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What can we learn about hadronic intermittency from finite fractal sets'?

T. Hakioglu
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The formalism recently introduced in hadronic intermittency is used to understand the dynamics of
one-dimensional fractal sets. We examine the translation invariance, factorial and cumulant moments,
and the fractal dimensions of the phase space as the nonlinearity of the sets is changed in a broad range
from intermittent to chaotic. We show that the dynamical content of the sets is strongly interwoven
with the magnitude of the fractal dimensions of the phase-space correlations. We simulate events by
properly transforming the logistic map so that relevant density histograms of hadronic particle distribu-
tions are qualitatively produced. We use this as a toy model to understand the rapidity phase-space be-
havior of these distributions. By studying the fractal dimensions of these models we show that the ha-
dronic data show very weak intermittency in the rapidity phase space.

PACS number(s): 13.85.Hd, 05.45.+b, 12.40.Ee, 24.60.Lz

I. INTRODUCTION

Perhaps the most striking experimental observation of
the last 30 years in high-energy physics is the fact that
the hadronization process has a large contribution from
fractal dynamics [1]. The question of coherence vs chaos
in high-energy collisions has been around since the 1960s,
and it was raised by the Goldhaber-Goldhaber-Lee-Pais
experiment [2]. Full analogy with the already well-
developed quantum optics (QO) was made by measuring
the "pion-bunching" effect, an analogue of the Hanbury
Brown —Twiss (HBT) photon-bunching effect [3] in QO.
In the hadronic HBT [4] effect, by tneasuring the hadron-
ic analogue of the quantum optical intensity correlation
function, one observes a large contribution from chaotic
dynamics. This was the main drive for the studies on dis-
tributions relevant to QO, such as Poisson or negative bi-
nomial distributions (NBD), to fit the hadronic probabili-
ty distributions [5] which are, respectively, coherent and
chaotic limits of the generalized Bose-Einstein distribu-
tion. Successful NBD fits [1] for non-nucleus-nucleus
collisions con6rm the presence of a large chaotic contri-
bution.

Recently attention in high-energy physics has been fo-
cused on the short-range analysis of hadronic rapidity
correlations by the use of factorial moments. In the fac-
torial moment technique [6], the full rapidity window 2Y
is divided into M identical bins of width 5y =2K/M For.
ideal resolution, the single-particle density distribution
p, (y, s) is

p, (y, s) =g 5(y —s, ), (1.1)

where s, indicates the rapidity location of particle i. The
notation s= [s, ,i =1, . . . , N] denotes a particular mem-
ber (event) of an ensemble (set of events) Is]. In general
the p-particle correlation density is

P N

p, (y, ,y„.. . , y„.s)= g' g 5(y. —s, ), (1.2)
a=1 i =1

where the prime indicates that y&Xy2%. . . Ay . The

event average (p (y„y2, . . . , y )) gives the correlation
function

p ([y J)=(p (y„y2, . . . , y ))
=f ds g(s)p~(y&, . . . ,yz, s), (1.3)

(~)
p, (yt

X
(p(i) )P

(1.4)

where QIt' is a hypertube of volume 2I'(5y)t' ' centered
around y=[y;, . . . ,yzJ. The relation (1.4) counts the
event-averaged number of particles in the volume 0',&'

and then averages over M hypercubes. In other words,
the factorial moments are [6],

M (n;(n; —1) (n, —p+1))
F~(5y) = (1.5)

i=1 n; t'

where &n; ) =p", 5y.
By converting the rectangular coordinates into the

center-of-mass (c.m. ) ones [e.g., g = (1/p)g&=, y;, g~.
=y; —y ], the physical meaning of the bin averaging be-
comes clearer. The integration over the c.m. normalized
by the rapidity window 2 Y, becomes to a good approxi-
mation [9]—in the experimentally relevant bin sizes this
approximation is good up to 80—95 %—the average over
M bins:

M

M,.
(bins)~ f dg .

2Y —r (1.6)

This area-preserving transformation from the rec-

where Q (s) performs the average over the ensemble [7].
The knowledge of (1.1)—(1.3) is basically all that is

needed to build a hierarchy of p-point correlation func-
tions p~(y&, . . . , y ). Then the factorial moments F are
given in terms of p (y~, . . . ,y )'s integrated in the prop-
er domains QIt' of the p-dimensional rapidity space [8],

M
F~(5y)= g f dy, dy, dyI, , (5y)t' n',
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tangular to c.m. variables is particularly suited to the
common situation in hadronic distributions where corre-
lation functions are short range [8] (correlation length is
smaller than 2Y, for instance, even in the worst example
of translation invariance for the NA22 data g'=1. 35 and
Y=2.5) and approximately translationally invariant in
the central rapidity domain.

