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The method of discretized light-cone quantization is applied to gauge theory in 3+1 dimensions
and tested by calculating the spectrum and the wave functions for positronium. Working in a Fock-
space expansion, only the electron-positron and the electron-positron-photon states are included.
The light-cone Hamiltonian matrix is constructed blockwise, and diagonalized using the Bauer-
Rutishauser simultaneous iteration algorithm for sparse matrices. At the current level of accuracy
of about 10%, the model reproduces the binding energy and the charge radius of the positronium
ground state for the coupling constant of a = 0.3. The distribution functions for fermions and
photons are presented for the ground state. In addition the light-cone Schrodinger equation has
been solved.

PACS number(s): 11.15.Tk, 12.20.Ds

I. INTRODUCTION

The method of discretized light-cone quantization
(DLCQ) was introduced recently [1] as a general method
of solving field theories. It was successfully applied to
(1+1)-dimensional models, such as quantum electrody-
namics [2, 3], the P model [4], quantum chromodynam-
ics [5—7], and the Yukawa model [8,9]. The vacuum sector
of the Schwinger model can be treated separately [10,11].
The general motivation for quantizing on the light cone
is a simple calculation of observables, such as structure
functions, from the light-cone wave functions [12].

To test the method of DLCQ on (3 + 1)-dimensional
gauge theories, quantum electrodynamics was chosen.
Most of the formalism is already published [13]. Par-
ticularly positronium has become an important testing
ground for the method. The variational method used
by Tang [14] as well as the two-body effective potential
method used by I&rautgartner, Pauli, and Wolz [15] have
been employed recently. In both approaches one has re-
stricted to e+e and e+e y Fock states, and, despite
some ad hoc assumptions, Ref. [15] reproduces even the
hyperfine splitting. In the present work one uses the
same model with just the e+e and e+e p Fock states,
but it is only here that a direct diagonalization of the
Hamiltonian matrix [16] is actually done. The estimate
of Ref. [14] that the number of Fock states needed for
reasonable answers is of the order of 10 will be shown
to be much too pessimistic.

Actually, when considering this model in QED, one
also solves the corresponding model in QCD. The qq and

qqg Fock states are set up in color-neutral representa-
tions. Also the QCD Hamiltonian is color neutral and the
color algebra [16] reduces to a calculation of the group

invariants. In the model presented here, one simply re-
places the fine-structure constant n by sn, in QCD. Af-
ter this work was completed, we learned about the work
of Hollenberg e$ al. [17]. They use the same major model
assumption as we do, namely, the exchange of at most
a single boson in a fermion-antifermion system in the
framework of QCD.

The so-called gauge principle [13, 14] for the light-cone
gauge is used consistently in the model. The principle de-
mands that the real particle exchange transferring a cer-
tain momentum always has to be allowed simultaneously
with the instantaneous particle-exchange matrix element,
to which the same momentum transfer can be ascribed.
The way in which the principle works for the instanta-
neous and real-photon exchange was shown already on
an example of the light-cone Schrodinger equation [12,
14]. In the model presented here, the gauge principle for
the instantaneous and real photon exchange is realized by
employing the appropriate regulator in the e+e p space.
An important property of the regulator used is that it
retains all the instantaneous photon interaction matrix
elements between the e+e states, in contrast with the
regulator of Ref. [14]. The instantaneous fermion inter-
action piece of the Hamiltonian is included in our model,
in accordance with the gauge principle. This was not the
case in the similar approaches mentioned above [14, 15].

Solving the model, to be referred to as the e+e (p)
model, we face a sizable six-dimensional momentum-
space problem, augmented by the spin degrees of free-
dom. To cope with the problem, we devise and apply
sparse Hamiltonian matrix techniques and make use of
the exact discrete symmetries. We employ the coun-
terterm approach of Tang, Brodsky, and Pauli [13] for
the fermion self-mass to normalize the invariant-mass-

2968 1992 The American Physical Society



45 DISCRETIZED LIGHT-CONE QUANTIZATION: e+e (y). . . 2969

squared ionization threshold in the positronium sector
to the value of 4m where m is the Lagrangian electron
mass.

One of the purposes of this work is to investigate
the question of whether the nonperturbative relativistic
three-body problem for positronium is tractable with the
present technology, using DLCQ. We concentrate on the
positronium ground state and investigate the degree of
independence of the invariant mass squared, the charge
radius, and the probability of finding the e+e state
in the positronium, on all mathematical parameters at
a fixed value of the coupling constant 0. = 0.3. The
positronium structure function and the photon distri-
bution function of positronium at a coupling constant
n = 0.3 are presented. The coupling constant is fixed to
0. = 0.3 throughout this paper. This value is a compro-
mise between the very small physical value of rr 1/137
where the eigenvalues deviate from the ionization thresh-
old 4m~ by uncomfortably small amounts, and the larger
values, where the models presented here will fail.

Before solving the e+e (7) model we will present a so-
lution to the light-cone Schrodinger equation for positro-
nium. Using this example we show the importance of
the Coulomb counterterm [15, 16) and discuss two possi-
ble regulators in e+e 7 space. In the e+e (7) model the
problem of the zero-mode photon exchange in the light-
cone Hamiltonian and the Coulomb singularity prob-
lem are solved in the same way as in the light-cone

I

Schrodinger equation.
The method presented here is potentially able to test

the sd hoc assumptions of the two-body effective poten-
tial method [12, 15]. If these assumptions prove correct
then this will motivate the use of the effective potential
method in the e+e (y) model. Thus, it will be possible
to treat the four-body problem using the present tech-
nology. This will enable treatment of the two-photon
exchange between the fermion and the antifermion. The
nonperturbative calculation of the Lamb shift and the
Uehling term in QED as well as the calculation of the
first non-Abelian effects in heavy quarkonia in QCD will
become feasible, using the light-cone techniques.

II. THE MODEL

The formalism for QED using the DLCQ method has
been described in Refs. [13, 14, 16]. Here we merely
present the expansion of the wave function and give the
active parts of the QED Hamiltonian for the sake of com-
pleteness.

A. Positronium wave function

As the main assumption of the model, the full positro-
nium (Ps) wave function is truncated to contain just the
contributions of the e+e and the e+e y Fock states

+1 ~L1+Q~LQ
A1AgAg

k + k )bt dt ~t 10~.

Positronium, as viewed in the e+e (7) model, is depicted
in Fig. 1. The single-photon exchange, enabled by the
existence of the e+e p state should provide the Bohr-
Sommerfield physics, such as fine and hyperfine split-
tings. By not allowing the single-photon (7) and the
two-photon (77) Fock states in our basis, the effects con-
nected with the pair annihilation are neglected. By not
considering the e+e e+e states, the Uehling vacuum-
polarization terms are absent. By not considering the
e+e yp states, the vertex correction part of the Lamb
shift is missing while the part coming from the fermion
self-energy is there.

