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Effective potential at finite temperature in the standard model
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There has been much recent interest in the nature of the electroweak phase transition. This informa-
tion is of importance in the context of the sphaleron models that have recently been proposed to explain
the observed net baryon number in the Universe. The presence of a term that is cubic in the Higgs con-
densate in the one-loop effective potential appears to indicate a first-order phase transition. However,
the infrared singularities inherent in massless models produce cubic terms that are of the same order in
the coupling. In this paper, we include these terms and show that the standard model has a first-order
phase transition.

PACS number(s): 12.15.Ji, 05.70.Fh, 98.80.Cq

I. INTRODUCTION

It was first observed by Kirzhnits and Linde [1] that
spontaneously broken symmetries are usually restored at
high temperature. Such phase transitions may be
relevant for the study of high-energy particle collisions
[2], neutron stars [3], and the early Universe [4]. In par-
ticular, there has been much recent interest in the nature
of the electroweak phase transition. This information is
important in the context of attempts to explain the ob-
served net baryon number in the Universe in terms of
baryon-number violation in the electroweak theory [5],
and cosmological models of baryogenesis [6].

We consider models in which the symmetry is spon-
taneously broken by a negative-mass-squared term in the
Lagrangian. In most simple models, the symmetry is re-
stored at sufftciently high temperatures [7]. The nature of
the symmetry-restoring phase transition is determined by
the behavior of the effective potential. The fact that the
symmetry is restored at high temperatures is a result of
the T m (v) term that occurs in the one-loop effective
potential [m (v) is a mass-squared parameter equal to the
sum of the bare mass squared and a term proportional to
the square of the expectation value of some classical sca-
lar field v times a coupling constant A, ]. This term is the
leading-order contribution from the thermal fluctuations
of the field. As the temperature is increased, the contri-
bution from thermal fluctuations will eventually dom-
inate the negative-mass-squared term in the tree potential
and symmetry will be restored.

These conclusions depend on the validity of the ap-
proximations used in the calculation of the effective po-
tential. It was shown by Dolan and Jackiw that there are
imaginary terms in the scalar model effective potential at
one-loop [7(a)]. These terms are proportional to m (v)T
and are imaginary when the mass squared is negative.
Weinberg and Wu have shown that imaginary terms in
the effective potential indicate a physical instability and
that the imaginary part of the effective potential can be
interpreted as a decay rate per unit volume [8].
Takahashi has suggested that the appearance of imagi-
nary terms in the one-loop effective potential indicates

the breakdown of the semiclassical loop expansion
through infrared singularities. He has shown that, for
the simple scalar model, the imaginary terms, which are
proportional to m (v)T, cancel when the dominant in-
frared contributions from higher-order diagrams are in-
cluded [9]. Effectively the term -m (v) T is replaced by
a term —[I (v)+cA, T ]

~ T, where c is a constant of or-
der one, which is real for T large enough. We note that
in the standard model some of the fields have zero bare
mass and non-negative mass squared for all v. These
fields contribute terms -rn (v)T to the effective poten-
tial, which are always real; for these fields, the cancella-
tion of the terms that are cubic in the mass does not
occur and is not related to the issue of the complexity of
the effective potential [10].

There is an additional reason to include the infrared
contributions from higher-order diagrams. These dia-
grams contribute terms that are cubic in v and of the
same order in the coupling as the term -m (v)T from
the one-loop graph. Since a cubic term in the effective
potential could generate a first-order phase transition, it
is crucial that we include all the leading-order terms,
which are cubic in the field.

In this paper we calculate the effective potential for the
standard model consistently within the loop expansion.
We work to order A, , g, and g', where A, is the Higgs
coupling and g and g' are the SU(2) and U(1) couplings,
respectively. The paper is organized as follows. In Sec.
II we discuss the simple scalar theory. In Sec. III we
present our calculation of the effective potential in the
standard model, and in Sec. IV we discuss our results.

II. THE SCALAR THEORY

The one-loop effective potential of the simple scalar
theory at finite temperature has a leading-order term
-A.v T and a next-to-leading-order term -A, v T,
where v is the expectation value of the scalar field. This
v term could give rise to a first-order phase transition.
However, the ring diagram contributions are also of or-
der A, , and they exactly cancel the cubic term from the
one-loop graph in the scalar model.
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We note that the "ring diagrams" will be understood
to include the dominant part of the two-loop graph. The
two-loop graph is A, times the square of the one-loop
graph, which is —[T +m(v)T+ . ]. The first term in
the one-loop result is the leading-order term and the
second term comes entirely from the zero-frequency term
in the Matsubara sum. Squaring this result, the two-loop
graph is -A, T [1+m (v)/T+ . ]. The v-independent
T term is proportional to the square of the leading-order
contribution to the one-loop polarization tensor. We do
not consider this term since it does not depend on U. The
leading-order U-dependent term is -X T U and comes
from the graph with one loop given by the leading-order
contribution to the one-loop polarization tensor, and the
other loop calculated at zero frequency. This contribu-
tion is included in what we will call the ring diagrams.
We drop the next-to-leading-order term from the two-
loop graph, which is -A, v T In(A, v /T ).