In terms of the new variables,

where (n ) =5yp, and there are (p —1) relative coordi-
nates g;, , t = 1, . . . ,p. For translationally invariant rapi-
dity distributions the g dependence in Eq. (1.7) drops out,
and one obtains a more traditional definition, Eq. (1.5), of
the factorial moments. Both definitions, Eqs. (1.5) and
(1.7), have pros and cons. For ideal resolution given by
Eq. (1.1), the latter reduces to conventional Grassberger-
Proccacia (GP) moments [10] which, although manifestly
translation invariant and intuitive, are much slower and
cumbersome for numerical calculations than the simpler
equation (1.5) [11,12]. On the other hand, Eq. (1.7) has
been developed for fitting the short-range correlations,
and it also is the only candidate to derive the explicit for-
mulas of the linked-pair approximation [8]. We also note
that Eq. (1.7) is superbly advantageous for testing transla-
tion invariance.

Previously, experimental [13] and theoretical [6,7, 14]
works on rnultihadron production at high energies have
explored the dependence of bin-averaged factorial rno-
rnents, (1.5) and (1.7), on the size 5y of the rapidity bin.
Below a certain range of 5y, the moments approximate a
power law which has become known as intermittency in
high-energy physics. Apparently, in this particular case,
a familiar thing happens, that is, the one-to-one
correspondence between experiment and theory seems to
break down, and a variety of theoretical models (from the
self-similar cascade a model [6] to exponential and
short-range correlation [7,8]) can be well fitted to the ex-
perimental data within the errors. Traditionally, inter-
rnittency refers to a stochastic process in which periods
of fluctuating dynamics are interspersed with quiescence.
The power law is typical of fractal geometry, of which
traditional intermittency is a specia1 case. Chaotic and
self-similar cascading models are examples of this behav-
1or.

In this work we investigate the idea of simulating the
hadronic data by using one-dimensional fractal sets. The
relevant question is: Can a given rapidity histogram be
realized as a finite sample of a strange attractor (fractal

I

II. RAPIDITY HISTOGRAMS FROM FRACTAL SETS

It was shown in Refs. [12,15] that the one-dimensional
triangular map in the interval —0.5 ~ x ~ 0.5,

2A, (0.5+x„), x ~0,
+i —f' '—

2~(0.5 —x ) x&O (2.1)

with k 0.5, is fully chaotic and represents a determinis-
tic Gaussian white noise. Namely, the autocorrelation is

N

R(m)= lim —g x;+ x;~5
N~ oo

(2.2)

and the mean-square distance R (0) o-X, with (x ) =0
simulating a Brownian motion. In the two-dimensional
phase space x„+& vs x„ iterates fill the triangular area
given by (2.1) uniformly. As a result of this the invariant
density of points is unity:

pf(x)= g 5(x f'"'(xo))=1-,
n=0

(2.3)

where f'"'(xo)=f [f[ ' ' [f(xo)] ]) is the functional
iteration of order n starting from xo. One can modify the
map (2.1) so that the invariant density (2.3) is convex and
qualitatively fits to a hadronic density histogram pro-
duced by a finite number of particles. Applying the
transformation

x„=sinh(y„ /r), (2.4)

we obtain the modified triangular map

set) embedded in the multihadron S matrix? This ques-
tion leads us to start from the opposite end: If we gen-
erate data by choosing a qualitatively suitable fractal set,
can we reproduce physically relevant histograrns and
correlation functions? In Sec. II we describe how to gen-
erate such rapidity histograms deterministically from
one-dimensional finite fractal sets. %'e then study the
factorial moments and cumulants in different dynamical
regimes of these sets as the strength of the intermittency
vs deterministic chaos is changed by a nonlinearity pa-
rameter. We focus on the question of translation invari-
ance under these dynamically different conditions. In
Sec. III, we describe a particular model and analyze the
translation invariance (TI) and the phase-space dimen-
sionality by the use of factorial moments. We give exam-
ples from various hadronic data fits to qualitatively com-
pare the model and the data. We use the word rapidity in
a generic fashion for the phase-space variable throughout
the work.