The positronium system is put into a box of the size
2L in the longitudinal direction and 2I.~ in the per-
pendicular directions. With the antiperiodic boundary
conditions the longitudinal-momentum fractions z, z~,
and z2 in Eq. (1) assume discrete values I/I~, 3/It,
5/Ix, . . ., (I&—1)/I& where the even integer IC is called the
longitudinal resolution. The perpendicular momenta k~,
k~q, and kgz assume the values 0, +s/L~, +2rr/L~, . . . .
The particles carry two physical spin projections, so
&y, g ——+2 and A3 ——+1. The light-cone quantization
approach is frame independent, and for convenience we
choose to work in the frame in which the system has total

longitudinal momentum P+ = I&(2n/L) and total per-
pendicular momentum P~ equal to zero. The discretiza-
tion rendered the Fock basis countable and the ultraviolet
regularization to be presented below will render it finite.

B. Active part of the Hamiltonian

The light-cone Hamiltonian is defined as a mass
squared operator

Hr, c = P+P —Pi~ (2)

FIG. 1. Light-cone time evolution of positronium in the
e+e (p) model. Positronium can be either in an e+e or in
an e+e p state. The photon emitted from the fermion can
either be absorbed by the same fermion or by the antifermion.
Each particle line spanning a single time interval represents
either a real or an instantaneous particle.
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TABLE I. +ED Hamiltonian terms, active in the e+e (y) model. The bqt, dq~, and aqt are creation operators for positron, elec-
tron, and photon, respectively. The symbol H.c. stands for Hermitian conjugate. Each particle carries a longitudinal-momentum
fraction x, a perpendicular momentum k~, and a spin projection A, compiled in g = (x, k~, A) = (k, A). The fine-structure
constant u appears in the parameter P = (a/27r )(2/A)(7r/Lj ) . The photon polarization vectors are e~(A) = —(1/+2)(A, i),
with A = +1. The regulator is R(x, k~) = e((m + kj )/x(1 —x) & 4m + A ).
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with the light-cone momenta P+ = P + P, and is de-
rived canonically from the QED Lagrangian [14, 16, 18,
19], using the light-cone time in place of the usual time
and choosing the light-cone gauge A+ = 0. We emphasize
that the restriction to the e+e and e+e y Fock spaces
together with the so-called gauge principle [13, 14] deter-
mines the active part of the light-cone Hamiltonian.

The full Hamiltonian contains many diA'erent types of
interactions (graphs). As a part of the model assump-
tions, many of them are omitted either because their
matrix elements are zero in our Fock basis, or because
of the gauge principle. The remaining, active part of the
Hamiltonian is thus

interaction S,~,~, represented in Fig. 2(c), should act
only in e+e y space. Finally, the fermion mass coun-
terterm L, , from Figs. 2(d) and 2(e), to be discussed
below, should be active only in e+e space.

The photon emitted from the fermion can be absorbed
by the same fermion, so the fermion self-mass loop ap-
pears. In the counterterm approach [13], applied here,
the fermion mass counterterm I., „obtained from the
perturbation theory to second order, is added to the light-
cone Hamiltonian. The contribution denoted by ben& in
Table I and depicted in Fig. 2(d) is negative of the one-
loop fermion self-mass graph and can be understood as

with the explicit expressions given in Table I. The free
part Ho is independent of the coupling constant and is
diagonal in the Fock-space representation. The vertex in-
teraction U, ,& connects the e+e and the e+e p Fock
spaces, and is graphically represented in Fig. 2(a). The
instantaneous photon interaction S,', «can be visual-
ized as the exchange of an instantaneous photon as in
Fig. 2(b). According to the gauge principle, the instan-
taneous photon interaction should be included only if the
real-photon exchange is present as well. Therefore, the
instantaneous photon interaction S„„is active only

~ (~)

in e+e space, since its action in e+e p space would
require the e+e py Fock states, which are excluded in
the model. Correspondingly, the instantaneous fermion

(a) (b)
i

(c)

fl =2
(e)

FIG. 2. Active part of the light-cone Hamiltonian in the
e+e (p) model: (a) vertex interaction; (b) instantaneous pho-
ton interaction; (c) instantaneous fermion interaction; (d)
one-loop part of the fermion mass counterterm; and (e) loop-
chain part of the fermion mass counterterm. For simplicity,
the instantaneous fermion graphs are drawn stretched.
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C. Regulating the Fock space

In the first step, the e+e Fock space is regulated by
limiting the invariant mass squared of the e+e states
AA2'" e+e- '

m~+ k~~ &4m'+A. ',
z(1 —z)

(4)

with the notation of Eq. (1). The regulator is completely
equivalent to the Brodsky-Lepage [12] regulator (m2 +
k&2)/z(1 —z) & AB2&, but for the redefinition AB2r

4m + A . In the second step, the e+e y Fock space
is regulated. In principle one could regulate the e+e
space by demanding that the free invariant mass squared
of the Fock state M2+, be less than 4m2+ A2, as in

the e+e space. For reasons to become clear below, we
have used the following regulator in e+e y space. The
e+e p state bl dt, at,

~ 0) is included in the Fock basis if

the instantaneous fermion and the instantaneous photon
self-induced inertia contribution plus a logarithmically
divergent term [16]. The latter is added for convenience
since it cancels the logarithmically divergent piece of the
fermion self-mass loop. The self-induced inertia contri-
butions have to be included by the gauge principle. They
are quadratically divergent with A and exactly cancel the
quadratic divergence from the fermion self-mass loop. To
cancel the fermion self-mass coming from the chains of
loops connected with instantaneous fermion interaction,
the fermion mass counterterm bm& contribution repre-
sented in Fig. 2(e), is added [13].

The counterterm L, ,cancels all the loop corrections
to the fermion self-mass [13],so that the physical fermion
mass has the same numerical value as the Lagrangian
fermion mass. This sets the ionization threshold in in-
variant mass squared M2 to 4m~, where m is the La-
grangian fermion mass.

and only if the two regulating conditions

m'+ k' m'+ k'
rn2+P2 an &4m +A

z2(1 —z2) zs(1 —zs)

(5)

are satisfied, with the notation q; = (z, , kz, ) of Fig. 3(a).
The regulator thus allows precisely for those e+e y basis
states, for which the instantaneous photon-exchange di-
agram is possible [16], with momenta assignments as in
Fig. 3(a). The regulator is thus in accord with the gauge
principle.

Having specified the allowed momentum space of the
e+e states and the e+e p states, the allowed momenta
of the loop graph of Fig. 3(b) are specified. The fermion
momenta q2 and qj are regulated by the conditions of
Eqs. (5), where qs is replaced by qf. The notation is

q, = (z;, kg;). The photon momentum qz is regulated
automatically by the momentum conservation.

