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Radiative angular distributions from charmonium states directly produced by Pp annihilation
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We calculate the combined angular distributions of the photon and the electron in the cascade process

pp~yq~gy~(e e )y (J=2,1,0), in terms of the helicity or the multipole transition amplitudes in

yj ~gy. Our expressions for them differ from those found previously. We describe the origin of these

differences. The effect of the motion of 1( in the yz rest frame on the angular-distribution functions is

taken into account.

PACS number(s): 13.40.Hq, 12.40.gq, 14.40.Gx

The combined angular distribution functions of the
photon and the electron in the cascade process
pp~yz (J=2, 1,0)~1(y~(e+e )y have been dis-
cussed before [1—3]. We have rederived these angular
distribution functions and we get different results. The
correct expression is necessary if one is to extract the
multipole amplitudes from the experimentally measured
angular distribution for comparison with theoretical pre-
dictions [4].

In order to understand the origin of the difference be-
tween our expression and that of Ref. [3], we give a brief
sketch of our derivation. A symbolic sketch of the cas-
cade process is shown in Fig. 1. The probability ampli-

tude for the process

p(A, ))p(Az)~yJ, ~Q +yq~e (tc))e+(K2)+yu,

where A, &, A,2, v, cr, ~„and x2 are the particle helicities,
can be written as the product of the amplitudes of three
sequential events: p(A, &)p(1(,2)~gj„, gJ„~P +y„, and

P ~e (tc, )+e+(tcz).
If ~p, 8, $;A, ,A2) represents a two-particle helicity state

in the zero-momentum (c.m. ) frame, where p is the mag-
nitude of either particle's momentum, and the angles
(8,P) represent the direction of the first particle's momen-
tum and A, „X2 the helicities of the two particles, then, us-

ing the notation of Jacob and Wick [5] and Martin and
Spearman [6], we can write an expansion of the two-
particle helicity state in terms of angular momentum
states as

p(x))

2J+ 1

J,M

where P, 8, and —P, are the three Euler angles. The or-
dering of the indices on the (2J+ 1)-dimensional rotation
matrices D should be especially noted.

We will work in the y~ rest frame with the Z axis taken
to be in the direction of f. The p direction is in the X-Z
plane, making an angle 8 with the Z axis. Using Eq. (1),
the amplitude for the process p(A, , )p(Az)~yz„can be
written as

(2a)

FIG. 1. Symbolic sketch of p(A, , )p(A2)~yz„~g +y„
~e (~I )e (~2)+y„showing particle helicities. Note that
V—0 P.

where

Ar2

d'.,(8)=D'„,(0, 8,0),
(2b)

(2c)
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and B is a transition operator. The symbol B& &
I I

represents the partial-wave amplitude. The amplitude for
the process yJ,~Q +y„with the quarkonium g and the
photon y moving along the +Z and —Z directions, re-
spectively, can be written as

' 1/2

(8'p', ~,~2IcI lo ) = c, „D'„(p',8', —Q'),

(4a)

where

1/2 K —K) K2 (4b)

&00,~pl AI»& = 2J+1
4m.

A
' „D,„(0,0,0), (3a)

V=0 P (3b)

In the P rest frame, with the direction of the final
electron's momentum specified by (8', p'), the amplitude
for the process g ~e (~, )+e+(a2) becomes

If the e+e system is produced by the process
qq ~y ~e e+, C++ =C is of the order of
m!E=3.3X10 compared to C+ or C + and can be
safely neglected.