(1/r)sinh[2A[0. 5+arcsinh(ry„)]], y ~0,
(1/r)sinh[2A, [0.5 —arcsinh(ry„)]], y &0 .( )=' (2.5)

The invariant density of (2.5) then becomes

r
pf(y) =

+I+y
(2.6)

The histogram corresponding to (2.6) is shown in Fig. 1.
Obviously such a one-to-one mapping as given by (2.4)

does not alter the underlying dynamics. As a result of
this the modified triangular map (2.5) is also Brownian.
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FIG. 1. Histogram of an event created by the transformed

triangular map (2.5).
FIG. 3. Strip-domain approximation and testing of the

translation invariance.

This time we verify this by numerically computing the
factorial moments of Eq. (2.5) using Eq. (1.5). The struc-
tureless moments with decreasing 5y in Fig. 2 indicate
that the correlations are as short as they can be [i.e.,
R (m) ~5 0], as expected from a Gaussian distribution.
We have generated the Ii (5y ) using N =200
particles/event averaged over 1000 events. Different
events were generated by randomly shifting the initial
setting yo =( I /r)arcsinhxo using a uniform distribution.

An essential point in Eq. (1.5) is the bin average.
Averaging over the bins with equal weight is only
justified when translation invariance (TI} is a good ap-
proximation. To justify TI one would like to know how

I

smooth the density of points for a fixed value of c.m. is.
For this purpose we introduce b, (r1, 5y ):

&(q, 5y ) = f""
d gf "+""dR

& p&(y I,y2 ) ),—5y/2 g —5y/2
(2.7)

which is nothing but the two-particle factorial moment
defined in one of the I bins centered at
7) =(y, +y2 )/2, y, —

y2 =0, as shown in Fig. 3.
Obviously, for translationally invariant problems,

(p2(y„yz)) does not depend on R; thus 6(7),5y) is in-

dependent of g. Another version of (2.7) is in terms of
c.m. coordinates:

6(g, 5y)= f deaf dR (pi(R g/2)p, (R+—g/2)) .—5y/2 q —5y/2
(2.8)

1'0 For instance, the manifestly smooth rapidity density

0.5—

x p=P
0 p=3
O p=4
A, =1.0
N=200
n= 1000

p, (y) = 8( Y —
~y~ ) gives 5(r1,5y) =1 5y

2Y 2Y

'2

(2.9)

Applying this technique to the modified triangular
map, Eqs. (2.5) and (2.6), yields a Ineasure for the quality
of the translation invariance as parametrized by the rapi-
dity bin size. Figure 4(a) represents A(g, 5y) normalized
to the central bin g=0. Translation invariance is valid
up to 20% with its maximum violation close to the edges
of the rapidity window 2 Y as g~ K The relative magni-
tude of 5y also does not affect TI more than 0.5%. In
Fig. 4(b), b, (0,5y ) is shown to scale approximately by

I I I I I I I I I I I I I I I I—05
0 1 2 3

—ln(5y)

FIG. 2. The factorial moments of an ensemble created by
(2.5) using n =1000 events and N =200 particles/event.

b(0, 5 )~5 '"'. (2.10)

This indicates that the transformation (2.4} does not
change the TI of the original map (2.1). In short we can
safely assume the modified triangular map is a transla-
tionally invariant system.
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III. GENERATING THE INTERMITTENCY
BY FRACTAL SETS

Intermittency is a transitory phenomenon between two
well-de6ned phases of a nonlinear system that are charac-
terized by regular (periodic, laminar, etc. ) and chaotic
(asperiodic, turbulent, etc. ) fluctuations. Whether the
system is a real one or a numerical model, the time
record of an observable is such that the regular behavior
seems to be randomly and abruptly disturbed by time
bursts. The burst separating two time sectors is of finite
duration. The average burst frequency is random and
larger than the characteristic frequency of the regular
fluctuations [16].

Let us describe a dynamical time evolution y(t) at a
Poincare sector of the entire phase space by the time
series

duced by a time series similar to Eq. (3.1) at values of a
very close to the value a, at a tangential limit cycle [12].
This general description, i.e., tangent bifurcations, can be
seen in the Lorentz model [17,18] or in the logistic map
[19].

A. The logistic map

Having this "quasi-analytical" description of intermit-
tency, we here, by the method described in Sec. I, analyze
the behavior of the factorial moments and cumulants in
different dynamical regimes of the "data" generated by
the logistic map

x„+I=F(x„,a)=ax„(1—x„), O~x ~1, O~a ~4 .

