFB approximation. It turns
out that the order-a, (one-loop) contribution is negative.
Therefore, GRR and PTN both obtain a sign for EEL
which is opposite to the sign obtained in the GFB approx-
imation for potentials satisfying the inequality (6). (The
calculations of GRR and PTN are not identical because
they use different static potentials and different normali-
zation prescriptions. ) The expressions for b,EL in the
GRR and PTN methods are rather lengthy, and we refer
interested readers to the original papers.

If we compute AEJ using the GFB method for a poten-
tial satisfying (6), we will obtain a positive sign for hE~,
in contrast with the results of GRR and PTN. In order
to obtain numerical results, we need to use a definite po-
tential. It is clear that the exact value will depend on the
potential we use. For illustrative purposes, just to get an
order-of-magnitude estimate, we evaluate hE~ with the
potential of Lichtenberg and co-workers [9], which pro-
vides rather good fits to the spin-averaged energy levels in
charmonium and bottomonium. The potential of
Lichtenberg and co-workers is representative of poten-
tials which are less singular at the origin than 1/r.

The potential of Lichtenberg and co-workers has the
form

U(r) = —a /r +br +c,
where a and b are positive constants and the constant c
may be of either sign. We call the potential U(r) because
it contains both a vector piece V(r) and a scalar piece
S(r). We have numerically solved the Schrodinger equa-
tion with the potential of Lichtenberg and co-workers [9],
varying the parameters so as to obtain a best fit to the
charmonium and bottomonium spin-averaged data. With
quark masses

m, = 1.82 GeV, mb S. 18 GeV

V V(r))0 all r, (6)
the constants of the potential for charmonium are [9]

AEL will be positive. Using the nonrelativistic
Schrodinger equation, Baumgartner, Grosse, and Martin
[4] have proved that if V U(r) has the same sign for all r,
then the ordering of energy levels agrees with the order-
ing in charmonium and bottomonium only if V U(r) )0.

a ——0.7S1 Gev "4,
S =0.283 Gev"4,

c = —0.739 GeV,

and for bottomoniurn are

(8)
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a =0.643 GeV'i

b =0.297 GeV i

e = —0.795 GeV .

(9)

If we use a fiavor-independent potential (the same values
of a, b, and c for both charmonium and bottomonium),
we do not get quite so good agreement with the spin-
averaged data [9],but it turns out that the values of AEt,
are essentially unchanged.

In order to use the potential of Lichtenberg and co-
workers of Eq. (7), we must divide it into vector and sca-
lar parts. According to QCD perturbation theory, the
potential behaves as a vector at short distances. There
are indications from QCD lattice gauge calculations [10]
that the confining part of the quark-antiquark potential
behaves as a scalar. We are guided by the perturbative
and lattice QCD results in splitting up the potential into
vector and scalar parts, but understand that there is some
ambiguity in this procedure. We take the vector and sca-
lar parts of the potential of Lichtenberg and co-workers
to be

V(r)= air, —S(r)=br i +c . (10)

TABLE I. Calculated values of AEI for charmonium and
bottomonium in MeV using the potential of Lichtenberg and
co-workers with the GFB method. For comparison, we also

give the FB result and the values calculated by GRR [7] and PT
[12] to order a,'.

1P cc
1P bb
2P bj)

GFB FB PT

—1.4
—0.5
—0.4

We have arbitrarily placed the constant c in S(r), but this
does not aff'ect our result, as can be seen from Eq. (5).
Note that the potential of Lichtenberg and co-workers
satisfies (6) and thus leads to b,Et, )0.

Our calculated values of AEt, (GFB) with the potential
of Lichtenberg and co-workers are given in Table I. We
note that a calculation of DER with the same potential
gives EE&=144 MeV for charmonium, in comparison
with the experimental value of 117 MeV. Because the
calculated value of ATE& is somewhat too large, we expect
that our calculated values of EEL might also be too large.
However, the important point is that the sign is definitely

positive.
With other potentials which agree reasonably well with

the charmonium and bottomonium energy levels, we
would get different values of the P-wave splitting, but the

sign and the order of magnitude would be the same as that
with the potential of Lichtenberg and co workers. An ex--
ception is the potential of Eichten-et al. [11] if the
confining part is taken to be a scalar. Then the vector
part of the potential of Eichten et al. goes like —1/r and
so gives AEp =0 in the GFB scheme, just as in the FB
case.

