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Nonperturbative multiparticle tree graphs in the standard electroweak theory
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I present a lower bound for the cross section at the tree level for fsft ~NZ to lowest order in the hy-

percharge coupling g'. It is seen that the cross section grows like g N!, and hence violates J= 1 unitar-

ity for large enough N ~ (const/g ). This phenomenon occurs in the kinematic region where coherence
among -Nt graphs is possible: the vector mesons are nonrelativistic and they all have the same or a
small fixed number of polarization vectors. The argument is then extended to the process

fs fL ~((N/3) W, (N/3) W, (N/3)Z), and finally to the general case of an arbitrary initial state, and

a final state containing a large number of nonrelativistic 8'+ s and Z's. The result involves only the

gauge couplings, and is independent of the size of the quartic scalar coupling. There is qualitative simi-

larity with the result found previously for tree graphs in )(,P~ theory.

PACS number(s): 11.15.Bt, 11.10.Jj, 12.15.Ji

There are indications of a failure of perturbation
theory in weakly coupled theories when the number of
produced particles N in a high-energy collision becomes
of O(1/a}. This was first noted in the context of B+L
violation in the instanton calculation of Ringwald [1]
(and later Espinosa [2]}, following some earlier specula-
tions [3]. Subsequently, the A,(() theory was examined
through the classical field equation with an oscillating
source of soft quanta [4] and through a direct evaluation
of tree graphs in a high-energy collision ff~N Higgs
bosons [5]. In the latter case, it was possible to directly
implement the limit Enlarge, N ~large, E/N fixed. In
both of these studies, it was found that the tree-level am-
plitudes near threshold grew like ~A, N!. In Ref. [5],
the reaction chosen proceeded entirely through the s
wave (to lowest order in the Yukawa coupling g„), and it
was shown that the cross section behaved like

2 'N
gr A,

AN —-
2 . N~,

E 16m a

where a is a number, so that the s-wave unitarity bound
was exceeded at N-16&a/eA, . In Ref. [5] this behavior
was also seen to occur in a supersymmetric theory with
two scalars, in which A, is proportional to the gauge cou-
pling g .

In diagrammatic language, the reinstatement of s-wave
unitarity must come from higher-loop corrections. Here
once again, the nonperturbative nature of the process be-
comes apparent: for example, the one-loop correction
due to rescattering in the final state introduces an extra
factor of A, , which, however, may be compensated by a
combinatoric factor -N to account for the number of
ways of rescattering in the final state.

There remains a crucial question: do rescattering
corrections lead to an exponential suppression of the re-
sulting cross section, or do they permit the cross section
to attain its unitarity bound? This has been discussed by

(0) f 0' ($}ds
s

(2)

Now suppose the left-hand side of Eq. (2) allows an
asymptotic expansion in coupling, such that the nth-
order term is -(a A)"n!. T,his term achieves its minimum
value of e " for n =n=1/(aA, ), after which the series
rapidly diverges. In the case of A,P4 theory, the Lipatov
analysis [9] indicates that the presence of instanton
configurations with A, &0 allows a Borel summation of the
rest of the series, and consequently a bounding of the
remaining (nonperturbative) contribution by the amount
e ". Finally, under certain assumptions and with some
discussion, one may argue [6,8] that as a result of Eq. (2)
this also applies to the n-particle pieces of the cross sec-
tion. Thus, the claim is that in A,P4 theory the partial
cross sections cr„ for n ~ n are exponentially suppressed,
whereas for n & n they are suppressed by the appropriate
large powers of A, .

The situation may be very difFerent in the gauge sector
of the electroweak theory. In that case, the saddle-point
field configurations (negative-g instantons) which would
support a Borel summation of the series beyond
n —1/(const)g do not exist. This makes it difficult to
bound the nonperturbative part of the amplitude. Thus,
the argument for suppression cannot be carried over in
any obvious manner [6], leaving open the possibility of an
anomalous contribution to the cross section (either B +L
violating or not) which saturates the unitarity limit at en-
ergies -nt/a k. From the analogue of Eq. (2) for the

Zakharov [6] and others [7,8] in the context of the Lipa-
tov analysis [9]of A,P theory. The argument goes rough-
ly as follows: consider the unsubtracted dispersion rela-
tion for the second derivative of the scalar one-particle ir-
reducible two-point function II(q ). Modulo constants, it
is related to the total annihilation cross section for qq
into scalars:
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gauge theory, it can be seen thai this may generate a con-
tribution to the vector polarization tensor which is nu-
merically comparable to a perturbatioe contribution in
some low order of a k. With this motivation, I turn to
examine the high-multiplicity tree structure in the gauge
sector of the electroweak theory.