(3.2)

y. +I=F(y. ~» (3.1)
At the parameter value a =4, Eq. (3.2) is fully chaotic.
The invariant density p(x) can be analytically found to be

where a is the nonlinearity control parameter. Generic
features of intermittency as described above can be repro-

1p(x)=-
m&x (1—x)

By applying the smooth invertible transformation

2p
e

1+e
we obtain the transformed logistic map (TLM)

(3.3)

(3.4)

C&

0.5—
O

2Y= 1.0

ax, (1—x„)
y„+]=—ln

2 1 —ax„(1—x„)
—oo &y& oo (3 &)

which also describes a similar dynamical system, but with
a different invariant density described as

2 e~
p(y) =— (3.6}

0.0 I I I I I I I I I I I

0.0 0.2 0.4 0.6

The corresponding histogram of Eq. (3.6) integrated in
the range —3 +y 3 (i.e., 2Y=6}with a finite small bin
size 6y = », is given in Fig. 5. In the interval 3.83 & a ~ 4

10
(b) =

20

15—
a=4.0
by= 1/150—

0.1

0.01

0 001 ~ I I I I I

0.05 0.1 0.2
I I I I I I I

0.5 1

0

FKJ. 4. Translational invariance in the transformed triangu-
lar map.

FIG. 5. Histogram of an event created by the fully chaotic
(a =4) TLM.
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1.0 I I I I I I I 5(r), 5y)=b(0, 5y)(1+Cr) ), (3.7)

0.8 --
where we found a =0.344 and C = 1.17 (e.g. , constant).
From Fig. 8(b) we find

b, (0,5y) =0.25y (3.8)

0.6-

04

0.2--
e=0.000427

0.0
0 50 100 150

n
200

FIG. 6. Time evolution of iterates in the intermittent TLM.

The TI of the TLM is badly broken, up to 300%%ui to-
wards the edge of the rapidity distribution. Towards the
central region the full TI is recovered as shown in Fig.
8(b). By comparison, we deduce that a simple one-to-one
nonlinear transformation changes the strong uniformity
of (3.3) into a controllable violation of TI.

For invariant densities given functionally as (2.6), (3.3),
and (3.6) the application of formula (2.8) is a matter of in-

tegration. Below the fully chaotic regime we have only
numerically accessible histograms of finite samples, not
invariant densities. For such discrete problems the inter-
pretation of (2.8) is quite simple. Characterizing a partic-
ular bin by II and r), the integration in (2.8) becomes

the map (3.2) remains chaotic (i.e., Lyapunov exponent
A, ~0). Particularly for a, = I+1/8, a three-period cycle
is observed through tangent bifurcations [17—19]. These
odd-period cycles appear in between chaotic bands down
to a =3.57, below which stable even-period cycles are ob-
served. Intermittency is observed at values just below
where the odd-period cycles appear; a =a, —e where
0&a«1. Figure 6 describes a typical intermittent time
evolution of the iterations for a, —a =a=0.000426 «a, .
As a ~a„e.g. , e—+0, the average time interval between
random bursts grow as e ', yielding a regular signal
Quctuating between three fixed points x, =0. 160,
x2=0. 514, xg =0.956 [19].

6y=BY/100

2Y=4.0

/10

B. The question of translation invariance

By using the measure b, (rI, 5y), we can examine the
translation invariance of the fully chaotic logistic map.
The invariant density, Eq. (3.3), is divergent at the edges
[0,1] of the distribution. This results in the convolution
integral (2.8) having a singularity at r)=1, as shown in
Fig. 7(a). The strength of the singularity increases pro-
portionally to the inverse bin size, a fact that cannot be
seen in TI cases. Figure 7(b) represents the parametric
dependence of b(r), 5y) on the c.m. as a function of 5y.
This function is quite entangled in the variables g and 5y
so that factorization such as in the simple case (2.9) does
not seem possible.

