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Reduction of the instantaneous Bethe-Salpeter equation for q-q bound states
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We present a straightforward method to reduce the instantaneous Bethe-Salpeter equation to a set of
coupled equations for radial wave functions. In the case of positronium, in particular, the results ob-
tained by Cung et al. follow immediately; our procedure is, however, much more general and is intended
to be applied to mesonic bound states where competing models need to be tested. %'e also briefly com-
ment on the numerical solution of the ensuing equations.

PACS number(s): 11.10.St, 12.40.Qq

I. INTRODUCTION

The Bethe-Salpeter (BS) equation is the correct tool to
deal with bound-state problems in quantum field theory
[1]. It has been applied with considerable success to
QED, where it has allowed an actual computation of the
spectrum of positronium [2]. Its use in QCD should, in
principle, also do so for the mesonic bound states. How-
ever our present knowledge of the interaction kernel be-
tween quarks is still very fragmentary. In particular
there is now mounting evidence that the long-standing
proposal for a scalar confining potential has to be aban-
doned [3,4]. It would therefore be very useful if we had a
simple method allowing us to test alternatives. This pa-
per deals with that question although with an important
restriction: the interaction is supposed to be instantane-
ous in the rest frame of the bound state.

In Sec. II, we introduce the Salpeter equation and
derive an expression for the mass of bound states (2.17),
which will be at the center of all the subsequent develop-
ments. In Sec. III, we discuss several properties of the
solutions of the Salpeter equation and present a variation-
al principle for the mass of bound states. The latter is
then used to carry out the reduction of the Salpeter equa-
tion in Sec. IV and to obtain equations involving only the
radial wave functions in Sec. V. Section VI deals with
several applications of this formalism and also includes a
comment on the numerical solution of the ensuing equa-
tions. We finally conclude in Sec. VII. Appendixes A, B,
C, and D contain some definitions as well as the formulas
necessary to carry out the above-mentioned cornputa-
tions.

II. THE SAI.PETER EQUATIQN

Here we are not going to rederive the Bethe-Salpeter
[1] equation or its reduction to the Salpeter [5] equation
in the case of an instantaneous interaction, since these
subjects have been dealt with many times in the literature
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[6] and have, moreover, received a textbook treatment
[7]. Instead, we begin immediately with the Salpeter
equation for a fermion-antifermion system, which we
write in the center-of-mass frame of the bound state:

d 1G'

Hip yH2+ f— V(k —k')
(2n. )

&& (A+ i,y'I, A' —A' l,y'I, &+ ) =My . (2.1)

H;(k) =8;(k)a k+ A;(k)P, (2.3)

and we will denote the energy of the corresponding fer-
mio'nic excitations on the vacuum by E;(k).

If we consider "constituent quarks" of masses m;, we

simply have

A;(k)=m;, 8;(k)=k, E;(k)=(k +m, )'~ . (2.4)

However, (2.3) is more general and allows one to give an
adequate treatment of the quark self-energy. This is of
particular importance in the case of light quarks, where
the phenomenon of spontaneous breaking of chiral sym-
metry plays a crucial role [8]. The A'+ (A' ) are projec-
tors on particle (antiparticle) states and are defined in Ap-
pendix A. Since these projectors satisfy A'++A' =1, we
can use them to split the BS amplitude into four com-
ponents:

y++ =A+yA+,1 2

=A+yA

=A' yA

=A' yA

(2.5)

We here use notation in which the explicit dependence of
functions has been dropped. y', for example, stands for
y(k'), whereas y stands for y(k). The instantaneous
Bethe-Salpeter wave function y is defined by

q(k) =(Olg, (k)g,'(k)l& ), (2 2)

where ~8) represents the studied mesonic bound state.
I, and I 2 are two 4 X4 matrices characterizing the way
in which the ferrnion and the antifermion couple to the
interaction potential. The H s are generalized Dirac
Hamiltonians
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It is straightforward to show from the Salpeter equation
(2.1) that (2.10)

X++(k)=X (k) =0 . (2.6)

In order to interpret the remaining two components, we
will write them using the expansion of the Fermi fields
(A11):

X+ (k)=+F„(k)[u,„(k)vz, (k)],
f, S

F„(k)= ~0lb, „(k)d, ( —k) l~ };
+(k)= QG„,(k)[Ui„(k)u~, (k)],

1;S

G„,(k)=&old t, „(—k)b~t, (k)la } .

(2.7)

(2.8)

and is related to the normalization of bound states in the
following way:

The first one represents the amplitude of probability that
the bound state contains a quark of type 1 and an anti-
quark of type 2 on top of the vacuum, whereas, in the
second, the bound state would contain one q&-q2 pair less
than the vacuum. In the case where m& or m2 tends to
infinity, the second component should go to zero as the
vacuum is then very unlikely to contain q-q pairs. How-
ever, as we depart from the nonrelativistic limit, the —+
component acquires more and more importance, and the
bound state (as well as the vacuum) no longer contains a
well-defined number of quark-antiquark pairs. This situ-
ation culminates for the pion when obtained as a Gold-
stone boson in which case y + and g+ are indeed of
the same magnitude as will be shown later.

The norm of the BS amplitude is defined by [8,9]

llxll'= f,—Tr x x —x2 d k 1 y
Hi H2

(2.9)
(2~)' 2 E& E2

It can also be written more explicitly as

llxll'= f,Tr[x -(x —}'—x- (x-+)'].(2'�)' (2.1 1)

MX =(E,+E2)X+ + VA+I, X' I pA (2.14)

It should not however, be forgotten that this is only a val-
id approximation when one deals with sufficiently heavy
quarks.