The general method of approach, applicable to all situ-
ations, is the following:

(1) Consider the scattering from some suitably chosen
two-particle initial state i to some N-particle final bosonic
state f at a c.m. energy E close to threshold:

—1(&1 .
Nm

(3)

(2) Choose the polarization vectors (in the limit p; ~0)
to belong to some finite number of possibilities (say one
for each type of vector meson, or the same for all).

(3) Pick a particular topology for the tree graph —any
one will do —which has a well-defined limit as all the
three-momenta p; ~0, and calculate the amplitude
JN, ~(0)-(g/m) in this limit for any of the momentum
orderings. Since the number of orderings will be of
O(N!) and these (by hypothesis) all have the same value
JTtz(0) as p;~0, the total amplitude (as p;~0} corre-
sponding to such an "s-wave" graph wil1 be

'N

Also, for simplicity, I will take all the polarization vec-
tors for the Z's to be equal to the same three-vector e (as
p; ~0}. In this limit, all the Z propagators in the tree are
given by i5; /E. ;„„where E;„, is the energy carried by
some (internal) line in the tree. Also, all the e vectors dot
out to unity, except for one which is dotted into a fer-
mion spinor matrix. In this limit, all the trees of this to-
pology formed by reshuRing the particles add coherently,
so that the amplitude at threshold for the process (5)
proceeding through the symmetric topology of Fig. 1(a) is
given by

g'sin8 gmA~(0}— (V O''EQ )JK!pf/3 Jv/3)E2 4m

' N/3

CN

C
(2!)N/2

(8)

where At(Q/3Q/3! is the subamplitude for the process
Z~(N/3)H+(N/3)Z for any single ordering of the
particles. The next factor accounts for the propagation
of the penultimate H's and their decay into Z's. Finally,
CN is the combinatoric factor counting the independent
permutations of the final state. By examining Fig. 1(a},
one may deduce that for large N

A(,~(0)-At!v(0)N!— (4)

(4) Demonstrate why the N! behavior cannot be
remedied through cancellation between graphs of
different topology.

(5) Estimate the perturbation on Al, !v for small ~p, ~
/m.

We shall see below that nonrelativistic phase space intro-
duces a factor (p,„/m } (1/¹!)multiplying ~A1!v~ in
the expression for the cross section. Thus, if coherence
(i.e., N behavior .of Al!v) is maintained for small but
finite p,„/m (as N ~~ ), then the tree graph in question
will violate unitarity at large N.

As the simplest example, I will consider the reaction at
c.m. energy E of a right-handed massless fermion and
left-handed antifermion

(5)

to lowest nonvanishing order in the hypercharge coupling
g'. This forces the reaction to proceed initially through a
single virtual Z. We may note immediately that the ab-
sence of any 8'+—in the final state precludes their pres-
ence anywhere in any tree graph leading to this state.
This follows from charge conservation. A representative
diagram in the case N =13 is shown in Fig. 1(a). Thus,
except for the coupling to the initial fermions, the piece
of the electroweak Lagrangian relevant for present pur-
poses is (in unitary gauge)

z z

7 z

w+

w w+

X;„,=( ,'g H + ,'gmH)Z„Z—", — (6)

z W
where g =g2+g' and m =—mz.

As described in the introductory algorithm, I first cal-
culate the amplitude in the limit p; ~0 for the symmetric
tree topology, exemplified in Fig. 1(a) for the case N = 13.

FIG. l. (a) Symmetric tree graph for fs fL ~13Z, to lowest
order in the hypercharge coupling g'. (b) Similar graph for

fafL, ~4IY+4W 5Z.
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(9)

and, from Eq. (7),
'N

AN(0)=g'sin8 E(v o"eu)a ~ N!, (10)

where a =(—', )' /(9~2)= —'
Suppose now that Eq. (10) were a reasonable approxi-

mation for the amplitude A N when I p; I /m
&p,„/m =e «1. Then the cross section may be com-
puted:

a (fR fL ~NZ(e) }= IAN I pN/(fiux) .