Next we examine the fully chaotic TLM. This time us-

ing p, (y) given by (3.6), the numerical computation of
b, (r), 5y ) suggests a quite different behavior of TI as corn-
pared to its untransformed counterpart, Eq. (3.2). The
effect of the transformation is already seen by the corn-
parison of the divergent equation (3.3) and the much
smoother transformed version (3.6). Figure 8(a) shows in-
dependence of the ratio b, (rI, 5y)/6(0, 5y) from 5y ob-
tained for a large range 5y /2I =0. 1 —0.01. This suggests
a factorization of the variables as

0.0 0.5 1.0
7l

1.5 2.0

I I I I I I

100

10

2Y=4.0

0.01
0.2

I I I I I I

0.5 1
6y

FIG. 7. (a) c.m. dependence and translation invariance of the
fully chaotic logistic map. (b) Bin-size dependence and transla-
tion invariance of the fully chaotic logistic map.
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»» ~m+»»
b,(g, 5y)= J deaf dR (p, (R —g/2)p, (R+(/2})

=(n(n —1))n (3.9)

which is just the factorial moment defined for the phase-
space volume Q centered at g, as described by the
shaded squares in Fig. 3. Equation (3.9) can be computed
for a finite set easily. Specifically, we give results for the
TLM at the onset of intermittency in Fig. 9. Here again,
at smaller bin sizes, the nonuniformity is indefinitely
enhanced; the same behavior that was observed for the
untransformed logistic map as well. This e6'ect seems to
be a consequence of the divergences in the invariant den-
sity (histogram).

4

(~)

C. Factorial moments and cumulants

1. Factorial moments

Except for generating a physically interesting rapidity
histogram at the chaotic threshold, the underlying dy-
namics of Eq. (3.5) is not different from the original logis-
tic map. The values of the critical parameter a, between
regular and irregular regimes are given by the same set of
values in both. This is a result of the smoothness of the
transformation (3.4), by which no dynamics is added. At
the onset of intermittency, where a =a, —e for
a, = 1+VS and 0 & e « 1, we have observed a perfect
scaling for the moments of the TLM as functions of 5y, as
shown in Fig. 10. The scaling law in this figure is violat-
ed for 5y & 1 due to the finite interval in which the map is
defined. The measured slopes correspond to the scaling
indices v of the moments F,

O
C)

2

O

c3

lnF (5y)= A —v ln5y .

The curves indicate that A =0 and

(3.10)

v2-—0.962S, v3 ——1.9S31, v~-—2.9S01 . (3.11)

The ratio v /v2 can be well fitted to that of a monofractal

b(n, by) =6(0,8y)(1+1.17 g
'

)
by

v /v2=p —1 (3.12)

0 I

0.0
I I 1 I I I I I I I I I I I

0.5 1.0 1.5 2.0
v1/v2=2. 0293 and v4/vz-—3.0650 . (3.13)

The fact that the v 's in (3.11) are almost integral num-

10 I I I I I I

500 I I I I 1 I I I I 1 I I I I I

400— by=2Y/128

0.1

b(0, by) =0.2 by

- 300
&I

~ 200

BY=4.0

0.001
0.2 0.5 1

6y

100—

FIG. 8. (a} c.m. dependence and translation invariance of the
fully chaotic TLM. The dashed and the solid lines correspond
to 5y/2K=0. 01 and 5y/27=0. 1, respectively. (b) Bin-size
dependence and translation invariance of the fully chaotic
TLM.

p
—2

FIG. 9. c.m. dependence and translation invariance of the in-

termittent TLM.
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20

15—

10—
O

CL

I I I I I I

[
I

X p=2
cl p=3
0 p=4
a=1+v'8 —e

I I I I I (5y)ls, o-(5y) ' .

Then we obtain, using (3.12) and (3.15),

(3.18)

(3.19)

p —
&
—

rp

F (5y )=M~ 'I (5y )~s o-(2Y) 1

&v

0 —Ii

0

e

0
Q

X
X

X
X

—5 I I I I

2
-ln(by)

I I I I

FIG. 10. Factorial moments of the intermittent TLM.

bers can be explained in terms of the fractal dimensionali-
ty of rapidity-bin hypertubes 0'~'=2Y(5yP '

by the use
of Grassberger-Proccacia (GP) moments [10,11]. In-
tegrating Eq. (1.7) in the center-of-mass strip domain, in
the case of ideal resolution such as Eq. (1.1) with s,. 's gen-
erated by a map such as (3.5}, yields the factorial mo-
ments in terms of GP ones:

I (5y)
(3.14)

where

I (5y)=N~I (5y), (3.15)

where N = ( n )M =200 is the total number of particles in
one event and I~(5y) is the generalized pth-order pair-
correlation function [12,15]

t,j, . . . , s,p =1
i&j XIX . sAp

x e, ,(5y —ig„i) . (3.16)

v2 -—0.0753, v3 ——0.2218, v4-—0.4535, (3.20)

and the ratio v /vz is well fitted to that of a log-normal
distribution [6] (i.e., in multiplicative Gaussian random
variables)

vp =—p (p —1)
v2 2

(3.21)