In order to obtain from (2. 1) an expression for the mass
of the bound state in terms of the BS amplitude, we will

apply to this equation the successive operations appear-
ing in the right-hand side of (2.9). We then obtain

It is interesting to rewrite the Salpeter equation (2.1) in
terms of y+ and y +..

MX, =(E,+E, )X + VA', r, (X', +x', )r,A',
(2.12)

MX = —(E, +E,)X,—VA' r, (X', +x', )r,A',

In the nonrelativistic limit, the kinetic energy dominates
the potential energy, and one obtains the solutions

M =m, +mz, X+ %0, X +=0,
(2.13)

M= —(m +m2), X+ =0, X +%0.
The second solution has to be rejected because it would
lead to a state of negative squared norm (2.11). We there-
fore obtain a proof of the fact already mentioned above
that only g+ survives in the nonrelativistic limit. This
has encouraged several authors [3,10,11] to consider the
so-called reduced Salpeter equation obtained from (2.12}
by simply neglecting y +.

Mllx l

= f (E, +E~)—Tr2 d k )H) H~

(2m) 1 2

+-f,f, V(k —k )Tr X r,X r, —X r,X'r,dk dk'
(2n. ) (2~ }

' Ei '
E2

(2.15)

This expression can be further simplified by making use of (2.6) Indeed, it 1S easy to show that these constraints can be
rewritten in the form

H] H2
x+x (2.16)

and (2.15) therefore becomes

d'k dk dk'
Mllxll'= f "",(E, +E, )Tr(xx)+ f "",f v(k —k')Tr(x l,x'I ).

(27r ) (2~) (2')
(2.17)

III. PROPERTIES OF THE SOLUTIONS AND VARIATIONAL PRINCIPLE

In the case where I, and I z are Hermitian matrices, it is easy to derive from (2.15) and (2.17) several properties of
the solutions of the Salpeter equation.

This is, in fact, also true if only one of the masses m
&

or m & goes to infinity.
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=0.

(1) The eigenvalues are real.
(2} Wave functions corresponding to different eigenvlaues are orthogonal. Orthogonality is here defined from the ex-

pression of the norm (2.9). Two BS amplitudes y and /will be said to be orthogonal if

, —Tr X
d'k

(3.1)(2') 2 E) E2

(3) For quarks of equal mass and an interaction term symmetrized in the exchange I,~l 2, eigenvalues will come in
pairs of eigenvalues of opposite sign.

(4) The Salpeter equation is obtained by making stationary the right-hand side of (2.15}under the double constraint
that y is normalized (~~y ~(=1) and that (H&/E& )g+g(H2/E2)=0.

This last property is very interesting because it establishes a variational principle for the solutions of the Salpeter
equation. This will be very useful when we come to the numerical solution of the equation. Unfortunately, bound
states do not in general correspond to minima of M(y) (the usual proofs of this fact cannot be used here because the
spectrum is generally not bounded from below as can be seen from property 3}.

In the following sections, we will use the above variational principle to derive the Salpeter equation for various kind
of interactions. More precisely, we will use a simplified version in which we first solve the constraint (2.16) before
searching for the extremum. The Salpeter equation will then be obtained by variations of (2.17).

We now give the proofs of properties 1 to 4.
(1) The reality of the mass is a direct consequence of the reality of the norm (2.11) and of the left-hand side of (2.17)

when I
&

and I 2 are Hermitian.
(2) Let us consider two solutions of the Salpeter equation, y and y, respectively, of mass M and M; it is then possible

by a method analogous to the one leading to (2.17) to derive the two equations

)1 H) H~
Tr[(E, +E2)g g]+Tr[V(k —k')j I,y'I 2]=M Tr f—

1 2

H) H2
Tr[(E, +E2)ytj]+Tr[V(k—k')y I',f 'I"z]=MTr g —

E f XE—
(3.2)

Taking the &ermitian conjugate of the second and subtracting it from the first, we get (with I
&

and I'i Hermitian)
r

Hi H
0=(M —M)Tr g—

2 E) E2
(3.3)

For M&M, we therefore obtain (3.1). Note that the integral used to define orthogonality does not follow from a scalar
product as the norm (2.11) is not positive definite. Moreover there are nonvanishing wave functions of zero norm
(x+-=x-+)~

(3}For quarks of equal mass, the Salpeter equation (2.1) reduces to

1
H(k), 2E(k)y(k)+ J 3

V(k —k')I iy(k')I'2 =My(k) .
d 12'

(2m )
(3.4)

y being a solution of energy M it is easily shown that y is a solution of energy —M. Indeed taking the Hermitian con-
jugate of (3.4) we obtain

1 d k'
H, 2E~'+f, V(k —k )r~t'rt = —My',2E (2n )

(3.5)

which is the announced result if one takes into account the assumptions made (I,+ = I „I 2+ = I z, and symmetrization
of the interaction in I,~I 2). It is useful to compute the squared norm of this new state:

2E X X {2n.)
(3.6)

We see that the square of the norm of the state of energy —M is opposite to the one of the state of energy M. Physically
only states of real norm are acceptable (2.10). Those will correspond to a positive mass whenever the left-hand side of
(2.17) is positive.

