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Electroweak phase transition in supersymmetry
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The electroweak phase transition in supersymmetric models is studied, analyzing the constraint on
the Higgs-boson mass coming from the condition that the cosmic baryon asymmetry is not washed out
soon after the phase transition. It is found that, in the minimal supersymmetric model, baryogenesis
at the weak scale requires a Higgs boson lighter than about 50-55 GeV, as in the standard model.
This result holds true also when the one-loop radiative corrections, which are important for a heavy
top quark, are taken into account. On the other hand, in extended supersymmetric models, it is
possible to have the lightest Higgs boson as heavy as 100 GeV and still satisfy the requirement of
weak-scale baryogenesis.

PACS number(s): 11.30.Pb, 12.15.Cc, 98.80.Cq

It has been by now recognized that baryon-number vio-
lation occurs rapidly at temperatures T » miv/niv [1],
due to anomalous electroweak processes. This has raised
the interesting possibility that baryogenesis may take
place at the electroweak phase transition [2], thus at tem-
peratures very much lower than previously envisaged in
conventional grand-unified-theory (GUT) schemes. The
new mechanism of baryogenesis must also satisfy condi-
tions of departure from thermal equilibrium and viola-
tion of both C and CP. Even if all these ingredients are
present in the standard model, it seems very unlikely that
a realistic cosmic asymmetry can be generated within
its framework. Firstly, CP violation in the Kobayashi-
Maskawa matrix, suppressed by mixing angles, is too
small. Secondly, the requirement of a sufficiently strong
first-order electroweak phase transition, where the coex-
istence of different phases can be achieved, implies an up-
per bound on the Higgs-boson mass of about 50 GeV [3]
(or 55 GeV, if all uncertainties are conservatively taken
into account [4]), a result barely compatible with the ex-
perimental searches, which presently give a lower bound
of 48 GeV [5].

It is natural therefore t,o investigate what happens in
extensions of the standard model. Supersymmetry seems
a very promising candidate since it predicts a relatively
light Higgs boson and new phases as sources of CP vi-
olation. In this paper we study the electroweak phase
transition in supersymmetric models, focusing the anal-
ysis on the bound on the Higgs-boson mass imposed by
low-temperature baryogenesis.

We will first consider the minimal version of the super-
syniinetric standard model (see, e.g. , [6]), with two Higgs
doublets Hi and H2 with opposite hypercharge:

&H,' f H+
'o

&H, &H,

The Higgs potential is

V = mi [Hi ] + m2~Hg( —ms (HiH2 + H c )

g to' to+—& —H(+ H' —B

H, H, —H, H. (2)

where the quartic terms are dictated by supersymmetry
and rnid, mq, m3 are three mass parameters related to
the supersyrrmnetry-breaking terms. The theory greatly
simplifies in the limit in which the mass scale of the
supersymmetry-breaking terms, here generically denoted
by m, is much larger than the weak scale [7]. All su-
persymmetric partners decouple with m, and only one
combination of the two neutral Higgs bosons, that is

h = v 2cosP ReHi + v 2sin P ReH2,

Re(HO) =
2' Re(H20):— 2' tan p:——V2

V~

(4)

remains light. Therefore, at energy scales less than rn,
the theory approximately reduces to the standard model
with only one Higgs doublet. The neutral Higgs boson h,
Eq. (3), has ordinary interactions with fermions, has a
tree-level mass square m~H, —m2z cos2 2p, and a classical
potential of the form

V H (h2 '2)
8v2

v = vi + v2) (5)

where the Higgs vacuum expectation value v is related to
the Z mass by v~ = 4m2z/(g2 + g'~).

The one-loop potential at finite temperature V can be
written as the sum of the classical potential Vo, Eq. (5),
the Coleman-Weinberg [8] quantum corrections Vi, and a
temperature-dependent part VT 9]. The one-loop quan-
tum corrections Vi are given by 8]

45 3177 1992 The American Physical Society



3178 GIAN F. GIUDICE 45

Vr ——) 6 m; (h)lnm, (h) + P(h ),

(7)

cI' Vt

Oh' (8)

where the sum extends over all bosons (+) and fermions

(—) present in the theory with number of degrees of free-
dom N;, and mass in the presence of a background field
h, m, (h). In Eq. (6), P(h ) is a polynomial containing
quartic and quadratic counterterms in h, which we fix by
choosing the renormalization prescriptions:

+) + '
m, (h)ln

——m; (h) + 2m, (h) m, (v)

( I'2)

and the dependence of the potential on rn has been
reabsorbed in m&. Since the ultraviolet behavior of the
theory is not affected by the finite-temperature terms,
the counterterms, computed here at T = 0, are also valid
for T g 0.