Here pN is the nonrelativistic phase-space factor [10]
'N

It is also apparent that an expression for A{,(N/3 N/3) may
be obtained from the quartic scalar analysis of Ref. [5]
with the substitutions in Eq. {3) of that reference
A,4—+—'g, N~ —3¹Thus

' 2N/3

~(N/3 N/3) 3~3 E
2N/3

1 g g(1+a; ) (I —2e ) /N! .
perms perms pairs

(15)

For small c this does not afFect the N! behavior. In the
relativistic limit, one finds that

(1) Inequality of the e; (vhen p;%0. The presence of the
polarization vectors in the amplitude will be manifest as a
string of -N/2 dot products (e).e2)(e3 e4) +permu-
tations for the Z's coming from the penultimate H —+ZZ
branchings, as well as other factors such as
es.(p)+ +p4} for the Z's not coming from such
branchings. A representative estimate of the incoherence
introduced for p;%0 among the N! perrnutations due to
the inequality of the e; may be obtained via the following
construction: take each e; =(O, e) independent of i in the
rest frame of the corresponding Z;. Then boost to the lab
frame, and calculate e; ej—=(e 'ej e p'ejp)) h. Taking

Ip; I

= Ip I
=p for calculational simplicity, I find to

0 (p /m ) that

e; ej= 1+ )(p /m )(cos8( cos8J) + ' ' '

= 1+c,j. (14)

with Ie;iI &2(p,„lm) =2e . Thus, for small but finite e
the effect of p(%0 from this source will be a replacement

2NK3N

N! E4 16M
(12} e; e& —{'p /m )cos8(cos8J [ 1 cos(8; 8J )],

with b =~8m(e/3} / =4 69 T.hus. , if a&0 as N~ co,
then

o (f&f& ~NZ(e)) = (a b) 2
N! (13)

E2 16m

whenunitarityin violation of
N ~(c onst)(16& /g e. ).

What about cancellation between graphs of different
topology? In the present case, the absence of such can-
cellation is easy to see. First, every graph which has only
quartic vertices (except for the final branching H ~ZZ)
has the same sign. Second, every quartic HHZZ vertex
may be replaced by a pair of cubic HZZ vertices separat-
ed by a Z propagator. One verifies via explicit calcula-
tion that these graphs also add coherently to the previous
ones.

At this point, I turn to address the more dificult, and

crucial, item (5} above —the effect of finite p;/m. I will

demonstrate that the result derived above holds for small

but finite p,„lm as N +oo. —
The continuation away from p; =0 introduces a num-

ber of complexities into the analysis: {1}the polarization
vectors can no longer be taken as purely three dimension-
al, nor can they all be equal. This tends to introduce in-
coherence in a manner to be discussed. (2) The nonvan-
ishing three-momenta and the consequent presence of
timelike components for the polarization vectors will ac-
tivate contributions from the k„k /m pieces of the vec-
tor propagators. These contributions will depend on the
external p;, they are not of one sign, and will promote in-
coherence. Can these effects be controlled for finite
I p; I lm as N ~ oo') Let us examine them in turn.

IA1(iocoh) ( ( gg(coh)
(N/3 N/3) I

= I~pc(N/3 N/3) I

2
(16)

Clearly, we can choose a small but Pnite p,„/m such
that coherence will be maintained as N —+ 00.

I now turn to discuss the more general case of a final
state containing an equal mixture of W+, W, and Z.
For the moment, I will still consider the incoming state
to consist of fz fL, so that the tree begins with a single Z.
The simplest graph to discuss is the analogue of Fig. 1(a),
shown in Fig. 1{b},in which there are only H's and Z's

and the -N! strings of products do not add coherently in
any manner.