(4) We have to make stationary the right-hand side of (2.15}under the constraints that y is normalized to 1 and that
[(H, /E, )g+y(H2/E2 }]=0. The second constraint {actually an infinity of constraints, one for each k) can be ex-
pressed synthetically as
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fTl d k H2 ) )H~x+x(2~)'
H, H2

x+x
EI E (3.7)

(3.8)

This extremum problem can easily be dealt with by the usua1 method of introducing Lagrange multiphers —M and k
for the two constraints and then taking variations with respect to M, A, , and y . Apart from the constraints themselves,
the final result of this procedure is an equation obtained by variation of (2.15) with respect to y:

H) H2 Hi H2
(E, +E, ) y — y + V r,y'r, — rid'r,

Ei E2 E) E2

It is then easily shown that this equation supplemented with the constraint (2.16) is equivalent to (2.1), which establishes
the variational principle. In practical applications it is more interesting to first solve the constraint (2.16) thereby intro-
ducing "independent components" of the wave function y. The expression of the Salpeter equation is then obtained by
taking variations of (2.17) with respect to these components.

IV. REDUCTION OF THE SALPETER EQUATION

In view of the results of the preceding section, one way to make more explicit the Salpeter equation would be to sub-
stitute (2.7) and (2.8) into (2.17) and then take variations with respect to F„*„G„*,. This, however, can lead to lengthy cal-
culations and, in what follows, we will prefer to use another method in which we first expand y on a basis of 4 X4 ma-
trices and then solve the constraint (2.16) before using the variational principle. There is nevertheless one case in which
the above method can be useful, and that is when one considers the reduced Salpeter equation obtained by neglecting

+. The expression of the potential term in (2.17) then reduces to~

dk dk'
Tr[V(y )'r,q', r, ]=f ",j "

V(k —k')F„,(k)F„,(k')[u, „(k)l,u, „,(k')][u, (k')I U, (k)] .
(2' ) (27r )

It is clear from the expression (4.1) that this method is
equivalent to the one often used in the literature and
which consists in deriving an effective Hamiltonian from
the expression of the scattering amplitude [12]. Express-
ing the kinetic energy term and ~~y~( in terms of F„, and

carrying the computation to the end, one finally obtains a
generalized Breit-Fermi Hamiltonian acting on the wave
function P defined by

4=F:k.k' (4.2)

where the g, are the two-component spinors appearing in

(A9).
For the example of a yp(3 yp interaction, one obtains

H=E, +E~+H +oH, i(kXk') (S,—S~)

+Hei (k Xk ') S—H3(k Xk ') S(k Xk') S (4.3)

O'I +0'2 0'2 O'Icp=, O=
2

'
2

(4.8)

and the angle y; are defined in (A14).
We now come to the method we use to deal with the

full Salpeter equation. We first have to expand y on a
basis of 4X4 matrices. Following Le Yaouanc et al. [8]
we choose 16 Hermitian matrices of square 1, the
coefficients of the expansion being complex. We then
have

y=Xo+X,p, + JV o. r(+A, p, rr, (4.9)

where the matrices p, and cr; are defined in Appendix A.
It is easily shown that the constraint (2.16) can be

solved by expressing the 16 components of y in terms of
eight new functions (L „Lz,N„Ni) in the following way:

with S=S&+S2 and

Ho =
—,
' V[(sing sing'+cosO cosO')

+ (cosy cos&p'+ sinO sinO')k. k'], (4.4)

Xo=sinO(k N2),

X,= —sinyL, ,

/2=1 cosOL2

H, =—.
' V(sinO cosy'+ cosy sinO' ),

H2 =
—,
' V[ ( cosy cosy'+ sinO sinO' )

(4.5)

+(cosO —sin&p)(cosO' —sing*)k. k '], (4.6)

L3= —cosy(k. N, ),
VJ=osi nLOzk +icosy(k XN2),

Jlf, =sing&k( k.N, ) —cosOk X (k X N, ),

(4.10)

H3 =
—,
' V(cosO —sing)(cosO' —sing'), (4.7) Jr=i [cosOk(k. Nz) —sinyk X (k XNz)],

JV3 =cosyL, k —i sinO(k XN&) .

By contrast the general expression appearing in the Salpeter equation would require four such terms involving the various factors

u I;u ', u t,-u', U I,u', U I;u'.
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In this formalism, the separation of the components

y+ and y + occurs through the transformation
In the same manner, the kinetic-energy term becomes

L, =L(L)+L(s) N, =N(L)+N(s)

L2 =L(L )
—L(s) ~ N2= N(L) N(S) ~

(4.11}

(4.12)

f [E&(k)+E2(k)]Tr[y (k)g(k)]
(2m )

The indices (L) and (S} correspond, respectively, to
"large" (g+ ) and "small" (y +) components. In the
nonrelativistic limit only g+ (as already mentioned) sur-

vives, and one has L, =L2 =L(1),N, =N2=N(I ).
Having solved the constraint, it is easy to get the Sal-

peter equation, one simply has to set (4.10) into (2.17) and
to take variations with respect to the independent vari-
ables (L „Lz,N&, Nz). We will therefore rewrite (2.17) in
terms of these variables. For the square of the norm of
the BS amplitude, we have

i[y[[ =4f [Lq(k)L, (k)+L', (k)L~(k)
d k

+Nq(k) N, (k)+Ni(k) Nq(k)] .