D. Treatment of zero-mode photon states

The light-cone Hamiltonian as given in Table I seems to
present a problem to t,he extent that the free, the vertex,
and the instantaneous interaction matrix elements are all
singular when the particles have a vanishing longitudinal-
momentum fraction z. For convenience we call them
zero-mode particles.

A prescription for the treatment of the zero-mode pho-
tons, used in Ref. [20], which was motivated by the
Leibbrandt-Mandelstam prescription [21], leads to an in-
efficient procedure when applied to positronium [14, 16].
Guided by the light-cone Schrodinger equation, to be pre-
sented below, we find it more e%cient to use the following
procedure. First, one discards all the e+e y Fock states
with zero-mode photons. Second, in the formally infinite
matrix element of the instantaneous photon interaction
S««one substitutes(~)

1 I

1

(~J.2 —~J.1)2/4rn2 ' (6)

I

t

2

(a)

where (z2 —zi, k~2 —kg i) are momentum quantum num-
bers of the instantaneous photon. Thus, the zero-mode
photon exchange is treated as an effective Coulomb in-
teraction, like in the light-cone Schrodinger equation, see
Eq. (13). Note that both the instantaneous photon in-
teraction and the efFective Coulomb interaction conserve
spin. The effective Coulomb interaction for zero-mode
photons contains a contribution from the discarded real
exchanged photons as well as a contribution from the in-
stantaneous photon interaction. In the case z2 —z~ ——0,
kJ Q kJ g —0 the matrix element is still formally infinite
and is set to zero by hand.

FIG. 3. Regulating the e+e p Fock space. (a) The Fock
state bq~ dq~ aq~ I 0) is in the e+e y Fock basis, if aud only if
the corresponding e+e Fock states b~~, d~t

I 0) aud b~~ d~t, I 0)
are included. (b) The allowed e+e p Pock states specify also
the loop momenta qy and q„.

E. Treatment of Coulomb singularity

The case z~ —zq ——0, kg2 —kgq ——0 is nothing but the
Coulomb singularity in light-cone momentum representa-
tion which is taken care of by introducing the Coulomb
counterterm, taken from the light-cone Schrodinger equa-
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tion [22, 15, 16, 23, 24]. The Coulomb counterterm oper-
ator, which acts only in the e+e space, can be formally
written as

calculated by diagonalizing the Hamiltonian matrix

) (& IH« I &~)(&~ I &) ™(4I @)

C, = ) btbq[C;(z, kg) —C, (z, k~)], which will be referred to as solving the e+e (p) equation.

where q = (z, k~, A) and

Q'

C;(z, ki) = ——
fr

and

C, (z, kg)

R(z', ki)
(z' —z) 2 + (k' —k~)'/4m'

(8)

F. Light-cone Schrodinger equation

For reason of comparison with the results of the
e+e (y) equation we will study also the light-cone
Schrodinger (LCS) equation results. In particular, it is
possible to compare the eigenvalues of the LCS equation
and the e+e (p) equation at exactly the same values of
parameters. The LCS equation

o 2 qr ii )- R(z, ki)
7r' Ii I,i), - (z' —z)'+ (ki —ki)'/ &(' ')

(kg —kl~ )2/4mz —(z —z') 2

The regulator R restricts the surnrnation over the discrete
points k' = (z', k&), admitted by Eq. (4). The same
regulator is used in the integral for C; above. The k&
integration in C, (z, k~) in Eq. (8) is done analytically,
and the one-dimensional integration over z' is performed
numerically with high precision. Note that the Coulomb
counterterm vanishes in the continuum limit and is added
for purpose of faster convergence with I~ and L~.

This completes the definition of the e+e (y) model.
The Fock basis states (~ pI)) and the active part of the
QED light-cone Hamiltonian Hr, c have been specified.
The eigenstates

~ @) in the Fock basis (~ P~)) will be
I

is a nonrelativistic approximation to the full problem,
as shown by Lepage and Brodsky [12]. In its discrete
form, it is an eigenequation for the effective light-cone
Hamiltonian of QED in positron-electron space,

Heff = Hp+ Veff (12)
where Hp is the kinetic energy of the e+e pair including
their rest mass

I,'+ k'
H. = y-(btb,

z

and Veff is the effective potential energy:

I

P ) q& qq q q',
(k k )2/4 2 ( )2 kg+k2, kg+k',

Here q stands for momenta and spin projection q

(k, A) = (z, kg, A) and

2qr'K i,I,g)
The LCS equation can be thought of as the usual
momentum-space Schrodinger equation for positronium,
written in the light-cone variables.

III. SOLVING THE MODEL
ON THE COMPUTER

In the e+e (p) model we are dealing with a sizable, six-
dimensional momentum-space problem. Furthermore,
each particle carries spin. One reduces the numerical
complexity by using the exact discrete symmetries C,
R2, and P~, which are the charge conjugation, the ro-
tation about the z axis by vr and the mirror syrrnnetry
with respect to the yz plane, respectively. They com-

I

mute with the light-cone Hamiltonian and among them-
selves and are used to classify the positronium states.
The Hamiltonian matrix is a sparse matrix. By calculat-
ing it blockwise, one reduces the time to calculate from
O(N ) to O(Ns) for the e+e (p) model, where N is the
number of the e+e Fock basis states. Sparse matrix di-
agonalization again requires O(Na) time, to be compared
to O(N6) requirement of the usual, full matrix diagonal-
ization routines for the same model.

A. Fock space construction

The Fock space basis (~ P;)) is constructed by combin-
ing partitions of various quantum numbers. This enables
ef6cient, blockwise calculation of the Hamiltonian matrix
H;y = (P; ~

H [ Pz). Given the longitudinal resolution I&,
+

which is an even number, the lookup tables P&' ' and

P&' ' ~ of all the longitudinal-momentum partitions for
this K are constructed:
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and (14)

P = ((», », I& —» —rtz) Int, z =1,3, . . . ;K —nt —rt, ) 0}.

Similarly, given the transverse resolution R~, which is defined as Rz ——I&A/x, the lookup tables Pz
' and Pz'

for the perpendicular momenta are constructed:

Pp
' ——{(—n, n) I

n = 0, +1,+2, . . .
I

n I( Ri/2}

and

The lookup tables P&
' and P&

' ~ for spin partitions
are

P„' ' = {(At,Az) I
A, 2

—+-'}

and

P„' ' = ((At, Az, As) I At z = +-', A

Each Fock state I p) is specified by five integers, I p) =
(p; p~, pt, pz, pg). The first integer p is the particle content
of the Fock state, which is either e+e or e+e y. The
second integer, p~, is the longitudinal-momentum parti-
tion number. It points to a certain entry in the P&' '
table or in the P&' ' ~ table, depending on the particle
content p. Analogously, the integers p~ and ~ are the
perpendicular momentum partition numbers and pg is
the spin partition number.