Thus v =p —1 —y . There are two extreme limits on
p p'

the scaling characteristics of Eq. (3.19). For a uniform
rapidity distribution [i.e., p(y) =const%0] the direct
product of p uncorrelated spaces results in y =(p —1),
and no scaling is present in Fz(5y ), v~ =0. Contrary to
the strong uniformity in the rapidity distribution, in the
case of strong intermittency, particles are generated in
the phase space with a strong nonuniformity. Such cases
include random spikes and voids in the histograms. In
such circumstances a few spikes determine the whole
number average, and the fractal dimensionality of the ra-
pidity distribution is approximately that of a point (e.g.,
0 & y, « I ). This specific example of strong intermitten-

cy is seen in the TLM at a =a, —e as @~0+ as three
spikes in the rapidity distribution resulting from a stable
three-cycle period. Since 0 & y, && 1, this results in

0&yz «1 and v~ &p —1 as observed in (3.11). The
small marginal difference from the upper integral value is
the fractal dimension in the GP moments, which are

y2 =0.0375, y3 ——0.0469, y4-—0.0499 obtained for
a=0.00427. From the ratios of yp's we notice that the
direct produce space is far from being uncorrelated (e.g.,
dimensions are coupled).

Next we consider the factorial moments in the chaotic
regime. As the full chaoticity at a =4 is approached, un-
iformity is gradually recovered, and one expects the fac-
torial moments to gradually level off. For instance, at
a =3.9 we numerically found

I ~(5y ) is the factorial moment given by

—by /2

=(n(n —1) . (n —@+1}), (3.17)

by v3/v2-—2.945 and v4/vz-—6.022. The fractal dimen-
sionality of the direct product space y is found to be
y2-—0.9247, y3=1.9982, and y4-—2. 5465. In this case,
the ratios yp/yp &

are

where we customarily use translation invariance, y3 /y2 -—2. 1619, y4/y 3
——1 ~ 2743 (3.22)

p ([g;, I,g)=p (I(JI) (;)=( )=NIM .

Physically Iz(5y ) counts the number of particles in a
p-dimensional hypertube 0'~' =2 Y(5y P ' [the cross sec-
tion corresponds to a (p —1)-dimensional square, and the
tube axis is integrated along the c.m. coordinate] ob-
tained by the direct product of p identical rapidity distri-
butions. Hence, as 5y~O, (3.16) is proportional to the
fractal dimensionality y of O' '. Therefore,

and, as compared to the intermittent case, are much
closer to those expected from the manifest uniformity
[e.g., y~=(p —1)]. At the fully chaotic limit we found
v =0, which gives y =p —1. As was stated before, this
corresponds to a uniform distribution.

From most of the hadronic data we infer that
yp-p —1. This motivates us to look at the previously
studied interval between a =3.9 and a =4.0. For the
specific value of a =3.973052 the factorial moments are



3086 T. HAKIOGLU 45

1.0
00

shown in Fig. 11. The slopes read

v2 ——0.0292, v3 ——0.0710, v4-—0. 120, (3.23)

0.5—
with the ratios v3/v2-—2.4315 and v4/vz-—4. 1095. The
fractal dimensions y are found to be

0.0,—

o

x x
xx

y2
——0.9708, y3 ——1.9290, y4-—2. 880,

and the ratios y /y

y 3 /y 2
——1 .987, y4/yz ——2.966

(3.24)

(3.25)

X p=2
0 p=3
0 p=4
a =3.973052

-0.5
—2 0 2

—tn(by)

FIG. 11. Factorial moments of the TLM at a = 3.973 052.

The two important things to be considered here are the
value of y2 and the ratio y~/y2. The former is the di-
mension of the pair-correlation function I2(5y). In the
strongly intermittent case we have found yz-0, and in
the strongly chaotic limit y2-1. Hence, the interplay be-
tween these limits is an indicator of how uniform the ra-
pidity distribution is. The dynamics of a particular mod-
el is, however, rejected in the intermediate region, leav-
ing the strongly intermittent and strongly chaotic limits

TABLE I. vp's are adopted from the various experiments and the yp's are calculated using Eq. (3.19).
Errors in the yp's are directly projected from the vp's, and for the ratios we use the standard way of tak-
ing the larger fractional error to be that of the result.