(4.13)

=4f, [E,(k}+E (k}]d k
(2n }

X [L f (k)Li(k)+L2 (k)L2(k)

+Nf(k) N, (k)+N2(k) N2(k)] . (4.14)

The expression of the potential energy is more involved
and depends on the type of interaction considered
through the matrices I

&
and I z. In Appendix D, we give

the necessary formulas for several interesting cases. Here
we will consider as an example a charge-charge interac-
tion (yc yz component of a vector interaction) that cor-
responds to I

&

=I 2=1 in (2.1). Using (Dl) and (4.10) we
obtain

dk dk'

=4f 3 f 3 V(k —k') [(S Sq+ C„C„'k k ')L ', L I +(CgCg+SgSgk k ')L2L ~
(2m ) (2n )

+SgSg(kXNf). (k'XNf) (k'XN', )+C C' (kXN~ } (k'XN2)

—C SgL)"k (k'XN', }—SgC+2k (k'XN2}

—SgCq(kXNf ).k'LI+C~Sg(k XN2 ) k'L', )

+C~C' (N; k)(k' N', )+SgSg(N2 k)(k' N2)

+(S —Cg)(S' —Cg)[(Nf k)(k k')(k'. N', )+(N2'k)(k. k')(k' N~)]

+CgCg(Nf NI)+S~S~(N2 N2)

+(S —Cg)Cg(N; k)(k N', )+(Cg —S )S' (N2 k)(k Nq)

+Cg(S' —Cg }(N; k ')(k'. N', )+S (Cg —S' )(N2 k ')(k '
N2) j,

where we have used the notation

C =cosy, S =sing,

Cz =cos8, S&=sin8 .

(4.15)

(4.16)

(4.17)

We can then get an explicit form of the Salpeter equation by putting (4.13), (4.14), and (4.15) into (2.17) and making
variations with respect to L f,Lz, N;, Nz (considered as independent of the variables L„L2,N„N2}. However, this
would not be very interesting at this stage, and we will wait to write down these equations until the next section where
we reexpress everything in terms of the radial wave functions only. Nevertheless, we will consider here the case of the
reduced Salpeter equation in order to show that we then reobtain the results of Cung et al. [10]. This equation is ob-
tained by taking L& =L2 =L and N& =N2=N in (2.17) and then making variations with respect to L and N*. Using
(4.13), (4.14), and (4.15) we then get

(E, +E2)L +HOL' H, (k Xk ').N '=ML- ,

(E& +E2)N+HON '+H, (k Xk ')L'+ —,
' V(cosy cosy'+sin8 sin8')(kk ' —k 'k).N'

+H3[2k(k k ')k' —kk —k 'k '].N'=MN . (4.18}
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It is easily shown that this result is equivalent to the
equations obtained by Cung et a1. That is, for the states

}JJ (4.18) reduces to [Eqs. (3.9a) and (3.9b)] of Ref.
[10], whereas for the states (J+1)J it gives back [Eq.
(3.28)] of Ref. [10]. We would like to remark that our
method allowed us to obtain immediately equations in-
volving Hermitian operators, whereas in Ref. [10] several
transformations were required to achieve this goal. As
mentioned in [10] it is possible, by using the representa-
tion of the spin operator on the wave functions L and N,
to reexpress (4.18) in terms of an effective Hamiltonian.
Not surprisingly, one then reobtains (4.3), but the compu-
tations are awkward and the method we have used to ar-
rive at (4.3) is certainly better suited for the derivation of
effective Hamiltonians.

V. EQUATIONS IN TERMS
OF THE RADIAL WAVE FUNCTIONS

dk dk'
(2]r) (2ir)

(5.1)

dk dk'
(2n. )' (2]r)'

(5.2)

dk dk'I,=f , f , V(k —k ')[JP'(k) q][q JV(k')] .

(5.3)

reexpress (2.17) in terms of the functions L, (k-), N, o(k),
N, +(k}, and N, (k) through (B15) and (B16). For the
square of the norm of the BS amplitude (4.13) and for the
kinetic energy (4.14) this is easily done using the ortho-
gonality of the (vector-) spherical harmonics. As before
the potential-energy term requires a little more work.
Within the examples given in Appendix D we have essen-
tially three types of integrations to compute:

Now we would like to go further and to get systems of
equations for the various radial wave functions contribut-
ing to a state of given J . For that purpose we need to

I

The formulas allowing one to perform the integrations
over the angles are given in Appendix C, and we obtain,
respectively,

I)= ~ dkk2
(2]r)'

dk kI2=
(2~)'f

(5.4)

(5.5)

~ dk'k'
(2~)'

f (2]r)[VJ,(k, k')JP' (k)JV (k')+ VJ(k, k')iso(k)JVo(k') —VJ+, (k, k')JP+(k)iV+(k')],
dk'k'
(2]r)'

~ dk k ~ dk'k'
0 J 0 + J+& +

o (2]r) o (2]r)

+p JP' VJ ] J ] JV +V JP+ VJ+] J+]JV+

+pv~+ VJ+ ] J —]~—+pv~ VJ —1 J+]~+} ' (5.6)

The quantities VL and VL I as well as the potentials V'" and V' ' appearing in (5.6) are defined in Appendix C. The ex-
pressions (5.4), (5.5), and (5.6) are not yet in the final form. They contain the variables X and JV, and we need to reex-
press everything in terms of L, N. Again, the necessary formulas can be found in Appendix C (C10).

Putting everything together and taking, now, the variations with respect to the radial wave functions we obtain two
systems of equations which correspond, respectively, to states with P =( —1)~+' and P =( —1) . For the example of a
yo(3 yo interaction they are

and

ML] =(E]+E2)L2+CgVgCgL2+Sg(p VJ ]+V VJ+])SgL2+pvSg(VJ ] VJ+])Cp'2o

ML2 —(E]+Eq)L]+S VJSQ]+C~(p VJ ]+v VJ+])Cp] —pvC (VJ ]
—VJ+])SgN]o,

MN]o =(E]+E2 )N2o+S&VJS@2o+C (V Vg ]+p VJ+])C@2o+pvC&( VJ ] VJ+])S'gL2

MN2o (E] +E2 )N]o+ Cg VgC'gN]o +Sg(v Vy ]+p VJ+ ] )S'gN]o pvSg( VJ ] VJ+] )CP ]

(5.7)

Mn]]+] =(E] Ez)n 2+]+C]&V
—C&Jz n+]+S]+( VzV]+p V J+)S]+n& ]+]+pv+S( VJ]

—VJ+])Cgn 2]

Mn2]+, =(E, +E2)n, ]+]+SgVJSgn', ]+]+Cg(v VJ, +p VJ+, )Cgn', ]+]+pvCg( VJ —] VJ+])Szn I]
2 2

Mn]] ]=(E,+Ez)nz] ]+SgVJS'gnz] ]+Cg(p VJ, +v VJ+, )Cgn2] ]+pvCg( V& ]
—VJ ]}S+~nz] ], +

Mn2] ]=(E]+E2)n,] ]+CV CJ„'nI ]]+S„(pVJ, +v VJ+, )S'n',
] ]

—pvS (VJ,— J+]) gn']]+] .