Fock state candidates of given particle content are pro-
duced by combining the four partitions denoted by p~, p~,
p2, and pp. The first Fock state candidates in e+e space
are (1;1, 1, 1, 1), (1;1, 1, 1, 2), (1; 1, 1, 1, 3), (1; 1, 1, 1,4),
(1; 1, 1, 2, 1), . . ., since there are four possible spin combi-
nations. The regulator conditions, Eq. (4) or Eq. (5), are
inspected for each Fock-space candidate. The candidates
not satisfying the regulator conditions are discarded. The
admitted combinations of four partitions for each parti-
cle content constitute the full Fock basis. When needed,
the quantum numbers of individual particles in the Fock

state are reconstructed from the partition numbers. In
Table II the Fock state basis sizes are presented for some
values of the resolutions and the regulator A.

In the next step, the Fock basis of symmetrized Fock
states is constructed. The symmetrized Fock states are
the eigenstates of the discrete symmetry operators: P~
mirror symmetry operator, C charge conjugation, and Rz
rotation about the z axis by z. The symmetrized Fock
state

I P, ) is obtained from the unsymmetrized Fock state
I P) by applying the Young projector:

I P.) = Af. (1 4- A pPs)(l y Ac C)(I + ARR ) I Q),

(17)

where the Ap, A&, Az are the discrete symmetry eigen-
values chosen. Each A can take the values of +1 or
—1. Af, is the normalization constant which ensures or-
thonormality of the symmetrized states, ((4,); I (P, )~)
= b;z. The symmetrized state is stored in memory as an
array of eight unsymmetrized Fock states, together with
the array of eight phases and the normalization constant.
The phases come from Ap, A~, and A~ in Eq. (17) and
from the discrete symmetry transformation properties of
the creation operators for positrons, electrons, and pho-
tons: i.e.,

TABLE II. Hamiltonian matrix sizes for various parame-
ter values in the e+e (p) model. The matrix sizes presented
are full —unsymmetrized matrix sizes.

Here A represents the spin projections, and q

(z, ps, pv). The abbreviations q = (z, —pv, ps) and q

(z, —p, pz) are used for convenience.

Rg
2.99
5.99
5.99
5.99

A

30
30
30
62

A

0.6
0.6
1.2
0.6

Matrix size
1316

17796
61764
81668

B. Calculation of the Hamiltonian matrix

The specific ordering of the Fock states, described
above, gives rise to the block structure of the Hamiltonian
matrix. In the e+e (y) model the largest blocks are four
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blocks, specified by a pair of integers (p ', p""). The
integers represent, the particle contents of the bra and
the ket Fock states. Inside each such particle-content
block there is a number of the longitudinal-momentum
partition blocks, each specified by a pair of integers
(p&b', p&"'"). Inside each such block there are perpendic-
ular momentum (z direction) partition blocks, specified
by a pair (pi', pi"). Inside each such block there are the
perpendicular momentum (y direction) blocks. The in-

nermost blocks are the spin blocks, which are just single
matrix elements.

The important feature of the Hamiltonian matrix in
the e+e p model is that most of the blocks on each level
of the block structure are empty. The reason for this is
the existence of spectators in the many-body matrix ele-
ment. Consider, for instance, the e+ ~ e+p part of the
vertex matrix element V, ,~ from Table I between e+e
bra and e+e p ket. The electron is a spectator in this
matrix element and must have identical quantum num-

bers in both e+e and e+ e y states. If the longitudinal-
momentum fractions of the electron in bra and in ket
are not the same then the whole longitudinal-momentum
partition block (p&b', p&"") will have this matrix element
equal to zero.

The discrete syrrunetries P, C, and R2 do not spoil the
block structure of the Hamiltonian matrix [16]. The rea-
son for that is that none of the symmetry operators trans-
forms single-particle momenta in the z direction into the
momenta in the y direction, or vice versa, cf. Eq. (18).
For that reason, the R2 symmetry instead of R was used.

The time t;o calculate the Hamiltonian matrix block-
wise appears to be proportional to the number of nonzero
entries instead to the number of all entries. The number
of nonzero entries can be simply estimated. Consider, for
instance, the e+ ~ e+p part of the vertex matrix element

V, ,~ of Table I discussed above. Suppose that the res-

olutions K, Rg and the regulator A are chosen such that
t, here is altogether N e+e Fock states. Then, the num-

ber of e+e 7 states will be of order O(Nz) as two instead
of one particle momenta are at disposal. The total num-

ber of vertex matrix elements is thus O(N ) But most.
of them are zero as there is a spectator electron in the
graph. One can still choose O(Nz) e+e p states in ket,
but then the momentum partition of e+e bra is specified
by the momentum conservation. This gives only O(N )
nonzero entries. Similarly, there will be O(Ns) instanta-
neous fermion matrix elements between pairs of e+e
states and O(N ) instantaneous photon matrix elements
between pairs of e+ e states.

IV. RESULTS

All of the models discussed in Sec. II have five param-
eters, i.e. , a, rn, A, R~, and K. The fine-structure con-
stant o. and the Lagrangian fermion mass rn are physical
parameters while the ultraviolet regulator A, the trans-
verse resolution R~, and the longitudinal resolution A'

are mathematical parameters. The results should not
depend on the mathematical parameters.

What does one expect. To lowest order of approxima-
tion, the calculation should yield the Bohr spectrum

M =m (2 —n /4n ), n=1, 2, 3, . . . .

The corresponding 1S-state wave function is

(19)

gram. In this program, the sparse roromise format [25] is

used, which reduces the storage occupied by one purely
real or purely imaginary matrix element to one integer
and one real memory location.

The complex matrix is expanded into a double-size real
matrix. This does not increase the memory use. The
double-size real sparse matrix is diagonalized using the
NAG library routine F02FJF. To obtain the lowest few

eigenvalues and eigenvectors, the Bauer-Rutishauser in-
verse simultaneous iteration [26, 27] is used by the rou-
tine. We chose to solve the corresponding sparse system
of linear equations by the iterative NAG routine Fo&MBF,
which uses the Lanczos algorithm [28]. Here the user has
to provide just a matrix-by-vector multiplication subrou-
tine.

Because of the matrix size doubling, two identical
eigenvalues and two equivalent eigenvectors are obtained
for each eigenstate. This does not present any problem
in practice. The eigenvectors are stored on a file and
reread by the Fock-space construction program, which
transforms them back into the unsymmetrized form and
calculates the observables from that form.

The diagonalization method chosen seems to require
O(N ) time to diagonalize, where N is the number of
e+e Fock states. The method is certainly more compli-
cated than the Lanczos method [3, 17), but is able to cal-
culate both the ground state and the excited states with
arbitrary precision, just by changing the shift parame-
ter. In our case the eigenvalues were calculated to single-
precision machine accuracy, which is about seven signif-
icant figures. The time to calculate the largest 81668
by 81668 matrix from Table II and to obtain a few low-

est eigenvalues and eigenfunctions, was less than 12 CPU
hours on an 1 MAop workstation.