Finally we include the finite-temperature terms VT.
For m/T ( 1, we use a high-temperature expansion [9]

Equation (7) implies that, the tree-level value of v is pre-
served at the one-loop level, while Eq. (8) implies that
the Higgs quartic coupling constant at the scale m is de-
termined by the tree-level relation. This last condition
stems from the fact that, neglecting threshold effects, the
theory is exactly supersymmetric at energy scales larger
than m and Uq identically vanishes. Taking now m, (h)
of the form p; + G, h~ and imposing the renormalization
conditions (7) and (8) on Eq. (6), we obtain

Vt ——) 6 '
m, (h) In ' ——m4(h)

N; & m2(h) 25
6«' '

m,'. (m)

( m~(h)T2 ms(h)T
24

N;I

m4(h) m'(h) 'l

2
ln '

2 l for bosons,

) ( m2(h)T'
48

N;

m~4(h) m, (h) I+ ' ln ' for fermions,
647r~ Ay T~ )

(13)

(14)

+ —+ ln 'z 2m; (v)m, (h)
/11 m2(m) )

3 m~v )

Ay = x exp(z —2p~), Ay ——16AJ, pg ——0.5772,

for rn2 )) p2.
From the second derivative of Vo+ Vj we can compute

the Higgs-boson mass corrected at one loop:

while for m/T & I, the particle is Boltzmann suppressed
and VT becomes [9]

). NT
- (2n. )si&

2

IH —WHO + —mHO
clh2

x 1+ — +0 (16)

N; 8 m2(m)'t f Bm )2—+ ln
32m' 3 m,'(v) ) q clh

The complete one-loop potential is obtained by sum-
ming Vo, Vr, Eq. (1'2), and VT, Eqs. (13)—(16), over the
whole particle spectrum. We first sum over the standard-
model particles, i.e. , particles which do not decouple as
rn ~ oo. The contributions from the W, Z, Higgs boson
and top quark (all ot, her quarks and leptons can be safely
neglected) give

Incidentally we note that the sum in Eq. (10) is domi-
nated by the top quark, when its mass is large (mt »
mrna), yielding

4
2 2 3 m$ m

m~ mHo + — ln —,
7r2 V2 V'

h—48v —~T
2 ) '2

—68 —4p(T) ~

——6Th
m„'

2v~ ) 4
(17)

which is the by now well-known result [7, 10] that the su-
persymmetric Higgs boson mass receives large quantum
corrections for a heavy top quark.

If Eq. (10) is used to trade mH, with the one-loop
corrected Higgs-boson mass m20, it is easy to verify that
the one-loop scalar potential at T = 0, Eqs. (5) and (9),
becomes

'Of course, we could have directly obtained Eq. {12) by

imposing, instead of Eqs. {7) and {8), the renormalization
prescriptions B{VO + Vt l/ctk)a „=0, 8 {Vu + Vj )/Bh
mH, as is ordinarily done for the sta.ndard model. In this
case, however, m H would be an independent parameter of
the theory and not related to the other quantities, as it is in

Eq. {&O).
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2 2

P(T):— 2 q 2mvvln 2 + mzln4 mz
64m 2v AqT2

m2—4m, ln
AiT2)
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(18)
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(17), and supersymmetric particles, Eqs. (22) and (23).
From it we can now compute the critical temperature
for the electroweak phase t,ransition, T„defined as the
temperature at, which the potential is flat at the origin:

and the vacuum expectation value 0(T) of the Higgs field
h at T = T, [for (r2(T, ) « v2 = a2(0)]:

0(T ) 6b

T, mH/v2 —128 —8p(T, ) —li
' (25)

1 mT'= — "-4av2 —) uG ™
2

' '
( (2)r)3/2

g2 4

(24)32m'2 m2 )

where only the leading terms in m02 have been retained.
Equation (1?) is the usual standard-model result. How-

ever, here the Higgs-boson mass mH is not an indepen-
dent parameter, but it is given in Eq. (10), where one-

loop corrections have been included.
Next we compute the contribution of the supersym-

metric particles to the eA'ective potential. As we are con-
sidering the theory in the limit in which m is much larger
than the weak scale m~, we can expand the mass squared
of each supersymmetric particle in powers of m:

m;(h)=m +Gh +0( (21)

Now we can plug expression (21) into Eqs. (12) and

(16) and expand the result in powers of m, to obtain
the leading supersymmetric contribution to the eA'ective

potential:

(s-h+1)SUSV —) 6 (/i —V )

x 1+0
i m

(22)

2 2n si2

1
x I+OI =

I

.
(, m)

(23)

Since in the following we will be interested in tempera-
tures T m~, we have assumed that all supersymmetric
particles are out of equilibrium and have used Eq. (16)
for VY.

