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Delbriick scattering in a strong external field
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We evaluate the Delbriick scattering amplitude to all orders of the interaction with the external
field of a nucleus employing nonperturbative electron Green's functions. The results are given
analytically in form of a multipole expansion.
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I. INTRODUCTION

Delbriick scattering [1], the scattering of a photon by
the static electromagnetic field of a nucleus, is one of
the fundamental processes of quantum electrodynamics
(QED) which remains to be calculated. A few theoreti-
cal results exist, involving various approximations, e.g. ,

forward scattering, small- or large-angle scattering, high-
energy scattering, as well as the Born approximation,
which is most frequently used and which neglects mul-
tiple interactions with the external field. For a review
of those results we refer, e.g. , to Papatzacos and Mork
[2]. Cheng et al. [3] calculated Delbriick scattering in
the Born approximation without any additional assump-
tions.

In 1957 Rohrlich [4] estimated the "Coulomb correc-
tions" to the lowest-order Delbriick scattering ampli-
tude for forward scattering of a photon on a lead nu-
cleus. Within the last two decades several other attempts
have been pursued to go beyond the Born approxima-
tion. Cheng and Wu [5—7] derived an expression for the
Delbruck scattering amplitude valid at high energies and
small momentum transfers, which is exact to all orders in
(Zn), viz. , including multiphoton exchange to arbitrary
orders. Cheng et al [3] and . Milstein and co-workers [8, 9]
investigated the high-energy process at large scattering
angles,

Delbruck scattering is one of the few nonlinear pro-
cesses of QED which is observable. Experimental results

[10, 11) suggest that the Born approximation is insuffi-
cient to describe the data in particular for high-Z nuclei;
thus, multiphoton exchange has to be taken into account.

In our approach we employ the nonperturbative for-
malism of Wichmann and Kroll [12] to evaluate the am-
plitude for Delbriick scattering. Feynman diagrams of all
orders in the coupling constant (Ztr) to the external field
of the nucleus are included, a method that has proved to
be rather successful for the theoretical determination of
self-energy [13—16] and vacuum-polarization corrections
[12, 17, 18] in high-Z atoms. This method provides a
correct description of Delbriick scattering for the entire
range of Z. Furthermore Green's functions for the field
of an extended nucleus are easily incorporated to include
finite nuclear-size eAects.

II. THEORY OF DELBRUCK SCATTERING

A. Delbruck scattering-matrix element

Several processes contribute to the scattering of pho-
tons on atoms: Delbriick scattering, Compton scattering
off the nucleus (Thomson scattering), Rayleigh scattering
oft' the bound electrons, and excitation of nuclear reso-
nances. Since all these processes add up coherently, it is
necessary to know explicitly the real and imaginary part
of the corresponding matrix elements. The Feynman di-
agram of Delbriick scattering is shown in Fig. 1. The
corresponding S-matrix element is (h = c = 1)

~DBS d zid z2 Tr [icy„S~(zi,z2)iep„S~(z~, zi)] c&, (ki)e '"' '
[e& (k )]z'e'"' ',

where k& and k2 are the four-momenta of the incoming and outgoing photon, respectively, A& and A2 are their
polarizations, and s& are the photon polarization four-vectors. S~(zi, z2) designates the Feynman propagator of the
electron-positron field in the external field of the nucleus (see Appendix A) and e is the electron charge. Making use
of (Al) we obtain
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+oo +oo +oo
S»s —4znb(u2 —ul) d zld z2 dzc& (kl)e'"'"' [s& (k2)]'e

xTr [g (xl, x2» z + iE')ipI»pp g (x2, xl, z + u 6 iE')ip»»pp]» (2)

where ~1 and u2 are the energies of the photons, g (xl, x2, z) is the electron Green s function defined in Appendix A
and n = e2/4z' is the fine-structure constant. Since we are interested in the scattering of photons by a static field, we
transform to the T matrix element for elastic scattering:

~DBS 1 + S~(I» 2 ~1)T

Now the differential cross section for Delbriick scattering becomes

(4)

where we have defined a scaled matrix element M:

T = 4xo.M

Delbriick scattering is described completely by the matrix elements for circular polarized photons. Since the s&
component of the polarization four-vector vanishes for right- and left-handed polarizations A; = +1, we obtain, for
M,