C. Diagonalization

1

[1+(k2 + k2)/k2 l' (20)

Each nonzero matrix element is written in a file as
a pair of integers, indicating the row and the column
of the matrix element, and a pair of real numbers, rep-
resenting real and imaginary component of the matrix
element. Blockwise calculation yields an unordered se-
quence of matrix elements. The file of matrix elements
is then sorted, using a standard and fast sorting routine.
The sorted file is read rowwise into a diagonalization pro-

where N is a normalization constant, kg —mn/2 is the
Bohr momentum and k~~ stands for 2m(z —-). The re-

duced mass in positronium is m„= m/2 and kii = nm„.
The covariant, regulator (m2+ k&~)/z(1 —z) ( 4mz+ Az

is equivalent to the condition k&+k~~ ( (A/2) to a good

approximation. With a discretized approach one should
expect that one can come close to the results of Eqs. (19)
and (20) only if one has at least one mesh point inside the
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momentum-space sphere with radius of one Bohr momen-
tum, in addition to the central point at z = 2, k~ —0.
One therefore should require

A/m & n, R~ & 2A/am, and E4 & 8/e. (21)

These are just estimates. The detailed study of parame-
ter dependence should reveal the optimum values in order
to reproduce the spectra.

In the sequel, the eigensolutions of the light-cone
Schrodinger equation and of the e+e (7) equation will

be studied in succession.

A. Light-cene Schrodinger equation results

M,'„,& 4m'+ A' (22)

First we consider the solutions of the LCS equation
because it, is much simpler than the e+e (p) equation.
To verify the degree of independence on the mathemati-
cal parameters, we have varied all of them. In Fig. 4 we
present the spectrum of the LCS equation as a function
of transverse resolution Rg at fixed values of Ix = 30
and A = 1.0. Since the LCS equation conserves spin,
we could restrict ourselves to e+e Fock states with to-
tal spin projection zero. The spectrum of invariant mass
squared is presented. It includes both the bound states
and the scattering states. For the bound states, the bind-
ing energy E can be calculated from the invariant mass
squared M2 using the formula E = QMz —2m.

Figure 4(a) shows the spectrum without using the tech-
nique of the Coulomb counterterm of Eq. (7). The for-
mally infinite matrix element that corresponds to the sit-
uation z2 —zq ——0, kg2 —k~q ——0 in Eq. (13) is simply
set to zero. One observes that the ground-state level is
not stable with R~, except perhaps locally in the region
around R~ ——6, where the ground-state eigenvalue has
a maximum. But, in this region the eigenvalues deviate
substantially from the expected Bohr values, Eq. (19).

Figure 4(b) displays the results if one includes the
Coulomb counterterm according to Eq. (7). As compared
to Fig. 4(a) the eigenvalues seem to become stable with
increasing R~. They oscillate about the mean value of
Mz = 3.913 (close to the Bohr value of 3.91) with a stan-
dard deviation of LM2 = 0.003. For the chosen symme-
try quantum numbers, the first excited state would be a
2S or a 2P state. Its invariant mass squared oscillates
around the mean value of 3.968 (to be compared with the
Bohr value of 3.978) with a standard deviation of 0.004.
Worse precision in reproducing the excited states is to be
expected, because of the nodes in the wave functions.

The calculations in Figs. 4(a) and 4(b) have been done
with the regularization, equivalent to using the regulat-
ing conditions of Eq. (5) in the e+e 7 sector, which in the
LCS equation means simply including all the matrix ele-
ments of the effective interaction potential, Eq. (13). In
Fig. 4(c), the results of yet another approach are shown.
As mentioned earlier, the LCS equation can be under-
stood as nonrelativistic approximation to the e+e (p)
equation. If there one would have regulated the e+e
Fock space by the global Brodsky-Lepage regulator

with M,+, given by [see notation of Fig. 3(a)]

AS&'" e+e-p
ms + k~~s ra~ + k~22 (—kgs —ki2)2+ +

Z3 Z2 1 —Z3- X2

(23)

40

M /m (a)

M'/m2(b)

4.0

M2/m (c)

10
R

15

FIG. 4. Invariant-mass-squared M spectrum of the LCS
equation vs the transverse resolution R~. (a) no Coulomb
counterterm is included; (b) Coulomb counterterm is in-
cluded, as described in the text; (c) same as (b) but with
covariant regulator in the e+e y space, see text. Calculations
are done for K = 30, A = 1.0, o = 0.3, Rg = 2.0[1.0]15.0.
The symmetry quantum numbers R = +1, P~ = +1,
and C = +1 are those of the singlet 1 So ground state
(parapositronium). Note the onset of convergence of the
ground-state level toward the value close to the Bohr value
of M = 3.91 in (b).

the regulator would persist to show up in the LCS equa-
tion. This regulator was included in Fig. 4(c), together
with the appropriate Coulomb counterterm. We observe
nonstable behavior of all the eigenvalues but the lowest.
The mass gap between the lowest and the first excited
state is lost as Rg is increased.

In Fig. 4(b) as well as in Fig. 4(c), one finds that the
eigenvalues are nonmonotonical functions of R~. What
is a possible reason'? In Fig. 4(a), the eigenvalues are
smooth functions of Rg. As Rg increases, the number of
Fock states increases. The new states contribute to both
kinetic and potential energy and their contributions ap-
parently balance. One suspects that the Coulomb coun-
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4.1

4.0

3.9

3.8
M /m

15

The e+e (y) equation is technically much more de-
manding to solve as the LCS equation. The diagonal-
ization method described in Sec. IIIC can in principle
return the ground-state results and the results for all the
excited states. Here we shall limit ourselves to study only
the ground-state eigensolutions. This should reproduce
the singlet ground state of the positronium (parapositro-
nium .

