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We report on the renormalization-group study of the low-energy effective potential in /CD. We
derive the dynamically induced linear o model (DSM), whose self-couplings are not free parameters
but are determined in terms of the running coupling of the underlying +CD. In this DSM, the ir

meson is not a fundamental field, but a genuine quark-antiquark 0+ bound state, while the m' is the
quark-antiquark 0 bound state. We show the masslessness of the m' at zero temperature, so that the
m is a true Nambu-Goldstone boson coupled to zero-temperature chirality. At high temperatures,
the m remains massless. Thus the zero-temperature chirality is not restored at high temperatures.
The apparent chiral symmetry operative at high temperatures is thus to be distinguished from that
at T = 0. Comparison is made with the situation in the BCS and other theories where symmetry
restoration does indeed take place.

PACS number(s): 12.38.Aw, 11.15.Ex, 11.30.Rd

I. INTRODUCTION T, =W (4)

Q5, i J d z iiT y d= i'' f d red (2)

which shows that when (vac ~1b 1b~ vac) g 0 the chiral
charge Qs cannot annihilate the vacuum. Here

Qi—:2 jd'
and T is a generator matrix in flavor space. However,
there is no converse theorem that the vanishing of (1b g) p
by itself implies that Qs annihilates the vacuum at high
temper ature.

Indeed, a naive consequence of the chiral-restoration
argument would be that the quark at high temperature
remains massless. Our earlier calculations [2, 3] have
however shown that even though (vac ~@ @~ vac) p van-
ishes above T, where

Chiral symmetry is well known to be broken in @CD at
zero temperature. An important signature of this sym-
metry breaking is the nonvanishing of the ground-state
expectation value of gati@. Current-algebra considerations
have long supported this conclusion and recent lattice
calculations [1] have shown similar evidence. At nonzero
temperatures, however, lattice calculations have seen a
critical temperature T, above which the thermal expec-
tation value vanishes,

( vac
~ g g (

vac )p
—0, T ) T„

indicating a phase transition. A popular conclusion is
that chiral symmetry is restored above T, .

In truth, there is the familiar theorem that follows from
the equal-time commutator in the two-flavor case, say,

nevertheless the chiral quark with m„~ 0 moves in the
thermal environment as if it had a Lorentz-invariant mass
M, where

2' 2 T2
z [I+ O((lnT /A, ) )].' l. ',

A,

There is thus a conflict between the usual signature of
chiral-symmetry breaking and the result of an actual
calculation of the physical quark mass at high temper-
atures. In our earlier paper, we had analyzed the two-
point quark Green's function at high temperatures, and
shown how the usual signature (1t g) p fails to display the
chiral-symmetry breaking in the theory.

In this paper, we have turned to the other signature
of chiral symmetry breaking, viz. the masslessness of the
Nambu-Goldstone boson [4—6], in order to verify the con-
tinued breaking of chiral symmetry at high temperatures.

At zero temperature, the pions indeed do have a
small mass, which we attribute to electroweak-symmetry
breaking generating a (small) up- and down-quark mass.
In the limit of zero current quark masses, the pions will

become massless. Theoretically, on the lattice, it has
been hard to show the pion mass is strictly zero, although
no one doubts the conclusion.

We employ the renormalization-group techniques to
study the Nambu-Goldstone bosons in the dynamically
broken @CD through the introduction of an effective po-
tential at zero temperature. In the process, we have also
proposed a new solution to the old problem of the renor-
malization property of bilinear composite sources [?], and
introduced the effective Lagrangian for the bound states
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of the quark-antiquark systems in the 0+ and 0 states.
Much like the eigenvalue conditions introduced earlier in
the literature [8], the coupling parameters of this dynam-
ically induced linear 0 model (DSM) are not free, but are
totally determined in terms of the fundamental running
coupling constant (A„) of QCD. In this DSM, the w is
strictly massless at zero temperature.

We shall show below that the m remains massless at
high temperatures.

