PHYSICAL REVIEW D

VOLUME 45, NUMBER 8

15 APRIL 1992

BRIEF REPORTS

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling given to Rapid
Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports.) A Brief Report may
be no longer than four printed pages and must be accompanied by an abstract.

Trapped surfaces on a spherically symmetric initial data set

T. Zannias
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
(Received 10 July 1991)

Based on the initial-value constraints we derive an integral relation involving arbitrary spherically
symmetric initial data. As a consequence of this relation an integral inequality is derived which de-
scribes the interior content of a spherical trapped surface. This inequality exhibits clearly the possible
role played by the trace of the extrinsic curvature. It can enhance or suppress the presence of trapped

surfaces.

PACS number(s): 04.20.Cv

INTRODUCTION

The concept of a trapped surface, introduced in a fun-
damental paper by Penrose [1], plays an extremely useful
role in the description of relativistic collapse. Subject to
the satisfaction of some reasonable conditions which are
in agreement with the classical description of matter, null
geodesic incompleteness must take place once trapped
surfaces form [1]. In addition, such surfaces lead to
‘““gravitational confinement”, as a recent theorem proven
by Israel [2] indicates. Roughly, this new theorem states
that an initially trapped surface of fixed area “will act as
a wall that permanently seals off its interior content from
casual influence of the environment [. . .] at least as long
as it remains non singular.” In view of this, it is impor-
tant to understand the special state of the gravitational
field that triggers the formation of trapped surfaces. In-
tuitively, one expects that whenever matter or gravita-
tional waves are sufficiently compressed, a trapped sur-
face ought to form. However, what is missing is a precise
formulation (if one exists) of the term ‘sufficient
compression.” Clarification of this notion could provide
considerable insight into collapsing configurations. For
example, suppose one assigns on an initial slice data in-
tending to describe the collapsing phase of a star. Recall
that, in principle, one can always recognize the presence
of such surfaces on the initial slice. If, for instance, the
slice is placed at a moment of a time symmetry, trapped
surfaces may be located once minimal surfaces are spot-
ted. However, irrespective of whether the data are arbi-
trary or time symmetric again we lack necessary and
sufficient conditions on the data that will guarantee ex-
istence of trapped surfaces. If such criteria can be deter-
mined, then one may appeal to Israel’s confinement
theorem to conclude that the resulting spacetime singu-
larity is necessarily shielded [subject to the condition that
no catastrophical explosion (such as shock waves) origi-
nating from the spacetime singularity can take place].

Early attempts to formulate appropriate criteria are
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described in [3] but these criteria involve characteristic
initial data and are concerned with the existence of aver-
aged trapped surfaces. An important alternative is de-
scribed in recent work by Schoen and Yau [4]. This at-
tempt involves quite sophisticated mathematical
machinery, and the authors present necessary and
sufficient conditions upon initial data implying existence
of apparent horizons. However, the conditions are rather
mathematical in nature and may not be easily adapted to
physical problems. More recently a new step has been
taken by O Murchadha and collaborators [5]. They have
formulated some inequalities involving spherically sym-
metric initial data upon maximal slices. In turn, those
inequalities act as necessary and sufficient conditions for
the existence of trapped surfaces. Although their results
are very important, the maximal property of the slice ap-
pears rather restrictive, particularly in view of some re-
cent results by Witt [6] which suggest that “most space-
times” with sources obeying the dominant-energy condi-
tion do not admit maximal slices.

The purpose of the present report is to present a
derivation of an integral relation involving spherically
symmetric initial data on arbitrary initial slices. Based
on this relation an inequality is derived that characterizes
the interior content of a trapped, spherically symmetric
surface. Although one expects the energy density to be
dominant and very high in the interior of a trapped sur-
face, our inequality shows that this may not always be the
case. This is so because of the role played by a nonvan-
ishing trace of the extrinsic curvature in the initial slice.

Let us first derive this inequality. For that, let
(2,7,k,p,J) be an initial data set [7]. By definition they
satisfy

R —kk g +k*=16mp , (1a)
D (k®—ybBr)=—8mJP . (1b)
R is the scalar curvature of y,;, D, the metric-compatible

covariant derivative, and k=k¢. The assumption of

2998



45 BRIEF REPORTS

spherical symmetry requires that y;; and k;; must obey

(8]
L€¢i>in=L§(5)kij=0’ (1=1,2,3, @)

where £, are the familiar infinitesimal generators of
SO(3) symmetry. Because of the existence of this symme-
try, 2 can be naturally foliated by a sequence of nested
two-spheres, i.e., the group orbits. Consequently, if n,, is
the outward pointing unit normal of each orbit, then

?aﬁz'}/aﬁ——nanﬂ ’ (3)
_1 — E A
k=L, py="7; k=K (4)

are the induced metric and second fundamental form (or
extrinsic curvature) describing the embedding of the orbit
within 2. The Gauss-Codazzi equation then implies

R=PR+2R gn°nP+kPk z—k* ®)

while for later use note that the Gauss-Bonnet theorem
implies

'R da=8r. ©6)