Effectively, the inclusion of the ring diagrams replaces
the A, U T term from the one-loop graph with a term of
the form A

~ [m (v)+cA, T ]
~ T, where c is some con-

stant of order one. As discussed in the Introduction, this
term is real for T large enough. It is not obvious that a
term of this form gives a first-order phase transition. It
has been shown that the first-order phase transition does
occur in the scalar theory; it is the purpose of this paper
to see if this is the case in the standard model. In this
section we study the calculation of the effective potential
for the scalar model in order to understand in detail how
the cancellation of the cubic term occurs. We discuss
how to calculate consistently within the loop expansion.
We obtain the ring diagrams as first-order corrections to
the mean-field result at one loop. Shifting both the one-

point and two-point functions and extremizing the
effective potential to find the equilibrium values is
equivalent to performing the resummation of infrared-
divergent graphs. The result is the usual diagrammatic
expansion for the effective potential with the bare masses
shifted by the infrared limit of the polarization tensor.

We introduce the following notation. Greek indices in-
dicate Lorentz four-vectors and vectors with indices
i,j, . . . are three-space vectors. The product of three-
vectors is denoted k . In Minkowski space, the product
of two four-vectors is written k . In Euclidean space, the
product of two four-vectors is indicated by kF at zero
temperature, and by co„+k at finite temperature.

The Lagrangian is

tial. We will calculate the effective potential V(v ) and ex-
tremize with respect to v to find the equilibrium value
( v ). If ( v )~0 at some finite temperature T„ then the
system has a phase transition between the broken-
symmetry phase ( ( v )%0) and full symmetry phase
(( v ) =0). We want to determine the order of this phase
transition.

We use the loop expansion. To lowest order we have
the tree potential

V( v )«„=—
—,
' c v +—'A, v (2)

Extremizing at this level of approximation gives the clas-
sical minimum (v)o=c/k'~, and the classical mass
m ((v)0)=2k, (v)0=2c .

To next order, we consider only terms in the action
which are quadratic in the fluctuations y about the classi-
cal field v. This approximation gives the one-loop contri-
bution, which is given by the familiar expression [11](see
Fig. 1)

V, (v)= f d k In[kz+m (v)] .
1

2(2n. )
(3)

V', '( )= fd'k[k'+I'(v)]' '1

2(2n )
(4)

and represents the shift in the vacuum energy from zero-
point oscillations. The integral is divergent and must be
cut ofF at some A. The result can be renormalized by in-

troducing the counterterms

2 4

~ ="' +~' +c.ct 2 4

C is a constant that can be used to cancel the v-

independent part of the vacuum energy. We determine 3
and B by requiring that the position of the minimum and
the mass remain at their classical values:

At finite temperature, we rewrite the k4 integral as a sum
over Matsubara frequencies:

dk4f f(k~)~T g f (k& =i'„), rv„=2nnT,
n

and replace the frequency sum by a contour integral in
the usual way [12]. We can separately evaluate the zero-
temperature and the finite-temperature contributions.

The zero-temperature part is given by

X=—,'(B„P) + —,'c P
——'A.P

d V"'(v)
dv

=0,
u=(u)

d'V"'(v)
dU u=(u)

—2c

This Lagrangian is symmetric under the transformation
However, the vacuum state is not symmetric

under this transformation; the vacuum has a degeneracy
that leads to what is called spontaneous symmetry break-
ing. We select a vacuum about which we can do pertur-
bative calculations by shifting the field about the classical
value v: we write P=v +y. After performing this shift,
the mass of the field y is m (v)=3k, v —e, and the new
Lagrangian does not have the original symmetry. For
constant U, the thermodynamic potential gives the poten-
tial energy of the field U and is called the effective poten-

where V' '(v)= V(v)„„+VP'(v). The result is

FIG. 1. One-loop contribution to the effective potential for
the scalar model.
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FIG. 2. Ring diagrams.
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V(o)(v) =—

(6)

where P=1/T. In the limit that m(v)/T is small this
can be expanded as

T4 H+ m (v) m (v)
24T 12m T

m~(v}
1

m (v) m ( V}

32rr T4 4n T T4
(8)

The finite-temperature part of Eq. (3) is

V(+(v) = fdk k ln(1 exp—[
—P[k +m (v)]'~ ] ),= T

2

(7)

We note that the term proportional to m (v)ln[m(v)]
cancels between the V(& '(v) and V'( )(v) contributions.
This cancellation also occurs in the standard model.