Because our conclusions are startling, especially in
view of the experience with BCS theory, we shall end
this paper with a comparison with symmetry restoration
in other theories. If M is the mass scale of the symmetry
breaking at zero temperature, the gap equation at high
temperature is typically of the one-loop form [9]

M =M —ay T

whereupon the conclusion follows that at T, = M2/(a g )
the gap vanishes and symmetry is restored. In BCS the-
ory, the finite (and numerically small) Debye cutoff effec-
tively controls the loop integrals, and higher-order cor-
rections are genuinely small, so that the conclusion of
a symmetry restoration is stable against those correc-
tions. In QCD, the higher-order contributions cannot be
neglected. The parameters M and g are cutoff (p) de-

pendent, so that the series on the right-hand side of Eq.
(6) must be summed in order to be independent of the
cutoff p and make sense physically. As we shall see in
Sec. IV, the sum over the higher-order diagrams, includ-

ing analogues of the so-called "daisy" diagrams [10] for
QCD, indeed destabilizes the conclusion.

Before embarking on the study of the Nambu-
Goldstone boson, we end this section with some further
observations related to our earlier work [2] on the pole
of the thermal quark propagator. That a Dirac fermion
would move in a hot medium with a Lorentz-invariant
mass was already noted [11] in the one-loop calculations
in QED. Our results agree with theirs at the same one-
loop level, with the appropriate substitution of g„C/ for
e2 in QED. We, however, go beyond one loop and by
summing over higher loops convert their result to the

renormalization-group-invariant form of Eq. (5). Naively,
it would have been expected that a quark with intrinsic
mass m„should behave in the hot environment like a
plasmon, with a momentum-dependent mass. That the
Dirac fermion behaves like a genuine particle was con-
firmed by a new QED calculation by Barton [12], who
has traced the physical origin of this Lorentz invariance
to the momentum independence of the forward Compton
scattering as well as pair-annihilation amplitudes in the
rest frame of the electron. Since at the one-loop level
there is no difFerence between QED and QCD, his anal-
ysis carries over.

In this connection, too, we should add a note about the
plasmon state of the quark that was first shown by Wel-
don [13] and Klimov [14]. A strictly massless electron
in a hot environment can also be in a plasmon state.
This plasmon state is characterized by a momentum-
dependent; mass,

&2+ M~~,

where

k 1k~
My —M+ ————,

0

My —+2M
k~00 (9)

and here M is the Weldon-Klimov mass given by

2

M = —"T C/.
8

As Barton [12] has shown, this plasmon state is absent
for the case m„g 0. Since our treatment of dynamical
synirnetry breaking starts with m„g 0 and we study the
system in the critical limit as m„—+ 0, our result in Eq.
(5) is a genuine dynamical mass state, to be distinguished
from the plasmon state of Weldon and Klimov.

Finally, we give the corrections to the physical quark
mass at high temperature when the underlying QCD has
a primordial m„g 0. In this case, the behavior of the
quark mass at high temperature is modified to

( 4~ /' 2~2T2 ) —/( ) ( T2) (i-2~)/(2~))

T~oo 3 T2 $ (3A2e1/3e2yp/5 ) A2)
ln C C

A,

where m„ is given in terms of the positive
renormalization-group-invariant parameter yo by

N~ —1

2N (14)

m„= A, e' e"'/ (Aye)

Here

(12) and b is the one-loop beta function for the gluon coupling
constant, A„= g2/16z2,

p 4„=—bA„.
d

dp

where CJ is a quadratic Casimir invariant defined for an
SU(N) group by

Note that in the intrinsically broken case, the physi-
cal quark mass at high temperature is actually less than
the quark mass in the dynamically broken QCD. Such
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a signature would however be hard to see in a lattice
calculation.

II. EFFECTIVE POTENTIAL AT T = 0

Lz —— Qg j——2i QTTsg j5. (16)

In this section, we will describe a dimensional regu-
larization approach to the study of the composite gen-
erating functional [7]. Let F(j,j5,m) be the generating
functional in the presence of external composite sources
for connected perturbative graphs of the massive QCD
theory. These external composite sources are coupled to
the fermion bilinears in the following way:

malization in QCD. The infinities arise directly from the
fact that our sources are associated with bilinear fields.

At the one-loop level, we find that [16]

NcNy 1
8+2 c

x( .(&.j)'+ (~.j.)'
+ (j+ m) + (j5) + finite terms ).

(19)

The flavor-space generator matrices satisfy the normal-
ization

Tr(T'T ) = -b' . (17)

A. Infinities from bilinear sources

The generating functional is defined in n = 4 —e di-
mensions through the integral

For algebraic simplicity, we have chosen to work with two
fiavors, although the technique used can be generalized
to higher numbers of flavors. The mass term that we
put in by hand into the QCD Lagrangian is taken to be
a scalar in flavor space, so that we do not distinguish
between the up- and down-quark masses.

