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The production of two photons by electrons and positrons in very-high-energy linear colliders is con-

sidered. The phase of the amplitude is discussed in detail and the dominant radiation zone is deter-

mined. The arguments that the multiphoton radiation is an incoherent process are confirmed. Exact
agreement with the Blankenbecler-Drell "incoherent" formula for fractional energy losses is shown. A

simple semiclassical explanation of the results is proposed
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I. INTRODUCTION

During the last 3 years the electromagnetic radiation
process called "beamstrahlung" has been extensively
studied in the context of very-high-energy electron-
positron linear colliders working in the TeV energy
range.

In several papers general features of bearnstrahlung
have been discussed. A calculation procedure and ap-
proximations have been described in detail in [1—4]. It is
based on the distorted-wave Born-approximation ap-
proach used together with conventional Feynman-
diagram technics. It is worthwhile to note that the basic
one-photon result for the energy lot by high-energy elec-
trons has been derived many times before, but in different
contexts [5]. An excellent review of the methods, results,
and future prospects is presented in [6].

The energy losses by electrons and positrons in very-

high-energy linear colliders appear to be unexpectedly
high —about 17—20%. Moreover, the photon's spec-
trum is much harder than in the case of the usually un-

derstood bremsstrahlung process. These features allow
us to consider bearnstrahlung not only as a problem of
energy losses, but also as a possible source of the very
hard photons which can be used to study such processes
as hard photon-photon collisions or pair production.

As results obtained in [1—4] were calculated in the ap-
proximation of single-photon emission.

Multiphoton processes were considered first by Blank-
enbecler and Drell in [7]. They argued that for future

colliders in the TeV range, a pulse theoretically can be
dropped into thin slices and that radiation from succes-
sive slices mill be incoherent. Because each slice is

sufficiently thin, the probability for radiating more than
one photon per slice is negligib1e. This allows them to
treat each slice of the pulse as differentially small and
construct the rate equation for the probability of finding
an electron and photon with energy fraction x and l —x,
respectively, at fractional depth within the pulse [see Eqs.
(3) and (4) in Ref. [7]]. After solving these equations it is

possible to calculate not only 5, , the fractional energy
loss in the single-photon emission approximation, but
also 5 (total), the fractional energy loss including the
effects of all photon ernissions. 81ankenbec1er and Drell

also noted that 5 (total) is somewhat smaller than 5, for
the same parameter values. It is understood if we consid-
er the single-photon resu1t not as an average energy loss
from scattering events in which only one photon is actu-
ally emitted, but rather as an expected energy loss as an
electron transverses a very small length dz multiplied by
Lb ldz (Lb is a length of the bunch). Thus it is clearly an
overestimate of the actual average energy loss, since it
fails to take into account the fact that after one photon
has been radiated the subsequent energy loss will be
somewhat less. In the light of such an interpretation, the
multiphoton radiation is not a correction to the one-
photon radiation (5, ) (because in 5, the emission of arbi-
trarily photons is allowed) and 5 (total) is more realistic
estimate for energy losses.

In the present paper we explicitly demonstrate by
straightforward calculation, that mu1tiphoton radiations
are in fact incoherent. In other words, our calculations
should be considered as a check of the Blankenbecler-
and Drell less rigorous argument.

We consider the two-photon radiation amplitude for
beamstrahlung in the TeV energy range. We calculate, in
the high-energy approximation and ignoring the spin
structure of the electron, the radiation rates for two-
photon beamstrahlung in a cylindrical bunch with uni-
form density. The result for energy losses is

2
c Lb

52=4.2
I,

where L,b is the bunch length and l, the coherent radia-
tion length for beamstrahlung [1], in fair agreement with

the Blankenbecler-Drell incoherent probability interpre-
tation.

In the considered approximation, interference is negli-

gible and our calculation of two-photon energy losses can
be generalized to the arbitrary number of photons.

The paper is organized as follows. In Sec. II we trans-
form the phase of the two-photon amplitude to the form
convenient for determining stationary points in space,
calculated in Sec. III. In Sec. IV space integrations are
performed. Radiation rates and corresponding energy
losses are calculated in Sec. V. In Sec. VI we discuss the
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obtained results in the light of the incoherent probability
interpretation.