(5.8)

For the determination of the quantum numbers associated with the various components of the wave function, see Appendix 8 and

formulas (C5)—(C9).
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2EL2+ J dk'k' VJL~ =ML, ,(2~)'

2EL, + J dk'k'
(2n) o

(5.9)

X[$ VJS' +C (p Vi, +v VJ+, )C„']LI=ML2 .

Another interesting limiting case is the one in which one
of the quarks becomes infinitely heavy. As an example,
for m2~~, we would have f2=m/2 and therefore
sinO= cosy, cos0= sing so that we can forget about 0 and
express everything in terms of y. In this case, it is also
seen that the solutions satisfy

~1 ~2 N10 N20

1( + ) 2( + ) 1( —) 2( —)

(5.10)

(5.11)

It should however be noted that the equations so ob-
tained are not equivalent to the Dirac equation due to the
absence of crossed diagrams in the kernel of the BS equa-
tion [10].

VI. APPLICATIONS

We now come to the applications of our formalism and
the comparison with previously obtained results. Most of
the existing computations in the literature only concern
the reduced Salpeter equation, whereas our method ap-
plies to the full Salpeter equation. It is precisely one ad-
vantage of our technique that the amount of work neces-
sary to deal with the Salpeter equation is not much
greater than what is required to treat the reduced equa-
tion. Moreover, the generalization to the full Salpeter
equation is mandatory when one is interested in light-
quark mesons. As a particularly striking example, we
consider the pion in a situation where chiral symmetry is

4As can be seen from (4.10) this will be a general property as
long as I 1 and I 2 do not contain their own form factors.

We have chosen to write this last system in terms of the
variables n;~+~ defined by (C3) because it gives rise to
simpler expressions. One can, however, easily go back to
the variables N, + which have a more direct physical in-
terpretation.

The form factors appearing in the potential-energy
terms are all expressed as the sine or cosine of two func-
tion y(k) and 0(k). This already constitutes an im-
provernent compared to the various parametrizations
used in the literature [3,10,11,13-15]. Moreover it allows
us to deal very quickly with several interesting limiting
cases. For example, for quarks of equal "mass" one
would have 0=0 and y =+1=+2. In this case, the system
of equations (5.7) decouples in two subsystems for

{L „Lz ] and {N, o, Nzc ] . For identical quarks this is the
expression of charge-conjugation invariance and corre-
sponds to the decoupling of 'Jz and JJ states, which
have the same P but opposite C. As an example that will
be useful later, we give the equations obtained for
{L „L2] in this case:

spontaneously broken. The pion is the lowest-energy
J=0 solution of (5.9), and in this case it can be shown to
be massless (for zero current quark mass) as a conse-
quence of the Goldstone theorem [8]. The corresponding
solution is

0, I 2=sing . (6.1)

Clearly, this cannot be obtained from the reduced Sal-
peter equation, which is an approximation only valid
when L, and L2 are nearly equal (or equivalently when

the bound state contains only one qq pair). The passage
to the full Salpeter equation is therefore of practical im-
portance. For example, we have reconsidered and gen-
eralized several models treated in the literature. The first
is the model of a vector-plus-scalar potential investigated
by Gara and co-workers [3] and concerning which several
explicit formulas have already been given in the present
paper. Comparison with their results is most easily
effected in the formalism presented at the beginning of
Sec. IV. Indeed upon correcting the formulas of Ref. [3]
in accordance with the comments of Lucha, Rupprecht,
and Schoberl [15],we have, in fact, established agreement
between our formulation and that of Ref. [3]. In addi-
tion, results concerning the full Salpeter equation (5.7)
and (5.8) have been used in our study of the scalar poten-
tial [4].

As a more involved example we have also considered
the model of Jacobs, Olsson, and Suchyta [11],which in-
cludes the effects of retardation up to order U /c .
Again, we have confirmed their findings and generalized
them to the full Salpeter equation. Moreover, our results
are expressed in a much more synthetic way. They are
reduced to two closed expressions, respectively, valid for
the states (0,1+,2,3+, . . . ) and (0+, 1,2+,3, . . . ).
Also our expression of the form factors in terms of 8 and
qr is simpler than the parametrization used in [11].

As mentioned in the Introduction, our main motiva-
tion for this analysis of the Bethe-Salpeter equation was
to establish a framework for discussing alternatives to the
model of scalar confinement. Our results concerning this
vast question are discussed in a separate publication [16].
If some of them can be obtained by a simple analysis of
the form of the equations, acceptance or rejection of an
hypothesis in general depends on a numerical computa-
tion. We will therefore brieAy comment on this topic
here.