(2) The activation af the k„k„lm pieces af the vector
meson propagators. We first note that because of this
piece of the propagator, up to —,

' of the final-state polar-
ization vectors may now be dotted into sums of a few
external momenta. Such kinematic factors destroy
coherence. In the interior of the graph, k„k /m can in-
troduce large terms -(E;„,lm) in the numerators of the
propagators. An upper bound on this effect may be ob-
tained by replacing every Z propagator used in the previ-
ous estimate of A{,(N/3 N/3) by (E;„,/m } /E;„, =(1/m ),
and multiplying by the appropriate external factors
(ep) -(p,„/m) /. Since about half the propagators
in the tree are Z propagators, we may obtain the effect of
this replacement from Eq. (3) of the scalar tree result [5]
by substituting for every factor E the geometric mean
(Em) ' of the Higgs and the "revised" Z propagator
1/m. After some algebra, I obtain an upper bound on
the magnitude of the incoherent piece of the amplitude
(before permutations}, corresponding to Af(N/3 N/3).

' N/3
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until the final branching of the penultimate H's,
H~ 8'+ O' . Except for a modification of the combina-
toric factor by a factor of 3 [roughly, N!~(N/3)! ], the
amplitude from this graph can be obtained from the pure
Z case discussed above, and will again be of order
a (g/m) N!. As in the previous case, there are many
other topologies, and each topology which does not van-
ish as p;~0 will contribute an amplitude of magnitude-¹!.However, in contrast to the previous case, the
presence of the non-Abelian quartic and cubic vertices of
vector mesons will permit variation in signs of graphs of
differing topologies. Nevertheless, I will discuss why it is
not conceivable that they cancel to the extent of restoring
tree-level unitarity.

For orientation, I note that the number of different to-
pologies is well approximated by. (const); for example, in
scalar theory with both cubic and quartic coupling, I find
that the number of topologically distinct tree graphs for
1~N is approximately given by (3.26) for N & 50.
Thus, we have (const) different amplitudes, each of mag-
nitude -N!, and we require the sum to be of 0 (&N!) or
smaller (in order to satisfy unitarity at the tree level).
Thus, the sum of the coefBcients of NI for the different
amplitudes must cancel to within 0 ( I /&N!) of zero, but
not to zero, for all N»16m /g . This seems impossible
to arrange. For example, the hypothetical cancellation
would need to occur for every value of the Higgs mass
(which is arbitrary), since corrections even as small as
MH/E &1/N would reinstate the N! [or (N —2)!] be-
havior of the amplitude. All of this discussion is also
clearly applicable to multiboson production from any ini-
tial state, although the delineation of the unitarity bound
requires a little more discussion.

Thus I come to my concluding remarks.
(1) As was the case with scalars, it has been shown that

the tree-level cross section for the process fit fL ~NZ
violates unitarity for N & (const)/g in the nonrelativistic
region E/Nm —1=—,'e2, e «1 but finite as N~ ac. The
condition on the final-state polarization vectors is that
they constitute a finite set as N~ao. The bound was
then extended to the most general initial and final states,
consistent with the above restrictions on kinematics and
polarization vectors.

(2) In perturbative language, unitarity will be restored

through higher loops. The argument made by Zakharov
[6] in the scalar case that the restoration of unitarity in
fact leads to an exponential suppression, is not applicable
to the non-Borel-summable vector case (see introductory
discussion). Thus, at energies above O(m/g -E,~h),
possible strong scattering to states of high multiplicity, in
a process which does not violate baryon number, is on the
same footing as the B+L-violating case discussed in
Refs. [1] and [2]. In both situations there would be non-
perturbative corrections to vector polarization tensors
which may be numerically comparable to low-order per-
turbative corrections.

(3) It has been remarked by Casher and Nussinov [7]
and Zakharov [11]that an intuitive argument against the
production of a coherent state in the scalar case is that
the final-state interaction is repulsive, leading to instabili-
ty of such a state. The case of the vectors has no such ar-
gument: in general, the interactions are of both signs. In
the case with only Z's, the ZZ~ZZ interaction (via s
t , and u--channel exchange of a Higgs boson) is attractive
unless 1.6mz mH 2.Omz.

(4) With the amplitude used for illustration in this pa-
per, the breakdown of unitarity at the tree level occurs at
a very large value of N [& (16m /g e )]. In order to ob-
serve experimentally the consequences of these coherent
states, one may hope that higher loops or the inclusion of
more diagrams will substantially reduce this number.
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