It is diKcult to present the whole dependence of ob-
servables on mathematical parameters. To get a Aavor
of the dependence, we choose the standard set of mathe-
matical parameters

R A = 0.6, K = 30, and R~ ——5.99 (25)

FIG. 5. Invariant-mass-squared M spectrum of the LCS
equation vs the transverse resolution R&, using smoothened
Coulomb counterterm, as described in the text. The cal-
culations are done with K = 30, A = 1.0, e = 0.3,
Rg = 2.0[1.0]15.0. The symmetry quantum numbers are
those of the singlet ground state (parapositronium). Note
the smoother dependence on R~ as compared to Fig. 4(b).

and vary each of the parameters by keeping the other two
constant at the standard values. Note that the standard
set barely satisfies the requirements of Eq. (21) at our
standard value of o. = 0.3. We shall compare the singlet

terterm used is a source of the nonmonotonic behavior.
Indeed, the discrete part of the Coulomb counterterm,
Eq. (9) is a discontinuous function of R~. In Fig. 5, the
results with the smoothened discrete part of the Coulomb
counterterm are presented. The sharp cutoff

4.0

3.9—

I I

(a} M2/m2

o o 0 0

s(', i, ) = e (
', + ' —4 ' —x')

in the discrete part of the Coulomb counterterm C„
Eq. (9), is replaced by a smoothened one

15—
(b} Am

BE]Qo o

R(z, kg) = f ~ —4m' —A' p'
z (1 —z)

(24)

where the sigmoid function is f(z) = I/( I + e )
and the width p was always chosen to be p
A ~ Iz ~ R&, The smoothening has no impact
on the mean value; the mean value of M2 about which
the ground-state eigenvalue oscillates with increasing R~
changes only by 0.0002. However, the standard deviation
decreases by a factor of 5 from 0.003 to 0.0006 and t, he
pronounced wiggling of the eigenvalues is not present in
Fig. 5. We conclude that the wiggling is caused by the
Coulomb counterterm, which probably disturbs the bal-
ance between the kinetic and the potential energy. The
mechanism of the wiggling is not understood in detail
and should be investigated further in the future, as it,

interferes with the quest for precision.

B. e+e (p) equation results

Based on the results for the LCS equation we decide
to use the smoothened Coulomb counterterm also in the
e+e (y) equation, which we present in the sequel.

I

1.0 —g 0
aa&o

0.8—(&} Pe+e-

I

10

FIG. 6. Properties of the singlet ground state vs the trans-
verse resolution R~. (a) invariant mass squared M; (b)
charge radius R; (c) probability P ~, to find any e+e basis
state in the singlet wave function of the e+e (p) equation.
Calculations were done with K = 30, A = 0.6, a = 0.3,
Rz = 0.99[1.0]5.99 for the e+e (y) equation (squares) and
with K = 30, A = 0.6, a = 0.3, R~ = 0.99[1.0]9.99 for the
LCS equation (circles). The symmetry quantum numbers are
those of the singlet ground state. The theoretical expectation
for the value of M including the Breit correction is 3.90.
Note the onset of convergence with R& for all quantities for
both the e+e (7) and the LCS equation.
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ground-state solution of the e+e (y) equation with the
ground-state solution of the LCS equation.

In Fig. 6(a), the invariant-mass-squared M eigenvalue
of the ground state is shown as a function of transverse
resolution Rg at fixed values of K = 30 and A = 0.6.
One observes the onset of stabilization of M2 with R~
for the e+e (p) equation (squares). More clearly, still,
one sees the stabilization of M for the LCS equation
(circles), where more transversal points were included.
The value of M2 t,oward which the ground-state eigen-
value of the LCS equation tends to approach, 3.92, is

above the Bohr value of about 3.91 and above the value

3.90 which includes the Breit correction. This is ex-
pected at A = 0.6 [16]. It is remarkable to observe that

M of the e+e (p) ground state varies with RJ in very
much the same way as M2 of the LCS equation. The
e+e (p) eigenvalues are consistently higher than the LCS
values. For the two points with R~ & 2, no particle car-
ries any transverse momentum and these points are an
exception.

We also present the ground-state wave-function behav-
ior. It is inconvenient to present the entire wave function
so we rather present some of its measures. The spin-
averaged form factor Fi(Q2) of positronium vanishes be-
cause of the charge-conjugation symmetry. By setting
the electron charge to 0 and positron charge to 1 in the
expression for Fi(Q2), the form factor Fi(Q ) is defined
here as

Pl (()') = ) fdz d'bzdl, .', (z, bz + (& —z)bz )dl, .', (*,bz )

+).
SgSgS3

d&ld ~ Jld&2d ~J.2!t'dbdqdq (&lb ~J ib z2b ~J 2)(Ibdbdqdq (&1) ~J ib &2b )IJ 2)& (26)

with kJ1 —kJ1 + (1 —zi)qJ and kJ 2
——kJ 2 —z2qJ [29, 12]. The continuum limit notation is used. Note that

Q = —q2 = qJ2 and that Fi(0) is normalized to 1.
The charge radius R is interpreted as the slope of the form factor Fi at the origin R2 = —6DF1(Q2)/OQ2 ~q~ —0. A

convenient way to calculate the charge radius is by using the Fourier transform of the wave function [30]:

with

D2
~(b, +g-(P) +g+g- + "t.o+g —P j RLcs Rg+ t. —

2 2 (27)

and

R',„=3 ) fdz(1 —z)' fd'bzb„' [ d;,",, ( b )['zz
S g8g

)b'z, -z ——b ) fdz&fd'hz) fdz2fd%zg[(1 —z, )bz& —zgbzz]'[d, '„;„(, , zzzbzz, bzz) ['.
SSSZS3

The wave functions in the perpendicular configuration space bJ —(b~, bv) are Fourier transforms of the wave functions
in momentum space:

2'

1
@(+1 bJ. 1 &2 bJ 2) —

2 2
d IzJ 1 d ~J.2e @(+1 ~J 1 &2 kJ 2) ~

(29)

In Fig. 6(b), the charge radius R is shown as a func-
tion of transverse resolution at fixed values of I~ = 30
and A = 0.6. Again, one observes the onset of stabiliza-
tion of R with RJ for the e+e (p) equation (squares)
More clearly, again, one sees the stabilization of M
for the LCS equation (circles), where more transversal
points were included. For R~ ( 2 no particle carries any
transversal momentum at all, see Eq. (15). It is never-
theless interesting to see the linear growth of the charge
radius R with the transversal box size 2LJ ——2+RJ /A
in Fig. 6(b) for lower values of RJ (or LJ ) Eventually, .
R saturates. The transversal box size I~ at which R
saturates, is equal to L& —26m . It is to be compared

I

with the limiting value of R, which is about 7m, as
seen in Fig. 6(b). The expected value for the nonrela-
tivistic wave function is R = y 3(mn) 1 5.8m [31].
What is the reason for such a discrepancy in the charge
radius'? One possible source of the discrepancy is a fi-

nite and rather small value of A = 0.6. With this value,
the wave function is concentrated at low values of relative
momentum, which makes the wave function in coordinate
space broader; as we will see, the charge radius decreases
with increasing A. An important result is that the difI'er-
ences between values of R calculated with the LCS and
the e+e (y) equation in Fig. 6(b) are small at all RJ .

In Fig. 6(c) the probability P,+, to find any e+—e
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Fock state in the wave function

P+, ———) dzdkg ~g;,', (x, kg)
~

8152

(30)

is shown as a function of transverse resolution at, fixed
values of Ii. = 30 and A = 0.6. One observes the apparent
stabilization of the P,+,— of the singlet ground state of
the e+e (7) equation with R~. The value at which it
stabilizes is P,+,— 0.9. The probability to find a e+e
state in positronium is equal to P,+,-& ——1 —P,+,— in

our model. The probability to find a photon state in
positronium is expected to be of order of O(os) [12, 32].