UA1 [13]

&s =630 GeV

PP

Vp

0.012+0.002
0.028+0.005
0.049+0.010
0.062+0.026

0.988+0.002
1.972+0.005
2.951+0.010
3.938+0.026

Fp/3 2

1.000
1.995+0.005
2.986+0.010
3.985+0.026

KLM [20]

200 GeV/nucleon

p +Ag/Br

0.027+0.001
0.080+0.005
0.170+0.019
0.276+0.046

0.973+0.001
1.920+0.005
2.830+0.019
3.724+0.046

Xp/3 2

1.000
1.973+0.005
2.908+0.019
3.827+0.047

NA22 [13]

&s =250 GeV
~+p, K p

0.012+0.001
0.048+0.002
0.140+0.010
0.310+0.020

Vp

0.988+0.001
1.952+0.002
2.860+0.010
3.690+0.020

l p/l2

1.000
1.975+0.002
2.894+0.010
3.734+0.020

TASSO [20]

&s =35 GeV
e e

vp

0.023+0.003
0.080+0.014
0.134+0.052

Yp

0.977+0.003
1.920+0.014
2.866+0.052

Vp /72

1.000
1.965+0.014
2.933+0.053

KLM [20]

200 GeV/nucleon
0+Ag/gr

0.016+0.002
0.042+0.004
0.080+0.009
0.131+0.017
0.195+0.028

Vp

0.984+0.002
1.958+0.004
2.920+0.009
3.869+0.017
4.805+0.028

Vp /72

1.000
1.989+0.004
2.967+0.009
3.931+0.017
4.883+0.028
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methodology above, we present in Table I the fractal di-
mensions y calculated from the slopes of the hadronic
data fits from a few experiments. As a result of the linear
relation v =p —1 —y, errors for the v 's and y 's are
the same. We also find that the errors of the ratios y~ /yz
are almost the same as those of the v~'s. That indicates
that by measuring the GP moments and fitting y 's one
introduces much smaller statistical errors.

10 m—

10 I I I I I I I I

0 2
—1n(by)

I I I I

FIG. 12. Factorial cumulants of the intermittent TLM.

to be independent from the particular model being used.
The latter, yz/yz, measures the strength of the phase-
space coupling. The achievement of a quantitative fit of
the above model to the existing data would be quite
surprising. In order to help the qualitative aspects of the

I

Most of the hadronic data are evaluated by using fac-
torial moments. However, density correlations often con-
tain physically trivial background contributions. In such
cases the smooth background has to be removed from the
histograms, and in turn the dynamical part of the Auctua-
tions becomes more transparent and reliable. By sys-
tematically removing the lower-order density correlations
from the higher-order ones, we obtain the cumulants

1 M 1E (5y)= g f, ,dy dIy2 dyM,. 1 (5y )I' n', i'

X '
. ', (3.26)

(Pii))P

where the cumulant correlations Cz(y „.. . ,y~ ) are

C2 31 32) P2(31 V2) Pi(31)P132

3 31 V2 33) P3(31 32 33 X Pl(3i P2yj 3k)+ Pl(31 Pl(V2)PI(33)i' wk

C4(yi V233 V4) P4(VI V2~V3 V4) X Pl(3 )P3(y, yk yi) 'XP2(y Vj)P2(y—k 3l)
iA j&kXl

+g P2(V, V, )P 1(3 k )P 1(31) PI (3 I )P 1(3 2 )P 1(V3 )P 1(3 4 ) '

(3.27)

K~ —F~ —1,
K3 F3 3Fq +2

K4 =F4 —4F3 3FQ 6 .

(3.28)

We show in Fig. 12 the factorial cumulants corre-
sponding to the intermittent case. The removal of the

The set (3.27) and its coefficients, in general, compose a
field-theory expression in which C (yi, . . . , y ) are the
coefficients of the Taylor expansion of the logarithm of
the partition functional (generating function) in terms of
sources. Thus, a general expression for cumulants is
given in terms of derivatives of a generating function
[5,21 —23]. In the previous subsection we showed that in
the absence of correlations the fractal dimensions y be-
come additive in terms of the fractal dimension yz of the
two-dimensional rapidity spaces [22]. In the cuinulant
technique, uncorrelated dimensions do not contribute to
the cumulant scaling.

The first few cumulants can be easily written in terms
oftheF 'sas

InJ (5V )-8 —P ln5y, (3.29)

we find that 8 =1 and P2-0. 9984, P3=2.0635,
P4 =3.2501.