II. PHASE k k kg

c( ossed+ (amplitude j

The Feynman diagrams for the two-photon beam-
strahlung are presented in Fig. l. As in [1—3], we have
simplified the problem, considering merely the radiation
of the highly energetic particle in the external field. It is
justified by the small value of the disruption parameter in
the considered regime (more detailed discussion is
presented in [6]). The corresponding radiation amplitude

1S

At =JR„„6'",82,
with

(2.1)

FIG. 1. Feynman graph for the emission of two photons by
an electron in the external field.

W„„=e f0';(x)()„„G(x,y)()~tpf(y)exp( i—k, x i—k2 y)d. x d y+(crossed amplitude, i.e. , with k,~k2),

where k& (k2) denotes the emitted photon momentum and
( ", (8z) is the photon polarization Th.e wave functions
4; and 4f describe the electron in the presence of the
bunch in the initial (i) and final (f) states and G (x,y) is
the electron propagator inside the bunch. The wave
functions and propagator can be obtained by solving the
Dirac equations in the external field.

In this paper we limit our considerations to the spinless
case, taking the electron as a scalar particle, which means
that we replace the Dirac equation with the Klein-
Gordon equation. This gives the dominant part of the
process cross section because the spin-Rip probability of a
high-energy electron is small. We employ the high-

energy approximation, i.e., keep only constant and 1/k
terms, where k is a typical electron energy. A11 terms
proportional to higher powers of 1/k are neglected. Un-
der such an approximation it is possible to solve the
Klein-Gordon equation for 4', , 4f as well as the Green's
function G.

The results for wave functions in external field U(x)
obtained in [1—3] are

'P;(x)= A, (x)exp(i@, (x))

and the same for i ~f, where the phases are given by

x3
4, (x)=k, x3 —$, (x)— f (VTS;)'dx,',

l

(2.2a)

C f(y)=kfy+Sf(y)+ f [(VTSf )
—2kf&(y3 —y3 )()~ U(yT, y3 )]dy3

2kf Vl
(2.2b)

and

I I Qo

S,.(x)= U(xT, x3 )dx 3', Sf(y) = U(yT, y3 )dy 3
Qo

with the coordinates xT (yr) transverse and x3 (y3)
parallel to the initial electron momentum. By
V T

= [()&, B2] we denote the gradient in the transverse
direction.

The amplitude for initial and final states have the form

E;—=k;=fk;l y Ef=kf I~f1,

and from energy conservation we have

k =kf +k2 =k, —k) .

1 x3
A, (x)=1+ U(x)+ f (VTS, )dx3

2k Qo

+f(y)=1+ U(y)+ f (VTSf )dy32kf V3

In the following we neglect electron mass, and so

(2.2c)

(2.2d)

The notation and conventions have been adopted from
[1,2]. Similarly, we work in the rest system of the bunch
and define the XZ plane by the initial and final electron
mornenta k,. and kf (Fig. 2). The bunch is assumed to be
cylindrical with uniform charge density. The quickly
varying part of the potential from such a bunch has the
form
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U(x)=U(xz. ,x3)=AxT for Ix3l ( ,'L—i, , (2.3}

where A, =n/LbRb, n =Re (N is the number of the par-
ticles in the bunch); Lb and Rb are the bunch length and

radius, respectively.
A detailed calculation of the propagator G(x, y) in the

1/k approximation is moved to Appendix A (see Ref.
[8]). For the potential (2.3) the general formula for the
propagator [Eq. (A5)] gives

2G(xr, yT, ~)=GO(R) 1+ R' exp i ,
'—XR—(R'T+3xz"yT) i —

A.'R[(xrXyT}'+~'(xT yz+ —,', Rz }], (2.4)

where

R=(Rz,z), Rz =yz —xz, z=y3 —x3, R = IRI

and

G (R ) eikR1

4m.R

is a Green's function if the Klein-Gordon equation in a vacuum.
Combining (2.2) and (2.4) together with (2.1), we obtain the total phase of the amplitude JN,„:

4(x,y)=4, (x)—4&(y) —k, x—kz y+kR —
—,'AR Rz+3xr"yr+ ——[(xz Xyz ) +z (xz"yz+ —,', RT)] (2.5)

where

24;(x)=k,x3 X TX(x3+ ,'Lb) 1+ A—( x+3,'Lz,)—
3k,

2
&(y) =k&y+Ayz( ,'Lb —y3) 1—+ A( ,'Lb —y3)—

f
kf Pi+ I,( —,'Lb —

y3 }
f

To make calculations more transparent, let us define
dimensionless variables by rescaling all coordinates and
momenta in the manner

2x —+X
Lb

4k) k).
nb'

Let us also introduce the momentum

P =k2+kf,
the small parameters

1 1 1

k' E=
f

and auxiliary functions

$, =2(l+x3 }[1+—23s, (1+x3) ],
/& =2(l —y3)[1+—', eI(1—y3) ] .

The total phase (2.5) can now be expressed by

4= —
—,'(P, +R )xz ,' (P&+R )yz +—,'—RRT—

—sIkI,y, (1—y3)

+ —,'eR [(xz.Xyr) +z (xz.yT+ —,', Rr)]

R &3+—+ —k .x—p.y

(2.6a)

(2.6b)

(2.7)

k

k2

where N is also rescaled according to

8

A.Lb3

Lb X3 Z y3

FIG. 2. Radiation of photons by an electron bending inside
the bunch. The angle 5g between emitted photons is approxi-
mately proportional to the distance z between vertices. In prac-
tice I-& ))R& and R =z.

The form of (2.7) is the most appropriate for our fur-
ther discussion. It is worthwhile to note here that, in
spite of neglecting the spin structure, the considered
phase is the same as for the Dirac case. It is a conse-
quence of the high-energy approximation. This is why
the discussion and results presented below are valid for
spin as well as the spinless case.
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III. CQHKRKNCK CONDITIONS

A. Transverse directions

In order to obtain the dominant contribution to the ra-
diation amplitude, we now have to find the region of x
and y where the phase is stationary. First, we impose

l RT
P;XT+—

l RT

z

and solved, giving

= —k 1T

'V„4=0 and V„+=0 . (3.1) RT=E F+O(E ),2

where
Before trying to solve these equations, let us take ad-

vantage of the fact, proved in Appendix B, that the sta-
tionary transverse separation of the vertices RT is of the
order of c,. Taking into account that

R ~ lzl, XTxyT=xTxRT E, etc. ,

and discarding terms 0 (E ), we can simplify considerably
the phase (2.7):

0=0 +0f
F= ~TP—; &)TN—

~T= —«(T+PT) .

Using this notation, we can write the stationary points
in transverse pIain as

I;IF,
2

C'= ,'4;X—'T—,'0f y—'T—+ + +
2Elzl yT= —~T+E '

IzIF

(3.3)

where

+k.x —p y (3.2) Substituting it into (3.2), we get the phase 4 as a func-
tion of x3 and y3 only. It has the particularly simple
form

pT —pT+Ef(1 —y3) &fT

)jk '(f) Ijk'(f) + lz I
+ 6 E Iz I

F'
4(x3 y3)= — ——Elzl 2

+ +
2 P 2 P E E;

k13x3 P3y 3 (3.4)

are x3 and y3 dependent only.
Equations (3.1) can now be rewritten as

After neglecting all terms O(E ), we obtain the final

shape of 4, which is a starting point for our further dis-
cussion:

2 2

4(x3,y3) =- [E(1+x3)+Ef(1—y3)EZ]
8 1+(u 24 (1+tu)

E b, (k )(1—y, )' — ' ', I~T[lz 1+2(1+x3)1+4(1+)u)&)Tl'
4 1+(u f 32 (1+)M)

+ + k13x3 5 3y3 (3.5)

where

p=-,'(Izl —z)= 0 for z)0,
—z for z(0,

tions x1 and x2 carried by photons:

k, =x, k, , k2=x2k, .