In Fig. 7(a) we present the dependence of the singlet
ground-state properties as functions of longitudinal res-
olution I& at fixed Rg = 5.99 and A = 0.6. One ob-
serves stabilization of invariant-mass-squared eigenvalue
M2 with Ii, for both the e+e (7) equation (squares)
and the LCS equation (circles). The differences between

the e+e (7) equation ground-state mass squared and the
LCS equation ground-state mass squared are small for
each K, although they become larger with increasing I~.

In Fig. 7(b), the charge radius R is presented as a
function of I&. The value of R seems to stabilize for
both the e+e (7) equation (squares) and LCS equation
(circles). The charge radius of the LCS equation tends
to a slightly larger value than the charge radius of the
e+e (7) equation.

In Fig. 7(c) it is seen that the P,+, val—ue depends
strongly on I~, even for larger values of K. This behavior
could have been anticipated, since P,+,— is the probabil-
ity to find a pair of bare electron and bare positron in

positronium.
In Fig. 8, the dependence of M, R, and P,+,— on

the last mathematical parameter, the ultraviolet regula-
tor A is presented. The values of resolutions were kept
fixed at I~ = 30 and R~ ——5.99. The ultraviolet reg-
ulator A differs from resolutions K and R~ in that it

.0
(a) M2/m2

6
9—

0
~op 0 0 0

0OO
(a) lvl2llri2

(b) Am

15—
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Q Jog~ ~go

1.0 -0 0
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FIG. 7. Properties of the singlet ground state vs the lon-
gitudinal resolution K: (a) invariant mass squared M; (b)
charge radius R; (c) probability P,+, to find any e e basis
state in the singlet wave function of the e+e (7) equation.
Calculations were done with R~ ——5.99, A = 0.6, a = 0.3,
K = 6[8]62 for both the e+e (7) equation (squares) and the
LCS equation(circles). The symmetry quantum numbers are
those of the singlet ground state. The theoretical expectation
for the value of M including the Breit correction is 3.90.
Note the apparent convergence with K of the invariant mass
squared M and of the charge radius R for both the e+e (y)
and the LCS equation. The I,+, does not stabilize, as op-
posed to the behavior with R~ in Fig. 6.

FIG. 8. Properties of the singlet ground state vs the ul-

traviolet regulator A: (a) invariant mass squared M; (b)
charge radius R; (c) probability P,+, to find any e e basis
state in the singlet wave function of the e+e (y) equation.
Calculations were done with R~ ——5.99, K = 30, a = 0.3,
A = 0.2[0.2]1.4 for the e+e (p) equation (squares) and with

R~ = 5.99, K = 30, a = 0.3, A = 0.2[0.1]1.5 for the LCS
equation (circles). The symmetry quantum numbers are those
of the singlet ground state. The theoretical expectation for
the value of M including the Breit correction is 3.90. The
eigenvalues M seem to be more stable with increasing A in
the e+e (7) equation than in the LCS equation.
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can be kept finite in the continuum limit. Ideally, it
should be increased toward larger values after satisfac-
tory convergence with resolutions K and RJ has been
achieved. Figure 8 with increasing A at fixed RJ and
I~ is thus considered to be of academic interest and is
added for completeness only. From Eq. (21), the value
of A should neither be too small nor too large at fixed
RJ . One should hope to get approximate independence
of A for intermediate values of A. Looking at Fig. 8(a),
one indeed observes that the ground-state eigenvalue of
the e+e (p) equation (squares) is approximately inde-
pendent of A on an interval of A between 0.6 and 1.0. The
eigenvalue varies between 3.916 and 3.921 in this interval.
There is no interval of stabilizat;ion for the ground-state
eigenvalue of the LCS equation (circles), which signals
that the mathematical parameter values are not in the
regime of absolute independence on parameters for the
LCS equation.

In Fig. 8(b), one is tempted to see approximate inde-

pendence of R on A at values of A around 0.7, but this is
not really the case. One can only observe that the deriva-
tive

( BR/BA
~

is smallest at A around 0.7, for both the
e+e (y) and the LCS equation. The value of R at this
A and Rg is reasonable, around 8m

In Fig. 8(c) we find that P,+, depe—nds strongly on A.
We attribute this to the fact that P,+,— is the probability
of finding a pair of bare electron and bare positron in
the positronium and this probability should depend on
A [33].

C. Distribution functions

After having presented the degree of independence of
values of M, R, and P,y, —on mathematical parameters,

I

)02
-F( I

- P{x) (b).

)00
istribution

fgnctIon

10-2

I I

Q.5
I

0.2
I

0.4

we turn to present the fermion and the photon distribu-
tion functions at our best parameter values RJ ——5.99,
I~ = 30 and A = 1.0.

In Fig. 9(a), the fermion distribution function or
structure function F(z) is presented for both the
e+e (7) equation (circles) and the LCS equation
(crosses). Note the logarithmic scale on the abscissa.
F(z)dz is a probability to find a charged particle (elec-
tron or positron) with a longitudinal momentum fraction
within an interval dz around z:

FIG. 9. Fermion and photon distributions of the singlet
ground state: (a) Fermion distribution function F(z), see def-
inition in the text; (b) photon distribution function P(z), see
definition in the text. Calculations were done with 8~ ——5.99,
K = 30, a = 0.3, A = 1.0 for both the e+e (y) equation
(points) and for the LCS equation (crosses). The symmetry
quantum numbers are those of the singlet ground state. Note
that in comparison with F(z) of the LCS equation ground
state, F(z) of the e+e (y) equation ground state is broader
and shifted toward lower values of x.

&(*)= ) fdyd'yi(d(*, y)+d(*. ~ —y))Id:,:.(y. y~) I'
&x&a

y]dygd J yd kJ2 b z, y] +b z, y2,','„, y], kJ y, y2, &J2 (31)

In the e+e (7) and in the LCS equation, F(z) is normal-

ized to 2, Jo dzF(z) = 2, since there are two fermions in
both e+e and e+e y Fock state types. F(z) for the LCS
equation is symmetric about z =

&
and is a bell-shaped

curve. One observes close to exponential falloff of F(z)
with

~
z —

2 ~

for both equations. As compared to F(z)
of the LCS equation, F(z) of the e+e (p) equation is de-
pleted at z = 2, broader, and enhanced at low and high
values of z. The full width at half maximum of F(z) is
about 0.075 for both equations, which is e/4 for n = 0.3.
The expectation value of z, (z) = 2i fo dzzF(z), is
shifted from (z) = 0.50 with the LCS equation toward
(z) = 0.49 with the e+e (y) equation.