In the chiral-symmetry limit this QCD Lagrangian
(with m„= 0) has a global U(2) x U(2) symmetry at the
tree level which is broken down by the instanton U(1)~
anomaly to SU(2)r, x SU(2)R x U(l) v . In the presence of
dynamical symmetry breaking, this symmetry is further
broken down to SU(2)v x U(1)~ with the pseudoscalar
pion triplet serving as remnants of the chiral SU(2) sym-
metry.

Bere we have used dimensional regularization in 4 —c
dimensions, and N, denotes the number of colors and

NJ the number of flavors in the theory.
Because of these new infinities, the functional I" by it-

self does not make any sense for phenomenological anayl-
sis. Xeiii terms will have to be added to the tree-level
source Lagrangian in order to achieve a renormalized
functional.

B. Source Lagrangian and renormalizability

These infinities require new counterterms that must be
introduced into the tree-level Lagrangian. The needed
counterterms, however, involve only external composite
sources, as Eq. (19) so clearly shows. But the origi-
nal tree-level Lagrangian, 8J, did not have such source-
dependent terms and we are thus in a quandary.

The solution is to introduce ab initio additional source-
dependent terms into the tree-level Lagrangian in order
to absorb these counterterms under renormalization. We
write

~y ~y ~g i f d x'(Cg~o+C) iI" (18)

The F so generated will have perturbative infinities
that are not removed by the usual modified minimal sub-
traction (MS) QCD counterterms [15]already included in

ZqcD. These new infinities appear in connected pertur-
bative graphs with one or more external source lines and
cannot be absorbed by any wave-function or mass renor- With

+ Q~(counter) (20)

Zq(counter) = —(Z Zz —1) (@g j+ 2i QTysg js)

+ '
z

—(Z Zz —1) [(0&j) + (B~s) ] —(Z Zz —1) [(j+m) ~ (j5) ]2CA„

Zg =(1+bi„/c) ',
Z = (1+bA„/e)

(22)
(23)

where Zq and Z are the QCD renormalization constants
given to one-loop renormalization-group accuracy by

ZpA„p' = A (24)

Zfg m'p m (25)

I

defined in terms of the QCD renormalization scale IJ, by
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With the renormalization conditions

Our claim is that this series can be summed in terms of
the /CD one-loop renormalization-group-invariant con-
stants, Z~ and Z~, as summarized in Eq. (21). We have
indeed verified that this is so by explicit two-loop calcu-
lation, provided the constants (A, C) are chosen to be

A = (12' —b),

C = (24' —b)

Renormalization-group arguments then show that this
is true to all higher orders, to within one-loop
renormalization-group accuracy. As far as leading e sin-
gularities are concerned, it is not necessary to know
the proportionality constants for the scale factor p~. It
should perhaps be noted parenthetically that here a two-
loop calculation of (g g) is really an integration of the
one-loop fermion propagator, so that it makes physical
sense to identify the infinities so induced with functions
of the one-loop renormalization constants.

With the l:g given by Eq. (20), we may now define a
new generating functional, W, through the integral

~y ~y Z)g i f )i'z (zgcD+c J) iw (29)

that satisfies the renormalization relation

Zm j —
july ) ~rnJ5 —35gy

the total Lagrangian, Eq. (20) with the counterterms in
Eq. (21) may be rewritten in terms of the bare sources,
assuring renormalization-group invariance.

In Eq. (20), we have introduced the constants (A, C)
as well as the renormalization scale p . A priori, it need
not be identical to the /CD scale p, but only that it be
proportional to p.

To one-loop renormalization-group accuracy, we seek
to counter the leading 1/c singularities. The lowest-order
singularities were exhibited in Eq. (19). The higher-order
leading singularities go generically as

Ar A2—+ —"+ (27)
tr'2 Q3

-6A„Cq
~

m„
t'

m„
. 0 . 01+j ~. +js

3s

C. Dynamical cr model

Equation (20) is almost suggestive of a linear 0 model,
but not quite. It is missing a quadratic "mass" term for
the scalar and pseudoscalar sources. This fact is related
to the curious but important feature of the infinities in-
duced by the quark loops as given in Eq. (19). There are
no infinities associated with the quadratic "mass" term

(j + m)'+ (js)'. (32)

Dimensionally, such a divergent term in the functional I"
would have to be proportional to rn2 itself, which would
then destroy the invariance of the Lagrangian l:qoD+l:J
under the simultaneous shift j —+ j+6 and m ~ m —A.