Now we will show that the next-higher-order correc-
tion is not the two-loop term but the ring diagram contri-
bution (Fig. 2), which is of order A,

~ . It is well known
that the ring diagrams give such a contribution for mass-
less fields, and therefore it seems likely that an order-A,
term will contribute in the limit of small m (v)/T. Physi-
cally, the ring diagrams give contributions from long-
distance effects. In this problem they can be obtained by
going beyond the mean-field approximation at the one-
loop level.

Previously, we shifted the one-point function
P(x)=v+g(x), where P(x) and y(x) are quantum fields
and v is a c number. If we stop at this point, we can ex-
tremize the effective potential with respect to v and ob-
tain the mean-field value of ( v ):

5V(v)
5v „(„)

To go beyond the mean-field level, we need to consider
the effective potential as a function of both v and the
two-point function m(co„,p), and extremize with respect
to v and rr(c)„,p). The result will be the reexpression of
the perturbation theory in terms of the full propagator
[13]

At the one-loop level we obtain

d3
V(v}=V(v)„„+—,'Tg f in[P D '(co„,p, (n(ro„,p)))]

(2n }

d p=V(v),„„+,'Tg f —31n[P[ro„+p +m (v)+(n(co„,p)&]l .
II

(n'(co„,p}) is to be obtained self-consistently as the
choice of n(ro„, p) that extremizes the effective potential.
This extremization condition is just the Dyson equation,
which is shown in Fig. 3 to one loop. Prom now on, we
suppress the bra and ket and write the solution to the
Dyson equation as n(rv„, p).

We will obtain n(rv„, p) self-consistently within pertur-
bation theory. For a massless theory, the dominant con-
tribution at order A,

N to the polarization tensor comes
from the infrared-divergent diagram shown in Fig. 4.
The small bubbles are one-loop polarization tensors in
the infrared limit:

n'"(co„,k) =m'"(0) =3k,T g
d3 1 T2

(2n) aP„+q 4

In this problem we take the infrared limit by setting the
zeroth component of the external momentum to zero and
taking the limit that the spatial components approach
zero: m'"(po=0, p~0)—:m'"(0) (note that in the simple
scalar model the infrared limit is trivial). The infrared
limit of the one-loop polarization tensor is momentum in-
dependent, and we can explicitly sum over N. The result
is an expression for the polarization tensor n(co„,p) as a
function of the propagator which has an efective-mass-
squared m'"(0). Finally, the dominant contribution to
the ring diagrams (Fig. 6) comes from the infrared limit
of this result for n (co„,p):

N -1 loops

FIG. 3. One-loop Dyson equation. FIG. 4. Contribution to the polarization tensor of order A, .
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6 p 1
n(co„,p) =n(0) =3k T g f (2n. ) a) +p +m'"(0)

In our problem, where the field is not massless, we ex-
pect to get a nonzero contribution from the ring dia-
grams in the ultrarelativistic limit m (v)/T « 1. We will
proceed by analogy with the massless case and obtain the
polarization tensor as a function of the propagator, which
has an efFective-mass-squared rn (v)+n'"(0) (see Fig. 5).
We will show explicitly that the ring diagram contribu-
tion is small unless m (v)/T « 1, and, therefore, that it is
sufficient to take the limit m(v)/T «1 in n'"(0) and
m(0).

The one-loop polarization tensor is given by

t/(P + rrt'(&) + ie)

t/(p + rn (v) + tr( }(P)+ je)

FIG. 5. Resummed polarization tensor.