The amplitude Tz & „for the process to go from the
PKI K2I

initial state of p(A, , )p(A2) to the final state of
e (ir, )e (~2)+y„ through all possible helicity states v of
yJ and cr of g is a sum of products of amplitudes of Eqs.
(2a), (3a), and (4a). That is,

TJ
A,

l
A, 2K I K2P

Since

' 1/2

Bi 2 A'„C„„D'„(P',O', P)D,—„(0,0,0)dJ2„(8) .
(4~) v= —J~=+1 0

D„„(0,0, 0)=6„„.,
Eq. (5) becomes

TJ
lk2KIK2P,

' 1/2

Bi.
,i,c, , g A pD +p, (4'

(6)

(7)

where v takes the values 0 to +J for p, = —1 and —J to 0 for p = + 1. In Eq. (7) we have made the replacement A „„for
3 '+„„.The probability for the cascade process when the initial p and p are unpolarized and the final polarizations of
y, e, and e are not observed is obtained by squaring the absolute magnitude of Eq. (7) and summing over the final
helicity indices K(, K2, and p and averaging over the initial helicity indices A, , and A, 2. This probability will give the un-
normalized angular distribution function to be

1 3 2J+1
21A2KlK2P

x y A', ,„A',„d', (e)d'„(e)D„',,„.(p', 8', y )D„',„.(p'—, 8', —p ),
~(p), ~'(p)

where the photon-polarization index p can take only two
values, +1 or —1.

Now we make use of the symmetry properties of the
helicity amplitudes for two-body processes. By charge-
conjugation invariance the amplitudes should satisfy [6]

M =rI, ( —1) M

1)L+1
P

Using Eqs. (9) and (11),

(12)

where M is A, B, or C, and g is the parity of the state in

question. For quarkonium,

—
( 1)L+s (10)

By parity invariance [6] for the amplitudes A, B, and C,

M~. 2. =2), ( —1)'M'—2. —2.

where M is B or C, and g, the charge-conjugation parity
of the state under consideration. For quarkonium, IB

I
=IB

I c, I'= Ic I'=,c,',
c I'= Ic I'=c'

By parity invariance [Eq. (11)],

(13)
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A„,=+A i(J=2,0),
(14)

y (gag ~

y ~C„, ~

=2C +C =1=2C
K I K2

(15)

so we drop the index p, the subscript giving the y helicity
from the amplitude A from now on. We also choose the
normalizations

v=p

Using Eqs. (13)—(15) in Eq. (8), we get

3 2J+1
W(8, 8'y')=, g i&', I' g g A'„A Jg'„,(8)d'„,(8) g D„'+„,„(((",8', —(t') D,'+„,.( (t'), 8', —P'),

8(4~) x=+1,0 p=kl gp), v'(p)

(16a)

where

v(p)= —J to 0 for @=+1,
v(p, )=0 to +J for p= —1 .

(16b)

(8)=(—1) d (8)=d ( —8) (17)

and

(P, 8, —
(t )=( —1) D (P, 8, —P) . (18)

Because of Eq. (17), whenever (v' —v) is an odd integer,
we and the authors of [3] get opposite signs in the prod-
uct function d, zd, z of Eq. (16a}. However, we get the

The ordering of the indices on the d functions in Eq.
(16a) is opposite to that of Ref. [3]. Our ordering is that
of Eq. (1), which is the same as that of Jacob and Wick
[5], Martin and Spearman [6], and Jackson [8]. In the D'
functions occurring in the f~e e+ process, however,
Ref. [3] followed our convention. This is an inconsistent
procedure, as explained below. First it should be noted
[9] that

same sign in the product function D,'+&Q„'+„„. Be
cause of this situation, in terms of Eq. (16a) involving
A ~, A ~ where (v' —v) is an odd integer, our signs are op-
posite those of Ref. [3]. If the authors of Ref. [3] fol-
lowed our convention or the opposite convention con-
sistently, we would have obtained the same sign for all
the terms.

The normalized angular distribution function
k(8;O', P') is

k(8;8,y )= ', W(8;8, y ) . (19)

The normalization is such that the integral k(8;8', (()')

over all angles is one. When the D' and the d functions

[9] in Eq. (16a) are expressed in terms of the tri-
gonometric functions, the normalized angular distribu-
tion functions for various values of J (J=2, 1,0) take the
following forms.