To make the transition to the dynamically induced lin-

ear r model, we need such a quadratic mass term, while
preserving the invariance under the simultaneous shift.
This can be done by introducing a negative mass-squared
term in the tree-level Lagrangian, with v, as the new
mass scale. Rewriting our sources in terms of the 0' and
m fields,

QN~Ny 1 1

2z 12' —b ~P„

2z 12' —b ~A„

the resulting Lagrangian is of the familiar form

(33)

(34)

1

2

24
Q2r
12

(&~&)'+ (~.~~)'

(vo+op'~ )gg —2ih„p'~ n QT7 g
. 2

p' (o + p 'i'zvp)z+ (m)'

(o + p 'f vp) + (m) + l.'(counter)

(35)

where the total difI'erential operator is a short form for

d 0 z 0
Pdp = Pap '

"D~„

p W(j,js) Ar) mr, p) = 0)
dp

(30) with [17j

~ ('o""t")= —
2 (Z~ —1) ](r1P~)'+ (&Pw)'] —(Z2 ZI V Z~ —1)h. pJ' (~+ v pp. 'f'0W) +» ~ . O'Tuse

Kp
. 2 2—(Z„Z —1) —"p' (o+p '

vp) +(m) + (Z„.Z —1) —" (0+p 'i vp) +(m), (36)

where
2~r

V0 K
(37)

and the renormalization constants are defined in terms

of the /CD constants

g fA

Zp

zi, = gzp,

(38)

(39)
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h„(12'—b)

16 2 4NN

(12' —b) 1

16m (24' —5) 4N, Ny

(42)

(43)

The eigenvalue relations [8] given here are accurate to
one-loop renormalization-group accuracy. When we go
to higher renormalization-group accuracy, the eigenval-
ues would be modified by higher-order terms in A„. The
relations among the renormalization constants also get
modified according to

Z2
Z = [1+aiA„(zp —1) + azA„(zp —1) + ],

(44)

etc. , where Z~ and Zp are now the appropriate renor-
malization constants to the same higher-order accuracy.

Note that in Eq. (37) we have implemented the tree-
level stability condition for the cr field. As is well known,
this same condition results in the masslessness of m.
What remains to be shown is whether radiative correc-
tions give rise to a mass for m.

With the l: given by Eq. (35), we may now define the
effective potential for the induced cr model through the
functional integral

~@rg@ egg i f d r (cgcD+c~) — ii'
(45)

This effective potential is difI'erent from that for the usual
linear o madel in that the o. and x fields do not prop-
agate. They are really manifestations of the 0+ and 0
bound states of the quark-antiquark systems. In the in-

termediate states, it is the quarks that propagate. The
situation is analogous to that af the Nambu —Dona-Lasinio

(NJL) model. There, a sum of the fermion bubbles in the
0 channel showed the existence of a massless pole, while
the corresponding sum in the 0+ channel showed the exis-
tence of a massive o particie. Our dynamical 0 model in
effect summarizes the properties of the quark-antiquark
bound states.

To distinguish it from the usual linear o model, we

shall refer to this as the dynamical cr model (DSM).

(40)
(41)

Z~ is the wave-function renormalization constant for the
quark field. It is well known to be gauge dependent, while
Zm and Zg are gauge independent. For convenience, we
choose to work in the Landau gauge where Zp ——1 so that
we may drop it from all the quark correlation functions
to be considered later.

Among the relations between the renormalization con-
stants of the DSM and those of QCD, Eq. (41) came as a
result of the absence of an infinite renormalization of the
quadratic mass term. Because of these relations, the cou-
pling constants of this induced dynamical 0 model are not
independent but are calculable in terms of the coupling
constant of QCD,

Note that we do not have a Co term in the linear
o model. We are therefore not discussing the case of an
extrinsically broken QCD, with the breaking coming from
the electroweak sector that is outside of QCD. Our DSM
makes contact with the underlying dynamically broken
QCD only in the critical limit m„~ 0. We will leave the
discussion of a primordial m mass to a future discussion.