As we have remarked, GRR and PTN also compute

the P-state color-hyperfine splitting. Pantaleone and Tye
[12] (PT) specifically address this question in a later pa-

per, using a method which yields similar, but not identi-
cal, results to those of PTN. In Table I we show for corn-
parison the Fermi-Breit result and the results obtained by
GRR and PT.

We can see from Table I that the color-hyperfine split-
ting of the charmonium P levels is typically 2—4 MeV,
except that in the GFB approximation the singlet P state
lies below the center of gravity of the triplet P states,
while in the GRR and PT approximations the singlet P
state lies above the center of gravity of the triplet P
states. (Of course, in the FB approximation, the splitting
is 0.) In bottomonium the qualitative features are the
same, but the magnitudes of the splittings are less.

It is apparent from these results that measurements of
the singlet P state in charmonium and bottomonium pro-
vide a test of whether the modern theory of the color-
hyperfine interaction described by Eichten and Feinberg
and Gromes and carried out in QCD perturbation theory
to order a, with fixed a, by GRR and PTN is in fact su-

perior to the GFB approximation.
Other ways of treating the splitting have also appeared

in the literature. Ono and Schoberl [13] include the
Fermi-Breit term in the potential, rather than treating it
as a perturbation. In order to get a finite result, they
have to sfnear out the 5 function in Eq. (1), thereby intro-
ducing another parameter. Their result for AEI. is posi-
tive. McClary and Byers [14] also use the Fermi-Breit
Hamiltonian in a way which requires them to smear out
the 5 function. These authors state that, in their method,
"For triplet states, the hyperfine interaction is repulsive.
For singlet states it is attractive. " However, in their
treatment they find that AEI, is negative in both char-
monium and bottomonium, as can be seen from Tables II
and III of their paper. We guess that their result comes
from including the tensor and spin-orbit forces nonper-
turbatively, in which case the effects of these interactions
do not cancel when taking the center of gravity of the
triplet states. Igi and Ono [15] have treated the P-state
splitting using the method of GRR and PTN, but with a
different potential, and, in agreement with GRR and
PTN, obtain a negative result for hE~ (see the erratum to
their paper).

Gupta, Repko, and Suchyta [16] do a one-loop pertur-
bative calculation with fixed a„but nevertheless obtain a
positive value for EEI, because they choose the confining
potential to be part vector and part scalar. This is be-
cause tQe vector part of their potential contains a part
(the confining part) which is less singular than 1/r.
Clearly, if the confining potential has a substantial vector
part, despite the contrary indication from lattice QCD
[10], then the sign of bEt, cannot be decided within the
framework of perturbative QCD. But we prefer to take
seriously the lattice QCD result, which says that the
confining potential is scalar. Furthermore, we have no
cogent reason to doubt the QCD result that a, runs.

We expect that it will be easier to measure AE& in

charmoniurn than in bottomonium, so that the first test
of QCD one-loop perturbation theory as calculated by
GRR, PTN, and PT wi11 come from charrnomium. We
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urge that such a measurement be given high priority. We
note, however, that if an accurate measurement of AEI
could be made in bottomonium, the interpretation ought
to be even cleaner than in charmonium, as perturbation
theory should hold to a better approximation in the bb
than in the cc system.

Finally, we have to mention a caveat. Other e6'ects,
which are difficult to calculate and which we have not
taken into account, can also contribute to the P-wave
splittings. For example, we have already mentioned that
the tensor and spin-orbit contributions cancel only in
lowest-order perturbation theory and contribute in
higher order. Unfortunately, we do not know whether it
is consistent to include these higher-order contributions
in the generalized Fermi-Breit formalism. As another ex-
ample, coupling to other channels can cause energy shifts
of levels, but calculations of such shifts are highly model

dependent. In any case we can say that with asymptoti-
cally free potentials the generalized Fermi-Breit contribu-
tion to hEI is positive, in contrast with the calculations
[7,8] performed to one-loop order with fixed a„which
obtain a negative result.

Note added in proof. A recent preliminary measure-
ment in E760 at Fermilab [17]has found bE~ = —1 MeV
in charmonium, in qualitative agreement with one-loop
QCD calculations.
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