Then

and the transverse momentum transferred to the bunch is

~T (~fT+~)T+~2T)

kf =(1—x, —x2)k, =(1—x)k, , k =(1—x, )k;,
and, in the high-energy approximation,

B. Longitudinal direction

We now have to find the region of x3 and y3 where the
phase changes most slowly. Let us define the energy frac-

k1T
2

k13 x1k' k23 x2k
2x1k,

2

k, =(1—x)k;— kfT
f3 2(1—x)k,

2

2x2k;
(3.6)
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where x =x, +x2. The last four terms in (3.5) can now
be rewritten as

Be Be=0 and
B By,

(3.8)

cannot be satisfied in the 1/k approximation. The reason

Iz I + k13X3 p3y3
l

k2T kfr2 2 2

=2@(1—x3)k;+ x~+ + y3 .
2k, x, '

2k, x 1 —x

(3.7)

If we assume that @&0,the conditions

is that in this case an expression for BN/BX3 contains one
term proportional to incident electron energy k,-, w'hile

remaining terms are of the order of 1/k; ~ The presence
of such a term in the phase causes strong dumping of the
amplitude as a result of quick oscillations. This is why
we choose @=0 and, as a consequence, z &0. It means
that the dominant contribution to the radiation ampli-
tude comes from the region where emission vertices are
ordered.

It is worthwhile to note here that, if we would try to
"simplify" the problem replacing the propagator G in the
amplitude (2.1) by a "free" propagator Go, the phase (3.5)
would contain —

—,'z factors in place of 1+@=1. Thus
such a simplification essentially complicates the problem.

Finally, we obtain

4(x3,y3) =
—,'b, r+-,'e;

z'
(1+x3) + +—

12 1 x 4 I x1
h, k,

2 1 —x

2
z k, T

[b,r(2+x3+y, )+4k, r] + x3+
16(1—x, ) X1

2
k2T kfT

2

+
x2 1 —x

(3.9)

After some algebra, (3.8}can be expressed in the form

I [x&(1+x3)b r&+2kit ] + [x&(1+x3)br2+2k, ~] ],
clx3 8x((1 x) )

(3.10a}

Be
By 3

{[x'( I+y3)5„,+2k, ] + [x'(1+y3 }br2+2k2]2I8x'(1 —x') (3.10b)

where

kT =x'k, T+k2T and x'=
1 X1

4{1—x, )
[x,(1+x)hr+2k, ~.hr ],

These results are easy to interpret if we note that x' is
the fraction of the intermediate electron energy carried
by a second photon and kT has the meaning of the trans-
verse momentum of that photon with respect to inter-
mediate electron momentum, so the vertices are com-
pletely separated, with the c.;, x, , and k1T variables in
{3.10a) replaced by e, x', and kz in (3.10b). Moreover,
the structure of the stationary condition for each vertex
is similar to that in the one-photon case considered in [1].
This is why the coherence length deduced from (3.10) is
strictly the same and the corresponding discussion is also
valid here.

If we would like to take into account quantum Auctua-
tions off the bending plane, we should take into con-
sideration the second derivatives

x = —1—
3

X1

hT k, T

2 ~TkT
y ——1 ——

T

(3.11)

Now let us determine the stationary distance between
the points of emission:

z=2(1 —xl )
Q2

{3.12)

k1T
P x1 X2

(3.13)

If we neglect momenta off the bending plane, p1 and,

hence, z are proportional to the angle 58 between emitted

photons:

[x'(1+y, )Az. + 2k& .hr ] .
4(1 —x')

The points where these derivatives vanish read

This value can be estimated in a quite different manner.
Let us denote electron momenta at the stationary points

by k, and k&. Then, from (2.4), it follows that



45 TWO-PHOTON BEAMSTRAHLUNG 32S7

0 0
V 4=k. —k —k —k —s=OT iT fT 1T 2T

where

s =kz(fc T+ fT )

is the momentum transferred to the field from the elec-
tron in its classical motion between points of emission.
In the first approximation the longitudinal component of
this momentum reads

l JL
S, ——ZhT, .

If we now take into account that the angle between direc-
tions tangential to the classical electron trajectory is

58—=
k,

we again get (3.13).

C. Stationary phase

In the vicinity of the points (3.11), the total phase can
be written in the following form convenient for further
integrations:

M,, =G( 4—a, e,'a, of +21k „e,'a, ef
I j 1

+2 k2.8„%';0'f+k1;k2 1Ii;%f ) .