Several techniques to numerically solve the reduced
Salpeter equation have been presented in the literature
[17-19]and it would be very interesting if one could gen-
eralize them to the full Salpeter equation. However, this
can only be done up to a certain extent. In our own com-
putations we have used a generalization of the method of
Ref. [18];that is, we transform the Salpeter equation into
a matrix equation by expanding the components of the
BS amplitude on an orthonormal basis for L2(R3). Of
course, for the numerical computation this matrix has to
be truncated and at a given order one will obtain approxi-
mate solutions depending on the choice of the basis. The
difference with the reduced case [18] is that the approxi-
mate eigenvalues so obtained are no longer upper bounds
for the exact result. Indeed as mentioned in Sec. III,



312 J.-F. LAGAE

bound states are in general simply stationary points of
M(y), not minima. We were, however, able to obtain ap-
proximate solutions by searching for extrema of M(a),
where a is a variational parameter characterizing the
basis of trial function.

The results so obtained can be checked and (in some
cases) have been checked by using an iterative method.
The latter is, however, much more time consuming and
much more difficult to implement then the variational
one. For example, because the iterative process naturally
converges to nodeless wave functions, excited states can
only be obtained by orthogonalizing at each step with
respect to lower mass states, whereas the matrix diago-
nalization simultaneously gives approximations for the
ground state and the first few excited states. On the oth-
er hand, finding an inflection point in M(a} is not always
an easy task, and an iterative method based on a discreti-
zation may be more systematic and more rigorous. How-
ever, when tested together both methods gave compatible
results, and we have therefore generally opted for the
variational technique because of its ease of use.

2. Basis spinors and expansion
of the fermionic field

We consider a generalized Dirac Hamiltonian

K(p)=B(p)a p+A(p)P, p=~p~ . (A4)

The eigenvectors of H will be denoted by u, (p) and v, (p)
(the index s taking two values} and will be, respectively,
solutions of

H(p)u, (p) =E(p)u, (p), H(p)v, (p) = —E(p)v, (p) (A5)

with

lpga a~1=0

~pi pj )=2&&'ij/&pg» Ipi»pj I ij» pipj ij + ijkpg

(A2)

[cr, , a j ]=2i e,ji, o i„{o;,o, I
.=25,, o, o. , =5;, +i e,,i, o„..

(A3)

VII. CONCLUSION E'(p)= &'(p)+B'(p) . (A6)

APPENDIX A: DIRAC MATRICES AND SPINORS

1. Dirac Matrices

The representation of the Dirac matrices that we have
used is

1 0 0 1

0 1 ' P' r5 1 0

p2
—'ror 5=

0 —i1
il 0

1 0
p3 )'0 & ()

We have presented a general and straightforward
method to reduce the Bethe-Salpeter equation to a set of
coupled equations for radial wave functions. The only re-
striction is that the interaction be instantaneous. For un-

equal mass fermions and given angular momentum, the
final result consists of two systems of four coupled equa-
tions corresponding, respectively, to states of opposite
parity. These equations involve form factors, which can
all be expressed as the sine or cosine of two functions
8(k) and ip(k). These results simplify in several limiting
cases such as equal masses (m, =mi) or m, —+~. Sup-
plemented by a technique for numerical resolution our
procedure allows the testing of several models of interac-
tion and is therefore of great importance for the study of
mesonic bound states in QCD.

Explicitly, we have

u, (p) = 1

&2E(E+ A)

v, (p)= 1

&2E(E+ A)

(E+ A)g,

Br pg, —

(E+ A)g,

(A7)

(p)= 1

+2(1+Pi ) 1+p3

Alternatively, we can take the (,(p) as eigenstates of the
third component of the spin (S;=r;/2}. In this case,
however, the u, (p) and v, (p} will not be spin eigenstates
(except in the nonrelativistic limit):

1 0
() 0—(p}= (A9)0+(P)=

where the g, (p) are two independent normalized spinors
and the ~; represent the Pauli matrices. If we choose the

g, (p) as eigenvectors of r p, the u, (p) and v, (p) will also
be eigenvectors of the helicity cr p. In this case, we have

1+p3
0+(P)=

+2(I+p3) P+ P2
(A8)

Pi+~P2

I k

0

0
k

k
Pik= =

0

k 0 r

In both cases the g, (p} are chosen to satisfy

g, (p)(, (p) =5„and the u, v's are therefore normalized in

the following way:

0 —iwk

P3ok =r 'V5=k
+k

0

0 u, (p)u, .(p)=5„,, v,"(p}v,,(p)=5„., u, (p)v, .(p)=0 .

These matrices are all Hermitian and of square 1. More-
over, they satisfy

We can use these four spinors as a basis to expand the
ferrnionic field. We then have
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d kg(x)= f e'""g [b, (k)u, (k)+dt( —k)v, (k)] .
(2'} ~

(Al 1)

where Pti is the parity of the bound state (the parity of
the vacuum is conventionally taken to be + 1).

Analogously, for the charge conjugation C we obtain,
from (A16),

The b, (k) [d, (k)] are then creation operators for a parti-
cle [antiparticle] of momentum k and helicity s. It is also
possible to define projection operators A+ (A ) on parti-
cle (antiparticle) states as

CsX(k) =r'X'( k )r' .

Using (4.9) and (4. 10) we then get explicitly

PsL, (k)= —L, ( —k), CsL, (k}=Li(—k),

(B2)

A+(k) = g u, (k)u, (k), A (k) = g v, (k)v, (k)

for these we obtain the explicit expressions

E(k)EH(k) E(k)+B(k)a k+3 (k)13
2E(k) 2E(k)

(A12) PsL2(k) = —L2( —k), C~L2(k) =L2( —k),
(B3)

PsN, (k) = —Ni( —k), C~N, (k) = —N, ( —k),
PsN2(k)= —N2( —k), CsN2(k)= —N2( —k) .