Integrating (5) from the center of symmetry up to an or-
bit labeled by r, and using (6) we obtain

JRVY aV=8aL +[ (K opk®—k2+2R on°n?)Vy dV.
(7

where L is the proper distance of the orbit r, from the
center of symmetry. In view of (7), performing the same
integration on the Hamiltonian constraint (1a) leads us to

167 [ pvy d*v
=87L + [ (2R ;n°nP+k Pk 5
— k2= kP g+ K2V Yy dPV . (8)

It is helpful to perform the subsequent analysis in geo-
desic coordinates. Thus, without loss of generality, the
intrinsic metric on X can be written

ds?>=dr*+ B(r )(d 6*+ sin’6d ¢*) 9)
J

—~ 1dB , 2
16 —Jgn®Wy dV=8nL —
ﬂf(p gntWyd 7L —8wB 3 a3

To extract the consequences of this equation, let us imag-
ine that the data have evolved into the spacetime (M,g).
By construction, X is an embedded spacelike hypersur-
face in (M,g). Denote by 3/3¢ its future-pointing time-
like unit vector.

If A =47 B stands for the proper area of an SO(3) orbit
in =, then the Lie derivative of 4 along 9/0¢ is given by
Ly A=wA, where

w=9%k g=(yP—n°nPlk g=—f+2g (16)

5 tae—f

2999
while the field k;; can be taken as follows:
K§=L§+55
=rirngs,— L gpg+ o508+ To3(r) . (10
Note also that in this coordinate gauge
2
R gn°nP= 211?2 i—f - % (11)

Utilizing (9) and substituting (10) into the momentum
constraint (1b) leads to the following expression for the
momentum density:

2

2 _,|_3fdB
38 f

2 B dr

817'-’3 = dr

85 (12)

while in the above coordinate gauge (8) takes the form

o

— dB
161rfp\/de—8'n'L~8v? .
1 [[aB ]
o 1 | (dB | _,c2p2
+4r o 2B ar 3f°B
-i-%ng2 dar . (13)

An analogous integral relation can also be derived utiliz-
ing the momentum constraint (1b). To do so, we first
form J Enﬁ and then integrate as done previously. After a
trivial integration by parts we arrive at

To

167 [ JgnPV'y dV =8 -f;'—g—f B
0
o 2 dB
8”Tfo 3g f dr
+349B |4 (14)
2 r
Combining (13) and (14) we get
o o |1 4B 2 1 dB
+or [ B| -2 2g| |22 .
. "B |5a T3 | |Fa T |
(15)

is the trace of the second fundamental of the orbit as em-
bedded in the spacetime. Combined with L, ,, 4 =k4a
we obtain

(Lajar+Lasan)A=(k+w)A

—|1ldB_ .. 2
B dr f+3

gl4, (17)
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1 dB 2
=|-=22 _f1+2g14. (8
B dr f 3g (18)
On the other hand [=0/0t+90/0n and

n=21(3/3t—93/3n) obey

161rf

p—JanB—Ek;(l?—i-w)

VydV=8rL—2A(k+w)
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1°l,=nn,=0, 1°n,=—1 (19)

and stand for the future-pointing outgoing and ingoing
null vector fields tangent to the null geodesic orthogonal
to S, while k +w, —k+w represent the expansion, con-
traction of the light rays emitted orthogonally from S. In
light of these remarks, (15) can be written as follows:

r

0

+1 [k +w)k—wVydV+ [ (kgnnP—k)&+w)VydV . 20)

This is our final expression. It is a fully covariant integral
identity derived using the constraint equations and in-
volves only initial data. However, our considerations so
far have been quite general. To extract information from
the integral relation (20), let us restrict our considerations
to a collapsing spherical star. In this case the free func-
tions f, g, and B must be chosen to make p different than
zero within the star interior. Collapse to the future of =
will be implemented by the choice w(r)<O0 at least for
the part of = occupied by matter [9]. On the other hand,
regularity of the three-geometry in the vicinity of r=0
requires E(r)>0 [10]. Let r=r, be the first root of the
equation k(r)+w(r)=0. By construction, the outgoing
(and respectively ingoing) beam of light emitted orthogo-
nally from spherical orbits within »=r, initially propa-
gates outwards (and respectively inwards). The r=r, or-
bit is special as it marks the first trapped surface (actually
marginally trapped). Furthermore, any interior orbit
obeys (K+w)k—w)>0 and (k®ngng—k)=—w>0;
thus the integral relation (20) implies

1(mf

Vydv

p—JBnB—é(I?+w)

=8nL+1 [(K+w)k—w)VydV
+ [(k%ngng—k)k+w)Vydv . Q1)

Because of the positive-definite character of the last two
terms we therefore infer

J

i.e., an integral inequality valid for the interior of the first
trapped surface. The right-hand side expresses the prop-
er distance of the trapped surface from the center of the
star, and in a sense it is a measure of the size of the
trapped surface. The left-hand side is more interesting.
It provides us with valuable insight into the trapped inte-
rior region. Although one expects that within » <r, the
energy density p must be very high and in some sense
dominant, inequality (22) implies that this may not al-
ways be so. In fact, it is entirely consistent that the r <r,
region be dominated by the presence of high negative ex-
trinsic curvature while the matter data play a secondary
role. The situation is dramatically opposite at the other
extreme, i.e., in cases where data are placed on slices

L

Viydv > 5 (22)

p—JgnP——=(k+w)

[
characterized by positive, definite extrinsic curvature. In
this instance, if in 2 there exists a trapped surface, then
according to (22) the energy density and possible inward
matter flow must be very high and dominant.