After substituting (2.S) and discarding 0 (s) terms, we get

M; = [4Ax, ( x3+ ,'Lq—)+k1,]
1

4mz

X [4Ay ( —,'L& —y3)+k2 +2kf. ] .

Let us perform xT and yT integrations first. The phase
4 can be approximated by

4(x, y) =4(x3,y3)+AT(xT, yT, x3,y3),

with
0

@T(xr,yT, x3,y3) = ,'kA (R—T—RT)

(XT XT) 2B,(yT ST)

where

z & T+$''T
A= —+-

z k 3 2z

4(t, t')=to(a„t +b„t)+to'(a t' +b t'),
where

b T, CO

2

CO-
48k,

'
1 —xl

Xl X
Q

1 —x ' ~ 1 —x''
1

12Kl 12Kb„= b =

(3.14) B„=A(Lb+z+2x3),

B =A(Lb+z —2y, ) .

(4.3)

with

tm~i =lrto [ [( 1 +x 3 )6T +k 1.]

A11 integrals in the transverse plane are of the Gauss-
ian type picked at the kT, JT points. Calculating them,
we get

A. =e2 e'~""~- dt dt'
EJ EJ

(k;TXET)3
KE

= l 1y2, K X Kl+ 2

X [(1—y3)bT +k2 +2kf ]

2i5 i AL&(—x3+ 1)(1—y3)],
and we have introduced new longitudinal variables

t =x3 —x3 and t'=y3 —
y3 .

The shape of (3.11) as well as (3.14) suggests a particu-
larly simple generalization of above results to the n-
photon emission process.

IV. RADIATION AMPLITUDES

Before we start to calculate space integrals in (2.1), we
should extract the leading contribution to the integrand.
Let us rewrite (2.1) as

where
77

2k'. b

If we define for each photon two polarization com-
ponents in the bending plane and perpendicular to it,

6,))=(1,0, —k„/x, k;), C,~=(0, 1, —k,2/x, k, ),
@2)) (»0» k21 x2ki » @2l (0»» k22 x2ki )»

we obtain from (4.3) matrix elements for different com-
binations of polarizations:

A, ,"=e Je' M,"d x d y, ij =1,2, 3,
where

(4.1)

(4.2)

II II
~ott

ZK
/PZ i y Jap g 7

Xl X

2K'
JFz

gll
/Pz P xl

(4.4)

Integrating by parts in (4.1) and discarding surface terms,
we can replace (4.2) with

2K
II i ~ot

X
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In the above expressions for rrz~~
~~

and ~~~ the imagi-
nary part of the amplitude, present in (4.3), has been om-
itted. It is justified, because the ratio of the real to imagi-
nary parts of

~~ ~~

is of the order of

XLb ~ 10
n

and a similar ratio for ~~~ can be approximated by

JK»= —3o(x, , x~)u Ai(u )v Ai(v ),
JR ~

~~

= —i 0"(x, , x ~ )u Ai( u }Ai'(v ),
31~~~= i—P(x, , x2)Ai'(u )v Ai(v ),

where Ai are the Airy functions defined through

Ai(u )= —E,q3(2u ) .1/3

(4.7}

n

'2
Lb =10 V. RADIATION RATES

So the integrated amplitude still has a faetorized form,
which considerably simplifies further discussion.

We now proceed with integrals (4.3). I.et us consider
in detail the matrix element

Let us concentrate first on the radiation rate for two
photons with polarization in the bending plane. It can be
written as

1

z f ~ IIII IIII~ &T 2r f&d f&
32k; (2m. )

XB(t' —t —y3+x3)dt dt (4.5)

where the 8 function takes into account that we limit the

space region to z &0. With the use of the integral repre-
sentation of 8 [Eq. (4.5)] can be converted to

0
1Z7

. f d
7Tl

Ai'(u —a„r)Ai'( v —a~r),'7 1 C

(4.6)

where

a =—'(cva )
' a =—'(co'a )X 3 X V 3 V

CO

Q =2K1
(1—x, )x,

1/3

(1—x')x'

and Ai' are the derivative of Airy functions connected to
MacDonald functions by the relation

Ai'(u )=&3u K2~3(2u ) .

The integral (4.6) is different from zero for z & 0 only.