The complete one-loop Higgs potential is given by the
sum of the contributions from the standard model, Eq.

I~
—= ) N, G3 v2

(26)

A nonzero value of a(T, )/T, is a signal of a first-order
phase transition. As pointed out in Ref. [3], the value
of o(T, )/T, is constrained, in any baryogenesis scheme
based on anomalous electroweak processes, by the re-
quirement that the cosmic asymmetry is not washed out
soon after the phase transition. In fact, if the sphaleron
energy barrier is too small after the phase transition
is completed, baryon violation can still occur and the
baryon asymmetry will be erased. This implies a lower
bound on 0(T,)/T, of about 1.3 [3, 4], and consequently,
from Eq. (25), an upper bound on the Higgs-boson mass.
In the limit of very heavy supersymmetry (m ~ oo,
ld' ~ 0), this bound is the same as in the case of the stan-
dard model [3,4], i.e. , mH & 50 GeV, for mq & 140 GeV.
For larger m& the limit rapidly becomes much more strin-
gent, as B becomes more and more negative. As shown
in the careful analysis of Ref. [4], the uncertainties in the
determination of the Higgs-boson-mass-bound amount to
at least 10% of the value, due to the uncertainties in the
computation of the rate of the baryon-number-violating
processes.

We now want to include the contributions from the
supersymmetric particles and investigate if they can re-
lax the limit on the Higgs boson mass. As apparent
from Eq. (25), this is possible if they amount to give
a positive value for A'. We first consider the extensively
studied minimal supersymmetric model, using standard
notations (see, e.g.s, Ref. [6]).

Expanding according to Eq. (21) the eigenvalues of the
mass matrices for the two charged and four neutral super-
symmetric fermions, we obtain the chargino-neutralino
contribution to A':

2mz s (d+ s)3d 1+ (3 —s2)sd+ d2

~2v4p2 (1 d2)3 (1 d2)2

(d'+ s) d' (1+s)(1 —sin givd —cos t))ivd')

(1 —d'2)3 2(1 —d)(1 —d')
(i —s)(l + sis 8w d + ccs dw d')

I2(l + d)(1+ d')

(27)
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s = sln{2P),

where M' and M are the supersymmetry-breaking
masses for U(l) and SU(2) gauginos and p is the Higgs
superfield mixing parameter, all taken here to be of or-
der m. The contribution to I~" from the new Higgs bosons
(one charged, and two neutrals with opposite CP quan-
tum numbers) is

Equation (25) is still valid and

rn6 A
3A2 A4

2Vr2 V4rn2 10

{33)

(34)

1 mz
Sm2 V4m

+ 2 cos 6~

+I 1 ——c
) .

(29)

c =—cos(2P), (30)

where m, (the mass of the CP odd Hig-gs boson at T = 0)
is a parameter of order m. Finally, the contribution from
the scalar partners of quarks and leptons is (assuming all

Yukawa. couplings are negligible)

9 rnz s . 2 1, 2 l 1 1Ii = c sin giv ——sin eiv
Sm2 V4 2 ) mt mq2

where two diH'erent supersymmetry-breaking masses for
squarks and sleptons (m&, mt) have been assumed.

All these contributions, which are of order K
m&/(x~v rn2), can correspond to a change in the value
of the bound on the Higgs-boson mass of at most a few
percent and are t;herefore not very significant.

However, if the top quark is heavy, it is not possible to
neglect its Yukawa coupling, For large mq, the two scalar
partners of the top quark have squared masses:

which is positive for A 1 and rapidly grows with en&.

However, if we take into account the rnid dependence con-
tained in 8, we see from Eq. (25) that the limit on the
Higgs-boson mass can be relaxed only if the supersym-
metric mass parameter m is smaller than 0.8m, . This is
unlikely in most realistic models, since all squarks (except
the stop) would be lighter than the top quark.