In Fig. 9(b), the photon distribution function of
positronium P(z) is presented. P(z)dz is the probability
to find a photon on an interval dz at given longitudinal-
momentum fraction z:

P(z) = ) f dyqdyzd 4 &d ygzb(z, 1 —zg —z2)
&I&a&3

&
~ @;„'„;(Vi,&», V2 ~J-2) I' (32)

It is normalized to Iu dzP(z) = 1 —P,~, . At our
parameter values RJ ——5.99, K = 30, and A = 1.0,
P,+, 0.815, see Fig—. 8(c). We have checked that the
distribution functions are independent of R~ on a 10%%up

level at this point. We have not, however, checked for
the degree of independence on K and A.

To summarize, we have systematically studied the
dependence of the ground-state properties of the
e+e (p) and the LCS equation on all the mathematical
parameters transverse resolution RJ, longitudinal resolu-
tion I&, and ultraviolet regulator A, at a fixed value of the
coupling constant a = 0.3. The approximate indepen-
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dence (within less than 10%) of the observables invariant

mass squared Mz and charge radius R on mathemati-
cal parameters has been found. No sign of unexpected
(say, divergent) behavior of the observables M2 and R
when changing the mathematical parameters was found.
The results for e+e state probability P,+, were not
stable with respect to varying A' or A. The fermion and
the photon distribution functions were presented as well.
Wherever the comparison with the LCS equation could
be made, a good agreement was found. The first eRects of
retardation, such as shift of the structure function peak
from the value of z = 0.5 with the LCS equation toward
the values of z below z = 0.5 are observed. These eR'ects

have probably not been calculated reliably, since the zero
modes and the Coulomb singularity were treated on the
level of the LCS equation.

V. SUMMARY

The e+e (p) model for positronium has been derived
from QED by truncating the particle Fock basis to in-
clude just the e+e and the e+e p states. In accord
with the truncation, the active part of the light-cone
QED Hamiltonian has been determined by consistently
employing the gauge principle for the light-cone gauge.
In particular, all the instantaneous photon interaction
matrix elements between the e+e Fock states and all
the instantaneous fermion interaction matrix elements
between the e+e p states are included in the calculation.
It is not absolutely clear at this point whether the trunca-
tion of the Fock basis represents an approximation to the
full problem, which in principle includes an infinite num-
ber of particles. To investigate this question, one should
increase A, as well as R~ and I~ and check whether the
results converge to a high degree of accuracy. Note that
using the regulator of Eqs. (4) and (5), for R~ ( 6 the
fermions carry at most 2 units of momentum in each of
the perpendicular directions and the photons at most 4
units. The Hamiltonian matrix was constructed block-
wise to make use of its sparseness. It was diagonalized
eFiciently as a sparse matrix using the Bauer-Rutishauser
simultaneous iteration algorithm. Use of the exact dis-
crete symmetries reduced the matrix size by roughly a
factor of 8 in each symmetry sector. The zero-mode pho-
ton singularity as well as the Coulomb singularity have
been devoted a special treatment in the e+e (p) model,
the same as in the light-cone Schrodinger equation.

At the coupling constant o. = 0.3, a region of approx-
imate independence of the e+e (y) model ground-state
invariant mass squared on all the mathematical parame-
ters was found. The value of the invariant mass squared
in this region gives the result for the binding energy. The
precision of this result is estimated from the behavior of
the eigenvalue as each of the mathematical parameters
is varied. The result for the binding energy agrees with
the Bohr value within 10%. Slightly worse agreement
with the Bohr value was found for the charge radius.
The ground-state binding energy and the charge radius
of the e+e (y) model ground state agree within less than
10% with the binding energy and the charge radius of

the light-cone Schrodinger equation ground state. Novel

aspects as compared to the light-cone Schrodinger equa-
tion appear in the e+e (y) equation. These include the
broadening of the structure function, shift of the struc-
ture function peak from z = —toward lower values of z

2
and smaller charge radius. The photon distribution func-
tion in the e+e (p) model is presented. It is concentrated
at low values of z.

One cannot yet be satisfied with the results presented.
Nevertheless, it was shown that the e+e (y) approxima-
tion is numerically tractable without the need of super-
computers. The unsymmetrized Hamiltonian matrices
of dimensions up to 100 000 by 100 000 were constructed
and diagonalized using a workstation. The accuracy of
the approach of about 10%%uo is worse than that of the ef-
fective two-body potential model [15], derived from the
e+e (p) model. However, in deriving the effective two-
body potential model there are more ad hoc assump-
tions than in the e+e (p) model. The equal-time ap-
proaches [23,24] are even more accurate, but it is difficult
to generalize them [23, 24] and it is difficult to calculate
the observables, such as structure functions, from the
wave functions. At the actual value of the QED coupling
constant of n I/137, the traditional state-of-the-art,
calculations [34, 35] are most, accurate In .traditional
bound-state methods, a larger set of graphs is used nor-
mally as in the e+e (p) model. It would be most useful
to compare the methods in detail. This, however, seems
premature at present since this paper represents just a
first step toward an accurate description using the light-
cone techniques. At weak coupling, both types of analysis
should give correct results ultimately. The dissadvantage
of the present method at weak coupling is that the single
momentum-space grid should cover all the diR'erent mo-
mentum scales present in the problem. It remains to be
seen whether or not, the light-cone techniques will prove
superior at the intermediate or large values of the cou-
pling constant.

As it looks, the e+e (p) model is a sound approxi-
mation to the full QED in the sector of positronium.
Provided one is strictly led by the gauge principle the
divergences characteristic of the light-cone gauge and of
the light-cone quantization seem to be absent. The power
of the method of DLCQ to provide guidelines, if quali-
tative, for the subsequent application of more accurate
methods, has been exhibited in 3+1 dimensions.

As for the perspectives, there is certainly room for im-
provement. It is possible to treat the zero-mode photon
contribution more precisely in the e+e (p) model, which
should improve the convergence properties of the pho-
ton distribution function of positronium in the model, as
well as of the hyperfine splitting results, not presented in
this paper. Advances in numerical techniques are desir-
able. The known approximate eigenvectors can be used
as a starting point to speed up the convergence of the
diagonalization routine. A true sparse complex matrix
diagonalization routine can be constructed. The Lanczos
algorithm [3] seems promising for obtaining the ground
esgenstate.

The e+e (y) model can be systematically improved
in many ways. The resolutions R~ and Ii as well as
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regulator A can be increased and the finite-size-scaling
techniques can be used to extrapolate to even larger val-

ues. Further Fock basis states can be included, which
would enable studying other eKects, such as the Lamb
shift. The next possible step is a direct calculation of the
QCD bound states, such as heavy quarkonia. In QCD,
the nontrivial gluon dynamics will have to be devoted a
special at tention.
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