In light of the above discussion of (3.12), this means that
combinations of k, T, k2T, x, , and x2 values, which corre-

spond to z (0, give a negligible contribution to the ma-

trix element. This fact is of a crucial importance —it
causes a strong reduction of the phase space for photons.

From (4.6) we obtain

dX1 dX2
X

x,x2(1 —x, —xz)
(5.1)

and normalizing to the bunch cross section nRb, we ob-

ai, o
~
JN,

~~ ~~

~
part of (5.1),

22/3 2

I
16 r'(-') X'k

3

2

X f 4q3 dk» dk2, dkf~

(1 —x)' '(1 —x, )' '
X dX1 dX2

(x,x2)
(5.2)

Let us now consider an integral over k», k2, . The
phase space is defined by the relations

x3E( —1, 1), y3&( —1, 1), z=y3 —x~ &0 .

where A~~
~~

denotes the crossed amplitude, i.e., an ampli-
tude with four-momenta and polarizations of final pho-
tons interchanged. In (5.1) we have introduced an addi-
tional —,

' factor due to the identity of produced particles.
Both integrations over k12 and k22 can be performed
after changing variables to u and U. The Airy functions
have a strongly limited range, and therefore expansion of
the integration limits to the whole plane is justified. Us-
ing the relation

2 Z1/3
dQ A1 0

3

JM~~~~= —,'8(x&,x2)Ai'(u )Ai'(v ),
where

232m 0. 1/3 1 —x
X1X2

2/3

(1 —x, }'~' .

The remaining elements have the form

The corresponding region in the k», k2, plane is
shown in Fig. 3, and its area is equal to1, 1

X1X
2 ' 2 1 —x1

(5.3)

Changing the variable kf1 into AT1 and integrating from
0 to 2n /Rb, we obtain



45 TWO-PHOTON BEAMSTRAHLUNG 3259

X

x&h, &

Xih„&
g1-x
2

ture similar to (5.2), but phase space vanishes in this case.
It is because z changes its sign when the photon momenta
are interchanged. The lack of interference is intuitively
obvious. The dominant part of radiation goes into angles
much smaller than the angle of classical bending of an
electron between emission vertices. Therefore, inter-
changing the photon momenta leads to the process with a
vanishing amplitude.

Similar calculations for the remaining radiation rates
give

FIG. 3. Phase space for photon transverse momenta in the
bending plane: triangle 1, for the graph from Fig. 1; triangle 2,
for the crossed graph.

q
—

—,I)) )), I))j.=I
and the total radiation rate can be written as

~T1
2

f 4/3 dk„dk~, dkI,
1.0aI(xi xz)=

(xix~) /

r

1 —x
1 x 1

' 2/3

+ 1 X

1 —x 2

2/3 '

48k;

20 Lb

' 2/3

and finally

ga 1 —x
(x x )2/3X1X2 1

271

Lb

10/3
X1X2

1 —x 1

(5.4)

The last step in the calculation of energy losses is the nu-
merical integration over x& and x2.

1 1 —xl
5~= f dx, f dx~ I(x„x~)(x,+x~) .

0 0

Finally, we arrive at a particularly simple expression

where the numerical factor is 52=4.2a (5.5)

9 2 61/3

40 r2(Ti)

and effective coupling constant

a La=-
sr l,

The coherent radiation length I, is the same here as in
the one-photon radiation case, i.e.,