+oo +oo +oo
M = i d zld z2 dze'"'"'e '"'"'Trig(xl, x2, zunis)n [sp, (k2)]'

xg(xz, xl, z+~ +is)n eg, (kl)}, (6)

where ur is the energy of the photons. Employing the partial-wave decomposition of the Green s function (A2) we
find, for the components of the trace,

+oo +oo 2 2

Tr[g(xl»x2, z + as)a g(x2» xl» z + ~ + is)cr"] = ) ) ) ) Tr[B,"'"'(ri, r2, z)" C,"'"'(Q» Q2))
eq ——oo sq —-oo a=1 y=1

with the abbreviations

and

Bll (rl » r2» z) = gs» (I 2» r 1» z + 4J)ggs(P1» r2» z),

(rl I 2 z) —0 (i'2 rl z + ~)Q (1'1 r2 z)

B21 (rl r 2 z) ~, (1 2 ~1 z + ~)&.",(~1 r2 z)

B22 (I'1» r 2» z) = gs»(P2» Pl »
z + I»J)~s~(Pl» r2» z)

Cll'"'(Ql, Q2) = —z'„, „,(2, 1)Ir„zS„„,(1,2)Ir~,

C,2 '(Ql, Q2) = 7I„, „,(2»1)o„z S, „,(1»2)o~»

(9)
C2,'"*(Qi,Q2) = z „, „,(2, 1)a„z„,„,(1,2)0

C22 (Qi, Q2) = —n'
tcq sq(2» 1)IT»»&—s~ sq(1» 2)o'»»»»

where r1 and t2 are the radial variables of the incom-
ing and outgoing photon, and 01 and 02 are the cor-
responding solid angles. The g„'& (rl, r2, z) denote the
components of the radial Green's functions; the functions
n„, „,(1,2) are defined in . (A. S), and the o; are the Pauli
matrices.

We use the decomposition of the circularly polar-
ized plane wave propagating in direction k into angular-
momentum eigenfunctions [19]:

oo +j j+1
e' '"ep(k) = ) ) ) i +2z(2j+ l)D~ &(k)

j=l m=-j l=j-1

FIG. 1. Feynman diagram of Delbruck scattering. The
wavy line denotes a photon; the double line denotes an elec-
tron in the external field of a nucleus. with

«,"I&™(Q)ii(~lxl)
(10)
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j+1
2j+1'

T",„., =i' '/2x(2j +1)D' „(k)t, , (12)

Now we can isolate the part of the Delbruck scattering
amplitude depending on the angular variables of the pho-
tons

A'j,j+1 =— 2j+1'
3 3D""=»

/n=1m=1. 4~ 4~
dAgd02Tr [" C,".,'"'(Qy, Qp)j

where D~, , (k) are the Wigner rotation matrices,
V ~ (0) are the vector spherical harmonics, and j~(z)
are spherical Bessel functions. We shaH make the abbre-
vlatlon

xv'& - (n, )[~'" - (f12)]'.
(13)

With these angular coefficients, M can be expressed by

M =i GP1 dP2 d",",' )
j1—1 m1 ——j~ l1 —j &

—1 j~—1 m2 ——j~ l& —j&—1

+00 +oo 2 2

x ) ) ) ) B,",' "'(r, , r. , z)D,",'"'.
K1 ——oo Kz ——oo i =1 j=1

(14)

Performing the integration over the solid angles of the photons and writing the D,"'"' in terms of new functions D"'"'
with o. = +1,

O 1 2 Q 1
11 -1 ~KyKg DK1 —Kg

12 +1
(15)

DK1Kg D—K y Kg DK1Kg DK1Kg
21 +1 & 22 —1

yields

D"'"' = 6 b22, ~2,2. b,~,-, [2j(K~) + 1][»(K2)+ 1](l(~~)II&'Ill(«2))(l(«~) II&"Ill(~2))

I l(zg) l(a'Kg) lg 'I '
l(ozg) l(K2) l2

'
1 1 1 ] /

1 1 (16)
j(Kq) j(K2) j j(~q) j(Kq)

where l(K) and j(K) are the orbital and total angular-momentum being related to the Dirac angular momentum
quantum number K, respectively. The reduced matrix element of the spherical harmonics with angular momentum
k between states of angular momentum kq and k2 is denoted by (kqIIY" IIk2) and the curly brackets are Qj symbols.
The matrix element now reads

M =i dP1 dP2 dzr,'r,' )
j~ —1 m~ ——j111—j1—1 j~——1m~ ——j~ l =j2 —1

+oo +oo

) ) [
r. r.