Therefore, we can conclude that the change in the
bound on the Higgs-boson mass due to the contribution
of the minimal model supersymmetric particles is typ-
ically less than the uncertainties in the calculation [4]
which, as we stated above, is about 10%. It is easy to
cheek that this is true also in t,he case that the supersym-
metric partners are much lighter than what we have con-
sidered here, and are in thermal equilibrium at T = T, .

On the other hand, the picture may change if more than
one Higgs boson is light at T = T„since, in this case, the
phase transition can be electively driven by two Higgs
vacuum expectation values, rather than only one, as we
have considered above. Therefore we turn now to discuss
this possibility by generalizing the procedure followed to
obtain Eq. (25) for the case of two-Higgs-doublet poten-
tials.

We start by choosing the following basis for the two-
Higgs-doublet fields:

i (hi —i sin Pa) 1
Hi e

(35)
h 262

m + Arnmg —+ rn, —,
V V

2h
rn —Ammg —+ rn, —,

V V 0, = ia, e--i (—(—hq + i cos pa)
PA

)—cos Ph
(32)

where A is a parameter of order 1, related to the
supersymmetry-breaking terms. In this case, a linear
term in h is present and Eq. (22), derived under the
assumption (21) is no longer valid, should be replaced by

where the would-be Goldstone bosons, absorbed by the
8' and Z gauge bosons, y, explicitly disappear from the
potential. In terms of the three real scalar fields hq, h2

(CP even), and a (CP odd), and the charged field h+,
the classical potential, Eq. {2),becomes

1 2 ~2 2 2
2 2 1 —c, 1+c, , |'a2

l
Vo — h, + h„—mshihg+ m, + m2+ srns

~

—+ [h

2+ &2 I2 12 2 -2 2
' + c —+ ~h+(' + —jh+[' h'+ h,'+ shih2

8 2 2 1 (36)

where c = cos(2p), s = sin(2p). It is convenient to express m2i, m~z, and ms2 in terms of the physical quantities of
interest (which we choose to be ms, tan P, mH) using the tree-level relations:

m& r(1 —r) —c(c —
& -) m& r{1—r) + c(c —r ) m& sr(l —r)

m2g 2(c~ —r) '
m2g 2(c~ —r) '

m2~ 2(c2 —r) '
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where r—:mzH/m& and mH is the mass of the lightest CP e-ven neutral Higgs boson at zero temperature.
By taking second derivatives of the potential (36), we obtain the squared masses, in the presence of background

fields h1 and h2, for the charged Higgs boson,

c r(1 —r) (h2 —h, ) m~ (1+c 2 1 —c
(38)

for the CP-odd neutral Higgs boson,

c r(1 —r) (h~ —h, )
mz 2+ 2 +c (39)

and for the two CP even -neutral Higgs bosons,

mz r(1 —r) h, + hz

2 C —P V

c(e —r ) (h&z—hzi) sr(1 —r) hih2
C —P 'U C —P V

(4o)

The one-loop-corrected potential (at zero temperature)
for the fields hi and hq is Vp + Vi.

m2 tn2 2+ I2

V = 'h h —mhh (h —h)0 —
2 1 2 2 3 1 2+

32 2 1

oV(hi, hz) T, )
Bhi a, =~,(T.)

l &
—-~&(T,)

BV(hi, hz, T,)
Bhq

=0 ~

&g =~g(T.)
h1-e1(T )

(46)
(41)

Vi —) + '&m; (hi, hz) lnm; (hi, h2) + P(hi, h2)64x2

(42)

where m2, mz2, and ms are given in Eq. (37), and Eq.
(42) is the analogue of Eq. (6), with P(hi, hq) being
a fourth-order polynomial in h1 and h2. We choose to
fix the quartic terms in P by requiring that the fourth
derivatives of V1 with respect, to the Higgs fields vanish
at the supersymmetric threshold (hi ——h2 ——m). The
quadratic terms in P are fixed by demanding that the
tree-level values of v1, v2 and mH are preserved by the
one-loop correction

BVi BVi

Bhi "~="~ Bhq hi=~i1 h Ag =Op
(43)

O'Vi 1yc, O'V,
2 Ohi Dhi 2 8hz gh2

2V
+s(c —r ) = 0. (44)"i 2 h2=$2

The complete one-loop potential is V = V0 + V1 + Vl,
where Vp and Vi are given in Eqs. (41) and (42) and VT
is the finite-temperature contribution, Eqs. (13)—(16).
Given V, we can compute the critical temperature T,