RLkb b i

n 2

Similarly, for the crossed term
~ JK~~ ~~~, we get
2/3

ga 1 —x
(x )2/3

1 2 2

The remaining interference term JR~~ ~~JR,
~~~~

has a struc-

For the "super" accelerators considered in [1—3],
L&/l, =60, the total energy loss is of the order of 8%.

VI. CONCLUSIONS

In this section we consider the two-photon beam-
strahlung once again using the probability approach con-
sidered in [7] and also presented in [6].

For a single-photon emission approximation, the frac-
tional energy loss 5& can be written as

Lb /2

5, =f dz f dx xP(x,z),
b

(6.1)

where P(x,z) is the differential probability of emitting a
photon which carries fractional energy x. For a uniform
cylindrical bunch, P (x,z) is independent of z.

If multiple-photon radiation is incoherent as claimed
by Blankenbecler and Drell, then the two-photon energy
loss should be

Lb /2 Lb /2
15z= f dz, f dzz f dx, f dx'[x, +(1—x, )x']P(x„z, )P'(x, ,x', zz) . (6.2)

Here P'(x„x',z) denotes the probability of emitting
the second photon, given that the electron has already
lost a fractional energy x1 to the first photon. x' is a
fraction of the electron's intermediate energy that the
second photon carries off, and so the quantity in square
brackets is the total fractional energy carried off by both
photons [x'=xz/(1 —x, ); see Eq. (3.10)]. Using the
Blankenbecler-Drell results for P and P' [formulas (1)—(3)

in Ref. [7] or (5.1) and (5.15) in Ref. [6]],it is easy to have

52=4.27 (6.3)

which is exactly our result (5.5).
In light of this agreement, we conclude that the claim

of Blankenbecler and Drell is confirmed.
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[k +V —2kU(x)+ U (x)]G(x,y)= —5(x—y), (Al)

where k =
~k~ =E is the energy of the electron and U(x)

is a potential generated by the bunch. The following rep-
resentation of the propagator can be assumed:
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APPENDIX A

A detailed calculation of the propagator G (x,y) inside
the bunch in the 1/k approximation is presented in [8].
Here we quote the simplest way to obtain formula (2.4).

Let us start from the standard Klein-Gordon equation
for the Green's function:

It can be rewritten as a set of two equations:

in. VSo = USp,

V Sp+ U Sp n'VSp+2l'Spn V% =0

The solution of these equations obeying (A4) can be
rewritten as

R
So(x, y) = exp i f—U(ns+ x)ds

0

(A5)

%(x,y) =
—,'[ U(y) —U(x)]+ —f So '

V, SO(ns+x)ds,

where

V =(n.V) +—n V+V
R

G(x, y)=Go(R)SO(x, y) 1+—%(x,y)
1

where

G (R )
eikR1

4mR

is a propagator for the "free" Klein-Gordon equation

(A2)
For the potential U(x)=Axe, this solution gives the
desired formula for the electron propagator inside the
positron bunch.

APPENDIX B

Let us consider the following set of equations defining
the transverse location of the radiation [we use the same
notation as in Sec. V and discard terms of 0 (1/k)]:

(k +V )Go(R)= —5(R) . (A3)

So(x y)=SO(y x)

'p(x, y) =ql(y, x),
and we additionally assume

%(x,x)=0 .

(A4)

Now, when we put the assumed form of G(x, y) into
(Al) and use (A3), we obtain the equation

In the following we wi11 look for two auxiliary functions

So and ql instead of G (x, y). These functions should obey
the conditions

2(1+x3)xr = mr Ryr kiz'

2(1 —y, )yz =mr Rxr ——pr,
where

Rr= ———(x +y +R+—z), n1 1

E. 2 T T 3 T R

Adding up these two equations, we get

Xxr+Xjyr =V r
Hence xT and y T can be expressed in the form

/Rz +V z gjRr+V —r
YT= XT—

(Bl)

V' S +—0 V S +—VS -VV+ —S V 4'1 2 2 1 2

+2Ikn. VS+2, ee VSo+2~Son-V ++ U'So

+—U2% S —2U% S —Zk US ——n. VS I+ —01 2 2 1
0 R k

where /=/ +/&.
Substituting this into (Bl) and introducing a new vec-

tor V defined by

~r/ kir/—
we obtain an equation

2 S n.V+=0, Rr [(r+R )g R/ jj ]=R V—. (B2)

where

Rn= —and n.V=
R BR

Neglecting in this equation terms proportional to 1/k
and 1/k, we find

V So+2k(in. V —U)SO+ U So2+iS n oVql.
1—2US 41+2 i%——n-VS =0 .0 R

Let us now consider the asymptotically large k. The
left side of (B2) has an asymptotic form Rz.(1/E), while

the right-hand side tends to be constant. The separation
of the vertices cannot grow up like 1/c because we as-

sume that both vertices are inside the bunch and, hence,
R ~2. Moreover, for increasing R, the amplitude will be

damped out by the factor 1/R from the propagator.
Therefore, we obtain

Rr=ve+O(E ),
where v is constant.
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