From the point of view of DSM, the quark mass comes
from the spontaneous symmetry breaking due to the neg-
ative mass-squared term, with v„setting the scale. v„
satisfies the renormalization-group equation

2'' —1
p v„= A„b v„.

dp 2
(46)

D. Tadpole condition

The effective potential [Eq. (45)] has to be expanded
around the quantum vacuum where (vacua ~vac) vanishes.
As is well known, this is achieved by performing an ad-
ditional shift in the 0 field

~+ Vp P.-'/' ~ ~+ V P.-'/',

where, perturbatively,

V = Vp+Vy+Vg+

(47)

(48)

and requiring that the 0 tadpole contribution (including
all counterterms) vanish

r~.'l = -z»/Z. I „q'.~'(y y) —,'z„z.'K ~'I . —

+ 1 v2v p- e/2
r

=0.
(49)
(50)

As a result of the full shift in Eq. (48), the relation be-
tween the quark mass m„and the parameters of DSM is
no longer the tree-level one as implied by the tree-level
Lagrangian [Eq. (35)], but is given perturbatively by

m„= h„(vo+ vi+ v2+ . .). (51)

The additional shift in cr is just the right one to bridge
between the asymptotically free renormalization group
equation far m„

p rn„= —o.A„b m„
dp

and the one for v„. Perturbatively,

(52)

This equation is not asymptotically free for the case of
interest 2n ) 1 . Strictly speaking, this condition is not
satisfied for the case of SU(3), with two fiavors. We are
naturally interested in the physical case of six flavors.
We believe, however, that the basic symmetry-breaking
mechanisms exhibited in the two-flavor case remains true
for the general case. The principal feature of the absence
of the infinities in the quadratic mass term is indepen-
dent of the number of flavors, so that the asymptotically
nonfree nature of the equation for v„remains true. The
only complications are the additional self-couplings in-
volving the meson multiplet, but they are all calculable
in terms of the underlying gluon coupling constant.
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4a —1 /' m„
h„v, = A„bh„vp ~ln "—1~.

p~ r

Since (Q@) is determined in terms of m„, while the
counterterm and vacuum shift terms are determined in
terms of the parameters of DSM, this quantum require-
ment in Eq. (49) leads to a relation between m„and v„.

system is locked in the spontaneous-symmetry-breaking
phase. The Nambu-Goldstone boson is guaranteed to be
massless, and in spite of the alarming infinity in v„, the
physical mass of the cr meson remains finite and calcula-
ble.

E. Two-point Green's functions

v. (A.yp) (A.y.)
(4n —1) a (2a-1)/2

(54) The two-point Green's function for the 0 field reads
perturbatively

or, conversely,

m„(A„yp) = v„(A„y,)
(4o —1) (2a-1)/2 (55)

F(z) iz i ~fz+'",'(A )(z~ i)l~

r
("+~.')

(58)

(59)

where yo and y„are renormalization-group invariants.
Equation (55) is the key that relates the dynami-
cal 0 model to the underlying QCD. It relates the
renormalization-group invariant of DSM (y„) to the cor-
responding renormalization-group invariant of QCD (yp).
The y„depends on the proportionality factor between p~
and p. We choose

p =pe (56)

so that the perturbative expansions for yo and y„are
identical

where z~ is the finite wave-function renormalization,
and y~ is a renormalization-group invariant given iter-
atively by

4m+ 1

3(2n —I))
' (60)

In the critical limit, y~ —h 0, and we find the mass relation
for the 0 meson at T = 0

gz '(' —') .(4-+i)/[s(z--i)1
4

1 b /' m2 I)y„= —+ —
~

in ' ——
~
+ 0(A„').A„2 & pz 3r

(57)
The two-point function for the m is also easily com-

puted. Perturbatively, it is given by

~ith this, the critical limit of QCD (m„~ 0) is very
simply reflected in the converse limit in DSM of v, ~ oo
for all p ~ A„ in the case of interest where 2e & 1. This
curious feature of the DSM shows thatat , T = 0, the

F(, ) = —ib' [p +(Z —1)p + s(Z„Z —1)~„v
ysi(~„vz —v2) + Z j, (62)

where E is the one-loop integral

—iP'Z, (P) = 4h~ Z2 P', f (4)(z)ynT'4(z) i)(0)0lT 0(0)}s'~'.