1=—[1+cosy(k)a k+siny(k)P],
2

2. Angular momentum

where we have defined the function p(p) through

8—=sing, —=cosy

in accordance with (A6).

(A13}

(A14}

Under an infinitesimal rotation in the space of states
the BS amplitude y is modified by

5m= «I[ay', J]IO), (B4)

where J has been defined in (A17). Computing the com-
mutator in (84) we find that the action of J on y(x)
reduces to

Jy(x) =x X ( —i V) ]y(x)+ —,
' [tr,y(x) ], (B5)

C f(x, t )Ct= rice'[g (x, t)]r, (A16)

where g~ and gc are arbitrary phases.
In the same context, the generator of rotation is given

by

3. Parity, charge conjugation, and angular momentum

In second quantization, the parity {P) and charge-
conjugation {C ) operators are defined by

Pf(x, t)P =rit, y P( —x, t) (A15)

and

Sy=-,'[tr, y] . (B6)

Consequently, the eigenstates of J and Jz can be ob-
tained by working out the I.-S coupling. The eigenstates
of L and Lz are the spherical harmonics Yt (O, y},
whereas those of S and S, are easily obtained from (B6):

S2=0 Sz=O 1 p (B7)

which can also be expressed as J=L+S, where L is the
usual orbital angular momentum operator and where the
spin operator S is defined by

J=fd r f (r)(rXp+ —,'o )P(r) . (A17)
1 . 1Sz=+1 —(0 &+i02) — (o, +io2)p,
2 2

APPENDIX B: IDENTIFICATION
OF THE QUANTUM NUMBERS OF THE BOUND STATE

S =1 Sz 0

5 = —1
1—(o, —io2)
2

1
'02)pi

2

(Bg)

In general, q-q bound states are characterized by the
quantum numbers J . However, if the quark and the an-
tiquark are of the same type charge conjugation is also a
good quantum number and the bound state is denoted byJ . We give in this appendix the necessary formulas to
establish the correspondence between the expression of
the wave function and the quantum numbers of the asso-
ciated bound state. We will analyze in turn parity,
charge conjugation, and angular momentum.

S =0 or 1 evidently correspond to the two possible cou-
plings for a quark and an antiquark of spin —,'.

We introduce the notation

p„=( l,p; ),
1—(0,+io2),v'2

(B9)
1

0 = —(CT, —10 2)v'2

We find the fo11owing generic wave functions for states of
given Jand M:

1. Parity and charge conjugation

Making use of the action of the parity operator P on
Fermi fields (A15) it is easy to derive

S =0, yJM(k)=RJ(k) YJ~(k)p„,

S =1, gJLNt(k)=RJt (k) g (L, m;1, q~J, M)
m, q

(B10)

P,X(k) =}OX( k)YO, — (B1) X YL (k)o ~p„, (B1 1 )
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where L can take the values J —1,J or J+1. The com-
ponents with S =1 can also be written in terms of the
vector spherical harmonics defined by

YJLM(k)=g(L, m;1, —q~J, M)YL (k)e ~, (B12)

with

J
2J+1

1/2 ' 1/2J+I
2J+1 (C4)

where the e represent the spherical basis of vectors:

1 . 1
C+ — —(C(+icy), Cp

—C3, C = —(C (C )
2 2

(B13)

We then have

We then obtain using the properties of the spherical and
vector spherical harmonics:

kL(k}=L (k)[(MY (k) —vY+(k)], (C5)

k N(k) =n( )(k) YJM(k), (C6)

k[k N(k)]=n( )(k}[(((Y (k}—vY+(k)], (C7)

k XN(k) = in(+)(k)Y()(k)
XJLM(k) ~JL(k }YJLM(k) ~P (B14)

Therefore, for a state of given J and M, the components
L

&
L 2 N ] N2 of the BS amplitude will be written as

(i =1,2)

iNp—(k}[pY+(k)+vY (k)],
kX[kXN(k))= —n(+)(k)[vY (k)+pY+(k)]

—N()(k)Y()(k) .

(C8)

(C9)

and

L;(k)=L;(k)YJM(k) (B15)

Ni(k} Ni —(k}YJ(J—1)M(k}+Nip(k )YJJM(k)

+N;+(k)YJ(J+1)M(k) . (B16)

We can finally summarize our data concerning the J
quantum numbers in the following table where each com-
ponent is associated with the quantum numbers of the
state that it represents:

P =( —1)'+' C =( —1)' L, ,L2

P ( 1)J+1 C ( 1)J+I Nio, N2o 3J

P =( —1) C =( —1) N, +,N), N~+, N2 (J+1)J
(B17}

We give in this appendix the essential of the formulas
necessary to carry out the reduction of the BS equation to
a system of equations for the radial wave functions fo1-

lowing the method presented in the text. We first define
some notation. The components of the BS wave function
will be written as

L (k) =L (k) YJM(k), (Cl)

N(k) Ã (k )Y (k)+Np(k)Yp(k)+N+ (k )Y+(k)

(C2)

where it is understood that we are interested in a state of
angular momentum quantum numbers JM and where the
indices —,0, + correspond, respectively, to components
with L =J —1,J and J + 1. We also introduce the func-
tions n(+} and n[ ] defined by

p v N+

In the last column, we have also made the link with the
usual spectroscopic notations.