( )
—r. —r r r (, )

r

K1 ——00 Kg ——00

(&. &. z)D z 2 B x z(& &, z)D ir2]

We define the quantity E"'"'"'&, which contains several factors of the right-hand side of (16) by

D"™'= 6 b, ~, 6,„,6,6, , [2j(K, ) + 1][2j(~&) + 1]E"'""'"',
and the matrix element becomes

M =i dP1 dP2 6Tlm Tlm jl, ~1 jl, 2
oo +j j+1 j+1

dzr,'r,' ) ) ) )
j=l m= —j l1 —j—112—j—1

+oo +oo
x ) ) [2j(Kq) + 1][2j(v2) + 1]

We utilize the relation

x (+[B,"2 '(rq, r2, z) + B2,"'"'(rq, rq, z)]E
—[B "' "'(vq r2 z) + B"'"'(r r z)]E"'"' ' "}.
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+j
) T",' (T,' ) = 2z(2j+1)dz z (8)t ) (1"*,) (2o)

where d& & (6) is the Wigner rotation matrix depending only on the scattering angle 8 of the photon. Furthermore,
1

we use the symmetry of the integrand under exchange of T1 and T2. Since only terms with even (!1+12) contribute,

we can take the real part of the product t.
l

t".
l . The symmetry of the integrand under rq + r2 may be shown

explicitly by taking (A7) into account, interchanging 11 and l2 and using

E~gsg, lyly, j Expel, lg lg,j
+1 +1

EK, y fey, lgl g,j E-4 y
—Kg, lI lg,j—1 —1

We split M into two parts depending on o and derive the final expression for the matrix element of Delbruck scattering:

M —= M+1 —M,
with

(22)

dr1 dr 2

oo j+1 j+1
dzrtrz ) ) ) 242r(2& + l)d& & ('8)Z( ((d"1)p(, (~&2)Re[i 21 (p"21 )']

g=& lz—-j-1 lg —j-1
+Do +~

x ) ) [2y(a1) + I][2~(a2) + I]+"1" E2& &2, 2142j
(23)

and

F+1 B12 (Fl, F21 Z) + B21 ' '(&11T2& Z),

integration along the imaginary axis to one integral yields
the real part of the product of both Green's functions. So
we can write the line integrals as ordinary integrals:

F-1 Bl1 (T11T21Z) + B22 (T11T21Z).

(24)

From this expression it can be deduced that only the
product of the polarization is important; thus, there are,
as expected, a no-spin-Hip and a spin-Hip matrix element.

—ur+m

dz F"'*'(z) = 22 dEf 1(E),
Cg 0

dz F"'"'(z) = 2i du f 1(ui),
Cg 0

(27)

B. Integration contour

In the final expression for M the only part depending
on the integration parameter z is F~'"'. We employ a
Feynman contour, which passes around both the cut of
g(z) and the shifted cut of g(z +u); see Fig. 2(a). This
Feynman contour can be deformed [see Fig. 2(b)] and
split into a part along the real axis (i = I) and one along
the imaginary axis (i = 2):

(a) IITI z I(

CF

= Rez

dz E"'"'(z + is) = dz F"'"'(z 6 is)
Cp
2

= ) f dz F;"'(z + iz).
a=1

Now we can take the limit e —+ 0 and combine the contri-
butions of the first line integral just below and just above
the shifted cut by making use of

g'~ (T1, TZ, Z ) = Cg„" (T1,T2, Z)

This yields the imaginary part of the Green's function
with the shifted energy argument, while combining the

(b) Im z(,
, , C&

C)
s C2

=Re z

FIG. 2. Contours for the integration in the complex z
plane. The dashed and the dashed-dotted lines are the cuts
of the electron Green's function with energy argument z and
z+ ur and branch points +2n and —cu + 222, respectively. (a)
shows the Feynman contour and (b) shows the deformed con-
tour.
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where rn is the mass of the electron and

f+i, i(E)