By Eq. (49), the counterterm contributions in the two-
point w Green's function may be cast in the form

7s vertex for the emission of a zero four-momentum pion.
By taking the limit q —+ 0, we see that the dressed pq
vertex is

F(2) bil(} 2 + (Z ] )
2 4 frl ~

(y y)
V

MpF'(p) = (67)

(64)

q„I'„=S '(p + q) p5 + ASS
'
(p) + 2im, I', (66)

At p = 0, Z may be expressed directly in terms of
the momentum dependent mass of the two-point quark
Green's function in the Landau gauge

S (p) = y. p —iM„,

where Mq includes all the higher-order radiative correc-
tions. For consider the Ward identity

In our DSM, the pion is not a fundamental field, so it does
not itself propagate in the innards of the eRective field
theory. Therefore, there is no Nambu-Goldstone pole in
F&. The Nambu-Goldstone pole appears when the quark
lines are contracted to form a bubble with another axial-
vector vertex.

By writing down the Schwinger-Dyson equation for
E (0) in terms of the dressed vertex and propagators,
it is easy to show that (see Fig. l)

d" iM m
K (p = 0) = h„Z p'(4N, N/) ~ (68)

2z " qz+ M~

where in an obvious notation, I'5 is the quark's dressed
hl- Zrn po

(@~) (69)



2994 LAY-NAM CHANG AND NGEE-PONG CHANG 45

so that we have

Z (p = 0)iT. ——h„Z p'
(2z)" q2+ M2

7

Fermi

FIG 1.. Z (0) in terms of dressed propagators and vertex.

so that, as is well known, it is exactly cancelled by the
quark-loop contribution to the tadpole. The cancellation
is seen to work to all orders, as a result of our use of the
Ward identities. The resulting two-point function for the
& ls

m2
r&'&(&) = -t

~
1 — ~„S ln, + O(a„')

~

p'.
i

(70)

Before we end this section, we remark on the crucial
point in the proof of the masslessness of the pion. In
order to be able to use the vacuum-stability condition,
Eq. (49), and substitute it in Eq. (62), it was important
that n g 0. Since we are studying dynamical symmetry
breaking by taking a nonzero rn„ to begin with, where
m„= h, v, we are justified in the step that leads up to
Eq. (64). The pion is massless for all rrt„g 0 and remains
so in the critical limit.

III. NAMBU-GOLDSTONE BOSON AT HIGH T

In the preceding section, we saw the pion self-energy
correction, Z (p = 0) being cancelled by the tadpole con-
tribution at T = 0. In this section, we will show that
this cancellation persists at high temperatures. In the
presence of a heat bath, we continue to require [18] that
(vac~o ~vac) p

——0, so that Eq. (49) is valid in the thermal
vacuum. The thermal Green's function for the pion now

reads

=-b" p'+(Z. -I)p'- " "
(eO)p

T v

(71)

At p = 0, the same analysis holds for high T. For the full

thermal fermion propagator, even in the Landau gauge,
has the form

~p'(&) = v. p —™~,p (72)

where p is a non —Lorentz-invariant function of (p, po) as a
result of the thermal radiative corrections and M& p is the
chiral-flip mass including all the higher-order radiative
corrections, and is now a function of the temperature of
the heat bath. This chiral-flip component of the mass
is not, however, to be confused with the physical mass
of the quark at high temperature. By the same Ward
identity as before, Eq. (66), we find in the limit of zero
pion momentum (q ~ 0)

rp(p) = Mp p (73)

=+ "
(&&)p

and the pion mass remains zero at high T.
For p g 0, the thermal Green's function for the pion

takes the form

2n —1 ( Tx
T~00 )

+O(A„)

where p is the Euler constant = 0.577215. . . .
In the linear u model, the same conclusion was reached

by Mohan in Ref. [18] that the pion remains massless as
T rises from zero. The difference is that at the criti-
cal temperature, T„ the vacuum shift, v, vanishes. The
system makes a phase transition and stays on the new
fixed point with v = 0. When that happens, the tadpole
contribution decouples from the pion Green's function.
The term z(a„uz —vz) is simply fixed at —zv~ and the
delicate cancellation between the tadpole and the pion
self-energy correction is lost. Since the high-temperature
behavior of Z~ is proportional to T, the conclusion for
the linear o model is that the pion becomes massive for
T&Tc.

For our DSM, as we shall show, the vacuum shift does
not vanish as T increases. Before the critical limit, m„g
0, and the pion was massless for all T. As m„~ 0, the
pion remains massless for all T.