We may point out that one may derive more inequali-
ties as consequences of (20). For example, by inspection
of (20) one may easily verify that

1 2 ~ L
— B__* B =
f p—Jgn 167r(k"'3nan +k)k+w) |[VydV> )

(23)

(it is understood that the volume of integration, as in (22),
is again the interior of the first trapped surface). Howev-
er, we feel that (22) expresses more clearly the role of k
rather than the above inequality. It is also clear that nei-
ther (22) nor (23) by themselves imply the existence of
trapped regions (although they are naturally implied by
trapped surfaces). Let us further point out a connection
between the integral relation (20) and Hawking’s quasilo-
cal mass-energy formula. Recall that some time ago,
Hawking [11] proposed a quasilocal expression for the
gravitational mass within every regular closed two-
surface S. It is given by the following integral:

172
A

m(S)= Tor

1
- d 24

A is the proper area of S; p and u are two of the
Newman-Penrose spin coefficients representing (half) of
the convergence/divergence respectively of the
outgoing/ingoing null geodesics orthogonal to S. Speci-
alizing the above formula to the case where S is an SO(3)
orbit on the initial slice 2, it is not difficult to prove that
m(S') can be written as follows:

_(k—w)k+w) A
16w

while with a bit more effort the above expression can be
brought into a more recognizable form [12]:

gh'v,A4v 4
167 A

m(S)=vV A4 /16x |1 , (25)

m(S)=V A4 /16 |1 , (26)

where now g*” is the full spacetime metric. From (25) we
see that we can eliminate one of the integrands in the
right-hand side of (20) in favor of Hawking’s mass formu-
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la. In this form it is clearer how (20) might be general-
ized to situations lacking spherical symmetry. This point
is under investigation and will be discussed in a future pa-
per.

ACKNOWLEDGMENTS

This research has been partially supported by the
Principal’s Development Fund of Queen’s University.

[11R. Penrose, Phys. Rev. Lett. 14, 57 (1965). See also R.
Penrose, in Battelle Rencontres, edited by C. M. DeWitt
and J. A. Wheeler (Benjamin, New York, 1968).

[2] W. Israel, Phys. Rev. Lett. 56, L89 (1986); Can. J. Phys.
64, 120 (1986).

[3]J. B. Hartle and D. C. Wilkins, Phys. Rev. Lett. 31, 60
(1973); P. N. Demmie and A. I. Janis, J. Math. Phys. 14,
973 (1973).

[4] R. Schoen and S. T. Yau, Commun. Math. Phys. 90, 575
(1983). i

[5] P. Bizon, E. Malec, and N. O Murchadha, Class. Quantum
Grav. 6, 961 (1988).

[6] D. M. Witt, Phys. Rev. Lett. 57, 1386 (1986). See also D.
R. Brill, in Proceedings of the First Marcel Grossmann
Meeting on General Relativity, edited by R. Ruffini
(North-Holland, New York, 1977).

[7] Recall that this means a three-manifold =, a positive-
definite metric ¥, a symmetric second-rank tensor k, a sca-
lar field p, and a vector field J. Furthermore, it is assumed
that they will be smooth (i.e., all of them are C~, X is free
of singularities), and p and J obey the local energy condi-
tion p>(J,J*)!/2. Perhaps it is worth pointing out that
the results of the present paper have been derived without

imposing this inequality.

[8] By the constraint equations p and J are also spherically
symmetric. For a discussion of the mechanism generating
spacetime symmetries from an initial-value point of view,
see V. Moncrief, J. Math. Phys. 15, 1963 (1974); B. K.
Berger, ibid. 17, 1269 (1976); T. Zannias, Phys. Rev. D 44,
2397 (1991).

[9] At least one class of “Lagrangian geodesic observers” will
feel that the area of SO(3) orbits is squeezed.

[10] In fact, the geometry should be locally flat in the vicinity
of »=0; thus k(r)— « as r—0.

[11] S. W. Hawking, J. Math. Phys. 9, 598 (1958). For some
properties of this mass function, see G. T. Horowitz and
B. G. Schmidt, Proc. R. Soc. London A381, 215 (1982).
For the role of this function in mass inflation of stationary
black holes, see C. Barrabes, W. Israel, and E. Poisson,
Class. Quantum Grav. 7, L273 (1990).

[12] For a discussion of this expression and its relation to other
forms of mass energy, see T. Zannias, Phys. Rev. D 41,
3252 (1990). For its implications regarding mass inflation
of spherical black holes see E. Poisson and W. Israel, ibid.
41, 1796 (1990).