0~V(hei h2, T, )det
MjDhj i I p

(45)

and crt(T, ) and 02(T, ), the vacuum expectation values of
the Higgs fields at T, :

We have solved numerically Eqs. (45) and (46) includ-
ing, in the eA'ective potential, the contributions from 5',
Z gauge bosons, top and bottom quarks, , and the Higgs
particless with masses given in Eqs. (38)—(40). We have
checked that by varying the parameters it is not possible
to obtain 0(T,)/T, ) 1.3 (crz = o', + oz), for mH ) 50
GeV. For example, for mH = 60 GeV and mi —100 GeV,
0'(T, )/T, = 0.43, 0.39, 0.37 (and T, = 134, 145, 157 GeV)
for, respectively, tan P = 3, 4, 8. We can therefore con-
clude that, in the minimal supersymmetric model, baryo-
genesis at the electroweak scale implies a bound on the
lightest Higgs boson of about 50 GeV, as in the standard
model.

The main reason why the contribution of the super-
symmetric particles is never large enough to strongly
modify the Higgs-boson-mass bound is that, in the field-
dependent masses, Eq. (21), G, is almost always (except
for the stop) of order g2, and so I& is too small, typically
I& m&/(x2v m ). The situation can be drastically dif-
ferent in extensions of the minimal model. If new large
coupling constants are added to the theory, the contribu-
tions of the new particles to It can relax the bound on
the Higgs-boson mass. As shown in Ref. [11], if a new
scalar particle S with a coupling with the Higgs field of
the form AS2h2 and a mass term m2S~ is introduced, its
contribution to I& is

p3 2

4~2 m2 (47)

In this case we cannot neglect the contribution from the
bottom quark, since for large tan P, the bottom Yukawa cou-
pling becomes large.

Because of the contribution of the lightest Higgs boson,
the effective potential contains an imaginary part for small
values of the fields h& and h2. As is usually done, we can
neglect the imaginary part, since for the values of mH under
consideration, Im(V) ((Re(V).
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For A2/4z. —1, and rn —1 TeV, the Higgs-boson mass
bound is lifted to about 80 GeV. In supersymmetry, this
can be explicitly realized if a new gauge singlet superfield
N is introduced with interactions in the superpotential
of the form:

A'" (I-4 )(4 -4)+(I-( )(4-4)
4~2 ~2 (1 —&r)'(I —6)'

AH)H2N+ —N .
p
3

(48) z = (Nr) + (Nz),
2p& (Nt) 2p2(N2)

A] H) 02N) + A2H] H2N2 + N) + N2 )

pi 3 p2
(5o)

the leading contribution to K from the Higgs-gauge
fermion sector is (for tan P =1, A~

—
Az = A)

Notice that the same interaction modifies also the tree-level
bound on the lightest-Higgs-boson mass existing in minimal
supersymmetry (m& ( c mz) to mH ( c mz+s miv2A /g

It is interesting to note that the bound on the Higgs-
boson mass can be relaxed also by the contributions of
new fermions. In the case of the superpotential of Eq.
(48), the fermionic Higgs-gauge sector contains five Ma-
jorana neutral fermions and two charged fermions. Their
contribution to Ii (neglecting terms of order gz and as-
suming (N) )) v) is

A4v2 4( + s(9 —s )(+ (1+3s )
16z 2(N)2 (1 (2)2

(49)
2p

A
'

which is always negative. However a positive value of I~

can be achieved if the theory is further extended. For
instance, with two gauge singlet, superfields N~ and %2
and a superpotential

(52)

which can be positive. For instance, for fr ——2, (q —3,
A2/47r = 1, z = 1.3 TeV, the upper bound on the Higgs-
boson mass becomes about 100 GeV.

In conclusion, we have investigated the electroweak
phase transition in supersymmetric models by studying
the bound on the lightest-Higgs-boson mass coming from
the condition that the cosmic baryon asymmetry is not
washed out soon after the phase transition, and we have
obtained the following results. In the minimal supersym-
metric model, the limit on the Higgs-boson mass mH is
numerically the same as in the standard model [3,4]. This
is true for any top quark mass, when AH is interpreted
as the Higgs-boson mass corrected at one loop. The ef-
fect of the supersymmetric particles modifies the value of
the limit on mH by only a few percent, less than the un-
certainty inherent in the calculation. On the other hand,
it is not di%cult to construct extended models, where
no baryon wash-out occurs and all the Higgs bosons are
heavier than 100 GeV, thus lying beyond the reach of the
CERN e+e collider LEP II.
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