Results are shown for K~ (5y ) at a =3.9 and
a =3.973052 in Fig. 13. The dynamics in this regime is
dominated by two-particle cumulants indicated by the
small contributions of higher cumulants as compared to
IC2. For a pure chaotic (Gaussian) distribution cumu-
lants of p )2 vanish, and for a pure Poissonian distribu-
tion factorial cumulants of p ~2 vanish. Neglecting the
difference in the data between factorial and ordinary cu-
mulants [which is 0 ( I /( n ) )], we infer that our model is
closer to Gaussian distribution in the chaotic limit. Re-
cently such vanishing hierarchy of cumulants has been
observed [24] in the UA1 data. According to observa-

background effects translates to a large-range scaling of
Kz(5V )'s, including the long-range sector 5y ~ 1. An im-
portant observation here is that higher cumulants add ap-
preciably to the dynamical description given by the lower
ones. If we describe E~(5y ) as
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FIG. 13. Factorial cumulants of the TLM at a =3.973 052.

tion, the factorial moments F~ acquire 70—90%%uo of their
value solely from the second cumulant Kz, and the rela-
tive contribution of Ez as compared to Kz(p &2) in-

creases as 5y~O. Although it is dominated by two-
particle correlations, the dynamics of hadron production
is not completely chaotic. Remarkably, for UA 1 (also
with UA5 and NA22 this includes both nuclear and ha-
dronic targets) K3(5y) is small but nonvanishing such
that the linked-pair coefficient K3/(Kz) is almost bin-
size independent and close to the value given by the nega-
tive binomial distribution. For the manifestly Gaussian
fluctuation linked-pair coefficients would vanish, whereas
for a strongly nonuniform fluctuation the linked-pair ap-
proximation would not work at all. This is the limit de-
scribed by weak intermittency at one end and short-range
correlations at the other.

IV. CONCLUSIONS

In this work a qualitative understanding of hadronic
intermittency has been attempted by deductive use of
simple finite fractal sets. Arguments of general validity
such as the relative magnitude of the slopes of the factori-
al moments generated by strongly intermittent or smooth
distributions and conditions for translation invariance
and its effects on the fractal dimensions are shown to
enhance understanding of the hadronic phase-space
correlations. Such general features have no mode1 depen-
dence at the limits of full and no correlations, enabling
the use of generic models. Perhaps this explains why
there are so many ideas that can be fitted equally well to
the experimental data.

Translation invariance is frequently assumed in ha-
dronic correlations. In Sec. II we showed that "fake"
violations of TI can be cured controllably by smoothly
transforming the rapidity distribution. It was also shown
that this process does not change the behavior of the
dynamical system, hence leaving the moments and other
correlations intact. Actually this is the idea behind the
vertical moments recently introduced in order to
suppress the spikes and enhance the valleys of the rapidi-
ty distribution [24]. This process is the numerical ana-
logue of the transformations introduced in Secs. II and
III. In the cases for which one cannot recover TI by
defining smooth transformations in the rapidity, the as-
sumption of translation invariance leads to the undesir-
able consequence of obscuring the genuine dynamical
structures. It is pointed out in Ref. [25] that in such
non-TI cases, statistical theorems derived for manifest TI
are not valid. A particular case is the Wiener-Khinchin
ergodic theorem [26], which relates the power spectrutn
of the one-particle rapidity distribution to the Fourier
transform of the two-particle correlation function. This
theorem is violated by the fact that the duality between
the rapidity and its conjugate variable, i.e., the eigenvalue
of the longitudinal boost operator [27], is lost;
specifically, the two are not uniquely linked by a Fourier
transform. This moti. vates an independent phenomeno-
logical analysis of the phase space in terms of both the ra-
pidity and the boost. In this respect we also consider the
boost variable as an essential component of the intermit-
tency analysis.

There is a close connection between scaling indices of
the moments and the fractal dimensions of the multifold
phase space. The magnitude and the ratios of these frac-
tal dimensions project the dynamical structure of the
phase space, resolving the degree of nonuniformity. By
applying this to the hadronic data fits of the slopes we
found that the dynamical structure of the phase space is
close to the one expected from a uniform chaotic distri-
bution. The relative statistical error introduced by fitting
the fractal dimensions, rather than the factorial moment
slopes, is much smaller, giving merit to using the phase-
space analysis and to the GP moments.

Note added. After this work was completed, the au-
thor became aware of Ref. [28], where hadronic intermit-
tency is contrasted with the intermittency in the
mathematical context. This correspondence is also the
central point in this work.
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