A. Tadpole at high T

To study the vacuum shift at high T, we return to Eq.
(49) and find the perturbative result

4~ -1 & T'~'
h„v = h„vp 1+ A„b ln

~
—

~
—2p

4
"

( pz~ 3 rn~ )

+O(Az) .

From the known renormalization-group property of anal-
ysis [19], the series sums up to the form

(78)

where y„ is a renormalization-group invariant given by

g ( T2x~
y„= —+ —

~

ln
2x' T2

3

and WT is the temperature-dependent physical mass of
the quark. Note that in performing the sum over higher
loops here one has included the analogues of the so-called
"daisy" graphs, and "superdaisy" graphs first named by
Dolan and Jackiw [10] and as a result the m„becomes
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being of order 10 K. The integral in Eq. (80) thus involves
a range of Q that is small relative to the Fermi surface.
In that approximation, the gap equation reduces to [21]

hv g)

b, = gN(0) d(
o P+&' (82)

where N(0) is the density of states at the Fermi surface,

FIG. 2. Higher-order "daisy" and "superdaisy" graphs
that are included in the sum in Eq. (78).

promoted to a temperature-dependent mass. (See Fig.
2.)

In spite of the appearance of the temperature-
dependent quantities on the right-hand side, y„ is tem-
perature independent. This is because on the left-
hand side, we have h„v = m, and m„ is the original,
temperature-independent, parameter in the theory. In-
deed y„, with our choice of p, = pe i~a, is equal to yo, as
noted earlier. This can then be used to in turn determine
the temperature dependence of the physical mass of the
quark. The result is the same as that quoted in Eq. (5).

IV. GAP EQUATION

Finally, we turn to a comparison of our result with the
earlier work on symmetry restoration and seek to give a
feeling as to where exactly our startling conclusion gets
to di6'er from conventional wisdom. It is well known that
symmetry breaking may be ascribed to some gap param-
eter in the theory that is spontaneously nonvanishing.
In the pioneering work of Bardeen, Cooper, and Schri-
effer (BCS) [20] the gap parameter, b„plays the role
of a mass for the quasiparticle excitations formed out of
paired electrons of opposite spin. The gap parameter at
zero temperature is determined self-consistently by the
equation

1 d3k

2 (2s)s gg+ ~&'

where Q is the energy of the electron as measured from
the Fermi surface (c = p),

(83)

At finite temperature, the gap equation takes the form

5@I~ A/2 + +2
b, = gN(0) d( tanh

f2+ +2 (84)

16' 2 A2 ( M2 (86)

where, in order that there be a nonzero dynamical mass,
they assume that

gA2
(87)

For T g 0, the gap equation becomes

At T = T„L vanishes, and the system makes a phase
transition and stays at the fixed point 6 = 0 for T & T, .

A point that will be at issue in our later discussion is
the question whether the phase transition temperature is
destabilized by higher-order corrections to the gap equa-
tion. In BCS, the higher-order corrections are controlled
by gN(0) and are genuinely small. Since the T, is low
in BCS, higher-order corrections do not alter the physics
conclusions.

In 1961, Nambu and Jona-Lasinio (NJL) [4] general-
ized the BCS gap equation to relativistic field theory and
wrote down the NJL gap equation, where the gap param-
eter here is the physical mass of the fermion,

1 d4p M
(2s)4 pz+ Mz

Just like its progenitor, the gap equation here is quadrat-
ically divergent. Following BCS, NJL simply introduced
a cutoff A into the theory and wrote the gap equation in
the cutoff-dependent form

Superficially, the integral appears to be a quadratically
divergent one. Solid-state-physics considerations how-
ever render it a finite one, being logarithmically depen-
dent on the only cutoff" in the theory, the Debye fre-
quency uD. The cutoff comes about through the obser-
vation by Debye that vibrations of the solid as a whole
involve only wavelengths that are longer than the lattice
spacings. For atomic-vibration frequencies above uD, the
collection of atoms no longer behaves as a coherent solid.
The integral in Eq. (80) is thus to be taken over the range
of energies ~Q) ( h~D.

For most materials, the Debye temperature is of order
10 K, as opposed to the Fermi temperature of the metals

(88)

or

16~' M' A'+ M' 27r2 T2

3 A2 (89)

and we see the beginning of a T, that comes from the
root of this equation.