= Im[g„"(rp) rg) E+ ur —i0)]g „(rg, rg, E —i0)

+Im[g „(rg, rg, E + u) —i0)]g„(r~, r~, E —i0),

f-i,~(E)

= Im[g „(rq, rq, E+ ~ —i0)]g „(rq, r2, E —i0)

+Im[g„, (r s, rq, E + u —i0)]g„,(rq, rq, E —i0),

the calculation of the Delbruck scattering amplitude to
all orders in (Za). The only approximations are the re-
striction to the lowest order in the fine-structure constant
o, and the neglect of recoil sects (external field approx-
imation). In actual computations, however, one has to
limit the number of partial waves involved. Depending
on available computer facilities, our final expression may
serve to determine the Delbriick scattering amplitude to
high precision. Numerical calculations along this line are
in progress.
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APPENDIX: GREEN'S FUNCTIONS

denoting by (—i0) the limit of the Green's function from
below the cut.

III. CONCLUSIONS

Within the Wichmann-Kroll formalism [12] one can
decompose the Green's function of the electron-positron
field in an external electromagnetic field into partial
waves. One starts with the Fourier transform of the
Green's function concerning the time variable

Experiments on Delbriick scattering showed deviations
from theoretical results in lowest-order perturbation the-
ory and called for an improved theoretical description. In
this context we have presented a general framework for

1
is~(zq, xq) = . dz g (xq, xq, z)yoe

27t l

with
(A1)

+00 ( g„(rz, r&, z)7r„„(2,1) (—i)g„(rz, r&, z)x„„(2,1)
g(x2, xg, z) = )

r2, r» z)n „„(2,1) g„(r2, &, z)7c—y„—g(2, 1) )
(A2)

~„,„,(2, 1) = ) x„,p (~2) h„,p(~&)],
p=-(rc- &)

The components g„'& (r 2, rq, z) of the radial Green's func-
tion for r~ & r 2 are given by

d 1
[E —V(r) —m]g(r) =

i

———-+ — f(r),dr r p

(A5)
g„" (r2, rg, z) = g, (r2)g;(rg)/W,

g„'2 (r 2, rg, z) = g, (r2) f;(rg)/W,

(r2 ri z) = f.(r2)g'(r~)/~

g„(rg, rg, z) = f,(r2)f, (rg)/W,

(A4)

( d 1
[E —V(r)+m] f(r) =

i
+—+ —+ — g(r).

dr

IV = [f.(r)g*(r) —g.(r)f'(r)]" (A6)

The subscripts 0 and i denote regularity of the solution
at the origin and at infinity, respectively. W designates
the Wronskian

where g and f are the upper and lower components of
the solution of the radial Dirac equation in the external
potential V(r): g„" (rg, rg, z) = g'„' (r g, r2, z) (A7)

which is independent of the radial coordinate r. The
components for r i ( r2 are obtained by
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The Green's function for pointlike nuclei (pure
Coulomb potential) were presented by Wichmann and
Kroll [12] and by Mohr [13]. Finite nuclear-size effects
can be obtained by using Green's functions in the po-
tential of a spherical charge distribution. Taking a ho-
mogenously charged spherical shell as a model of the nu-

cleus, the corresponding Green's functions were obtained
by Gyulassy [17] and by Soff and Mohr [18]. Free ra-
dial Green s functions were explicitly indicated, e.g. , by
Mohr [13]. The latter are important in Delbriick scat-
tering calculations, since the matrix element (1) contains
an infinite part due to the free electron loop for forward

scattering (6 = 0). In numerical calculations of M for
all scattering angles the same expression should be sub-
tracted, replacing Green's functions in the external field
by free radial Green's functions in order to achieve a bet-
ter convergence of the sums over z~ and z2.

The radial Green's functions are analytic functions of
z except for the eigenvalues of the Dirac equation. They
have simple poles at the locations of the discrete eigen-
value spectrum and branch points at z = +m. There
are two branch cuts in the complex plane for z ) m and
z ( —m, at all other points the radial Green's functions
are single valued.
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