APPENDIX C: REDUCTION GF THE BS EQUATION
TO A SYSTEM OF EQUATIONS

FOR THE RADIAL WAVE FUNCTIONS

Those formulas allows us to rewrite the relation between
the components X„,JV„and the functions L;,N; (i = 1,2)
in terms of radial wave functions. Indeed, using
(C5)—(C9) in (4.10), we obtain

+p sin«2(- ) YJM

X(=—sinqL) YJM

X2=( cos8Lz YJM

X3 cosq)n 1( ) YJM

iVp= cosq)n2(+) Yp+ (v cosq)Nzp+((( sin8L2 )Y

+ (p cosy&Nzp —v sin8L& )Y+,

(C10)

JV( =cos8N(p Yp+ ((((, sinq)n (( )
+v cos8n, (+ ) )Y

+( —v sin(pn, ( )
+p cos8n, (+) )Y+,

JV2=i [sin(pN2p Yp+(vsinq)n2(+)+p, cos8n2( ) )Y

+(p sin((()n2(+) vcos8n2( —
) )Y+ ],

JV3 —sin8n, ( +,Yp + ((M cosq&L (
—v sin8N, p )Y

+( —v cosq)L, —psin8N(p)Y+ .

(C11)JM(k} J M (k} ~JJ''~M'M' ~

JLM( } JLM( }= JJ LL MM ~

f dQ f dA'YJM V(q)YJM (k')=5JJ 6MM (2n) VJ(k, k'),
(C12)

(C13)

f« f d ft'Y JLM(k) V (q) YJ L M (k').

In order to transform (2.17) into an expression involv-
ing only radial wave functions we have to compute
several integrations over the angles. We list below all the
integrals needed to deal with the various interactions
considered in Appendix D:

—v p 5JJ '|)LL lI)MM (2(r) VL (k, k ) (C14)
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fd+ fde l JLM(k) qV(q)q &J'L'M'(k

~JJ'~LL'~MM'( ~}VL

+8JJ'f)MM'(P8L, J—1+v~L, J+1)(

x VL, L'(iJ8L', J 1+—vf1L', J+1 }(2), (C15)

V(k)= f d rV(r)e'"'. (C18)

Expanding e'"' and e'" " in terms of spherical harmon-
ics then allowed the integrals over 0 and 0' to be worked
out. The last integral (C15) is a little bit more involved
and requires that we introduce a new potential V such
that V(q) =q V(q). We then have

qV(q)q=qV(q)q= —fd'xe 'q'"VV(x)V . (C19)

Computing the right-hand side still gives rise to two new
potentials V'" and V' ':

where in the last integral q stands for k-k'. The quanti-
ties VL and VLL are defined by

VL(k, k')=8mf . dr r V(r)jL(kr)jL(k'r)

=f d» (x) V(lk —k'I },
VL L.(k, k')=8m f dr r V(rj)L(krj)i (k'r) . (C17)

The integrations involving the potential (C13)—(C15),
were computed by using the Fourier transform of V as
follows:

a-a V=S V"'—rr. V"'
i j ij i j

where

V =— = —— dx x V(x),(I) 1 dV 1 r

r dr r3 0

(C20)

(C21)

V =r V'"= — V V'"= V
1 CX

Q+3 (x+3
(C23)

As another example, we consider the case where
V(q) =q (d V/dq ), which has been used in [11]and for
which we have

V= ——U ——r, V =—U, V = ——r
3 1 dU (I) 1 (2) 1 dU
2 2 dr 2 2 dr

(C24)

APPENDIX D: EXPRESSION
OF THE POTENTIAL-ENERGY TERM

As already mentioned in the text, the expression of the
potential-energy term in (2.17) depends on the choice of
the matrices I, and I 2 so that each case must be treated
separately. We give below, for several phenomenological-
ly interesting cases, the expansion of —,'Tr(X 1,X'1 2):

V =— —— = V —— dx x V(x) . (C22)(2) 1dV d V 3

r dr dr r

A particularly interesting example is the one of powerlike
potentials. In this case, we have

4 Tr(X X } +0+0++1+1++2+2++3+3+~0~0+~1 ~1+~2 ~2+~3 ~3 &

—Tl (X 7 0X 1 0) =XpXp X1X1 X2X2+X3X3+JVp 'JYg JPj' ' JV1 JV2 'JYp+ JPj' ' JV3

5;j—,'Tr(X a;X'aj ) =3(ÃpXp+X1X1 X2X2 X3 X3)+( ~p'JV0 JV1 'JV1+~2'JV2+ JV3 'JV3)

(D 1)

(D2)

(D3)

(X a'X aj } +0+0++1+1 J-2+2 +3+3 ~0 ~0 ~1 JV1+JV2 JV2+~3 JV3
q2 4

+2[JV0 q)(q JV0)+(JP, q)(q JV;)—(JV2 q)(q JV2) —(JP,' q)(q JV3)],

—,'Tr[X+(a k')X'(a k')]=/0/0+X1X0 —X2X2—X3X3—JV0 JV0 —JP, JV1+JP, JV2+JV2 JV3

+2[(JP()' k')(k' JV0)+(JP, ' k')(k' JV', ) —(JPq k')(k' JV2) —(JV3 k')(k' JV3)),

—,'Tr(X+ —,
' [a k', X')]= iX2 (k '—JV'3)+i/3 (k '

JV2)+iJV0 (k'X JV", )+iJP, ' (k'X JV0)

+lJP3 k X2 Lid k L3 ~

(D4)

(D5)

(D6}

It should be remembered that, because we are using a
wave function constructed with liJpt (2.2) instead of fp,
the Lorentz structure of the interaction will only be ob-
tained after multiplication by yo. Therefore, using I,
and I 2 in (2.17) indeed corresponds to an interaction of

the type ypI'1@pl 2. (Dl), for example, corresponds to
the cotnponent 0 of a vector interaction; (D2) represents a
scalar potential; (D3) and (D4) allow the treatment of
transverse gluons, whereas (D5) and (D6} appear in the
model of electric confinement.
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