The NJL gap equation is manifestly cutoff dependent.
While as a fundamental theory it is nonrenormalizable,
one can argue that perhaps the cutoff is a physical one,
just like in condensed-matter physics, and discuss only
the physics for energies less than the cutoff. In that spirit,
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then, there is no question about the higher-order correc-
tions to the N JL gap equation.

In 1984, we [22] applied the NJL formulation of the self-
consistent generation of mass to the renormalizable QCD.
If M is the effective quark mass at zero four momentum,
then the gap equation reads

3g Cy d p M +0 4

i (2z)4 p'(p'+ M') (90)

This gap equation is now logarithmically divergent rather
than quadratically. To render it finite, a cutoff p may be
introduced. In contrast with the condensed-matter case,
however, this cutoff does not have physical significance.
In a renormalizable field theory, we must attempt to sum
over all higher-order terms and insist that the answer in

the end is independent of the cutoff p that we introduced
to define the integrals. In Ref. [22], we showed how to
generalize the gap equation (90) to a sum over higher
orders in the leading-log approximation. Working in di-

mensional regularization, with n = 4—c, the gap equation
for M becomes

M' I)M =-3A„C& M
~

ln ——~+O(A„'),s' 3) (91)

where we have again used the symbol A„ for the combina-
tion gz/16' z with g„being the running coupling constant
of SU(3). The higher-order terms, in the leading-log ap-
proximation, may be summed and they convert the gap
equation into the simple form

A„b ( M2
(92)

In a way, we have converted a naive solution of the gap
equation

1 = —3A„Cy
~

ln
3)

to the renormalization-group invariant one

1 b ( Mz I)—= ——
/

InA„2 ( p2 3) (94)

At high temperatures, the gap equation for QCD takes
the form

( T' 2z' T' 't
M =-3A„C,M

~
ln, —,~+0(A„'). (95)

If we take this equation at face value, it is easy to find
that the dynamical mass at high T is given by

M —2+A„CT. (96)

M(A„y ) =0
with

(97)

Such an answer would however not be admissible
since it depends on the renormalization point p. We
have summed over the higher loops and find the
renormalization-group-invariant form of the gap equation

1 b( T2
y = —+ —~ln

2zz T2 l
3 M2 (98)

and a solution that is now genuinely independent of p.
Finally, we return to the gap equation for the vacuum

shift in the DSM. As Eq. (77) shows, a perturbative cal-
culation of the gap might stop at the one-loop level and
claim that

4n —1 ( T2x~
h„v=h„vp 1+ A„b~ ln

4

2z2 T'
3 m~z )

—271

(99)

and conclude that the vacuum shift v vanishes at the
critical temperature given by the root of the equation,

T.'= m
6

"zz(4a —1)A„b
(100)

and conclude forthwith that the pion becomes massive
above that temperature. As we have repeatedly stressed
however for a renormalizable field theory, we must sum
over the higher orders and make certain that the result is
independent of the cutoff p we have introduced to define
the integrals. In the present case, the higher orders as
summarized by Eqs. (78) and (79) destabilize the simple
root. The next term in the leading-log series [Eq. (78)]
gives a positive A~zT~/m~z contribution that opposes the
negative A„T contribution. And when we have summed
it all up, the entire series is constrained to be independent
of T. The critical temperature given by the perturbative
root in Eq. (100) is thus an artifact of first-order pertur-
bation theory which is destabilized by higher-order terms.
The full shift v does not vanish at higher temperatures,
and the pion remains massless as T ~ oo.

Most considerations of symmetry restoration in parti-
cle physics have been based on one-loop arguments and
are subject to further investigations of renormalization-
group consistency. The example we have quoted here is
a good instance of how the one-loop restoration temper-
ature is an artifact of perturbation theory.

V. CONCLUSION

In this paper, we have reported on the renormalization-
group study of chiral-symmetry breaking in QCD. Our
techniques are applicable to other theories as well. It
is an open question as to whether in the electroweak or
other unified theories, symmetry breaking could persist
at high temperatures, and if it does whether there are
cosmological consequences that follow therefrom. Even
in QCD itself, it would be of interest to extend our calcu-
lation beyond two flavors and analyze the parameters of
the full o. model for the five or six flavors that we believe
exist in nature. We hope to come back to these and other
questions in a future publication.
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