(1) pp~gz~g+y~(e+e )+y. From Eq. (18), the
normalized y2 distribution function is

64m k(8;O', P')=K, +E2cos 8+E3cos 8+(K4+K5cos 8+E6cos 8)cos 8'

+(K7+Kscos 8+K9cos 8)sin 8'cos(2$') —(K&o+K»cos 8}sin(28)sin(28')cosP' . (20)

In the last term on the right-hand side, Ref. [3] had a
positive sign whereas we have a negative sign. This hap-
pens precisely because EC,p and E» when expressed in
terms of the amplitudes Ap A ] and Az have only terms
involving the products ADA, and A, A2 so that (v —v')
is an odd integer in this case. The expressions for all the
other K s involve products A A, where (v —v') is an
even integer. We should note that our expressions for the
E s in terms of Ap, A, and A2 are exactly the same as
those given in Ref. [3] (except for K~) if we assume that

28
2+2++2 (22)

all helicity amplitudes are real. In general, they are com-
plex. In that case, every A A ~ term in their expressions
for the K s should be replaced by Re(A „A,+ ). Our final

difference is in Ez. We get

'K5= —2—AO —4A, —A2+R(4A +6A +A ) (21)

where
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Reference [3] had 2A o instead of 4A o multiplying the R.
This is inconsistent with their own integrated angular dis-
tribution functions. We are in agreement with Ref. [3] on
the partially integrated distribution functions. This hap-
pens because the term with the opposite signs in Eq. (20),
when integrated over P' or 8', gives zero.

(2) pp~g, ~g+y~(e+e )+y. In this case, where
the intermediate state is y„charge-conjugation invari-
ance of Eq. (9) leads to

E~= —,'ReA1 Ao .

The expressions for the partially integrated angular dis-
tribution functions will remain the same as in Eqs. (17) of
Ref. [3].

(3) pp~yo~fy ~(e+e )y. When the intermediate
state is yo, the distribution function is

64m k(8;O', P') =1+cos 8',

8„=(—1) 8

For J=1, this leads to

B++ = —B++ =01 1

and

So,

8 =2l8+
l

=2lg
l

=0

which will imply

2B1 =1.
2B +B

(23)

(24)

(25)

(26)

since R =0 in this case [3].
The relationship between the helicity amplitudes and

the multipole amplitudes will be given by the same or-
thogonal transformation as in Ref. [3]: namely,

' 1/2

A„=gak (kl; I,v —1lJv)2k+1
k

(30)

U =p=0. 15 . (31)

or Eqs. (13) and (14) of Olsson and Suchyta [3].
In Eqs. (20), (27), and (29), the angles (O', P') give the

direction of e in the 1(t rest frame and 8 gives that ofp in
the yJ rest frame. There is no Lorentz frame where yJ
and l(t are both at rest. In the yz rest frame or the pp c.m.
frame, 1( is moving with a velocity [7]

—Kssin(28)sin(28')cosg' . (27)

In Eq. (27) the sign of the last term involving K5 is oppo-
site to that of Ref. [3] since K5 involves only A 1 A o so
that (v —v') is odd. The expressions for K s are exactly
the same as in Ref. [3], but since R =1 in this case, the
constants K; take the simple forms

The normalized angular distribution function is

64m 0 (8;O', P')=K, +K2cos 8+(K3+K~cos 8)cos 8'

If the direction of e in the gJ rest frame is given by
(8",P"), these angles are related to the angles (O', P') by
the relations (to first order in p)

cos8'=cos8" —P sin 8",
sin8' =sin8" +P sin8" cos8",

I II

(32)

Equations (32) must be used in Eqs. (20) and (27) to reex-
press them in terms of (8",P") before applying them to
determine the helicity and the multipole amplitudes from
the experimentally measured angular distribution.

E = —
—,',4

(28)
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