T2

4
m(0)=A, 1+0

T (12)

"'( k}= '"(0)=3k,T g
d3 1

(2m. ) co„+q +rn (v)

T 1+0 m (v)
4 T (10)

Summing over N we obtain

n(co„,k) =m(0)

d=uTy
(2m) co„+p +m (v)+n'"(0)

From Eqs. (10) and (ll) it is clear that it is sufficient to
drop terms of 0(m(v)/T} in m'"(0). These terms are
not important unless m (v)/T- 1, but in that case
m'"(0)-km (v), which is small compared to m (v}.
Therefore, these corrections do not contribute to Eq. (11).
With m'"(0) =A, T /4, we can expand Eq. (11) in m (v)/T
to obtain

Finally, substituting Eq. (12) into Eq. (9) gives the result
for the effective potential. After making this substitution,
we see that we can take the zeroth-order result in Eq.
(12), as well. The argument of the logarithm in Eq. (9) is

P ~ co„+p +m (v)+A, 1+0T2 m(v)
4 T

As in the previous discussion about n' "(0), if
m(v)/T-1 so that the corrections are not small, then
n(0)-Am (v), which is small relative to m (v) and does
not contribute to the argument of the logarithm in Eq.
(9). In this case, Eq. (9) becomes V( v ),s- V ( v )„„+V, ( v )

[see Eqs. (2) and (3)]. Thus, if m (v)/T —1, then
V(v)„„s-0. We conclude that we can use the zeroth-
order result for the polarization tensor n (0)=A, T /4
everywhere in our calculation of the ring diagrams, since
this approximation is good in the regime in which the
ring diagrams give a nonzero contribution. Thus we have

V(v)=V(v), „„+—,'Tg f ln P co„+p~+rn (v)+A,
17

(13)

It is straightforward to verify that we have obtained the sum of the tree potential, and the one loop and the ring dia-
gram contributions to the potential. We separate these contributions analytically by writing

D '(co„,p)=DO '(a)„,p)+n(0)=DO '(co„,p)[)+Do(co„,p)n(0)],

Do '(co„,p)=co„+p +m (v) .

Equation (9) becomes
3

V(v)= V(v)„„+—,'T g f tln[P Do '(co„,p)]+In[@ ()+Dc(co„,p)m(0))]]
(2m }

3 oo= V(v)„„+V, (v) —
—,
' T g f g —[—Do(co„,p)n(0)]

n ~ N=l

= V(v)„„+Vi(v)+ V(v)„.„s, (14)

where
3 oo

V(v)„„= ,'T g f P3 g———[—Do(co„,p)m(0)]
(2n. )' ~=, &

(15)

I

(see Fig. 6).
Doing the integrations in Eq. (15), we obtain

V(v)„„=— [[m (v}+~(0)] ~ —m (v) j .T
(16}
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V(v)

FIG. 6. Ring diagrams to leading order.

+O(m (v)) . (17)

Note that the terms proportional to m (v)ln[m (v)] have
canceled between VI '(v) [Eq. (6)] and V', '(u) [Eq. (8)].
In addition, the terms proportional to m (v) have can-
celed between V', '(u) [Eq. (8)] and V(v)„„g [Eq. (16)].
This cancellation is significant, since m (v) is imaginary
for m (v)=3k, v —c &0 or for v &c /3A, . Note that the
cancellation of the m (u) terms is expected from Eq. (13),
which tells us that, when long-distance effects are includ-
ed, the effective potential is a function of the shifted mass
m (v)+n(0).

Equation (17) contains the tree potential plus the first-
order corrections to it, the usual leading-order one-loop
term, and a contribution from the ring diagrams, which is
-v and is real for T large enough. Specifically, the ar-
gument of the cube root is real for

m (v)+AT /4=3Av c+AT /4+0 —.
This condition is V

T~ T, =2c/A, ' =2(u )o.
The effective mass is also real if T ~ T&. We define the

effective mass squared as

a'v„
~ea =

2Bv

satisfied for all

(18)
u=0

From Eqs. (17) and (18) we have, to lowest order,
m,~= —c +A, T /4. Thus, both the effective mass and
the effective potential are imaginary when T(T, .

Since the quadratic part of the effective potential is
zero at T = Ti to lowest order, the leading-order term at
small v is the cubic term, which is —T, (3A, ) u/12m.
At large v the quartic term in the tree potential dom-

From Eqs. (12) and (16) we see explicitly that V(v)„„-0
if m (u)/T- l. If m (v)/T- 1, then n(0)-Am (v),
which is small compared to m (u) in Eq. (16). Thus,
V(u)„„g-0 if m (u)/T- l. In conclusion, therefore, if we
want to relax the assumption m ( v ) /T « 1, we must per-
form the V', '(u) integration in Eq. (7) numerically, but
V(u)„„can always be evaluated with the zeroth-order re-
sult 77(0) =A, T /4.

Combining Eqs. (6), (8), and (16) and dropping the v-

independent term, we get, in the limit m (v)/T « 1,

V(v) = V(u)„ee+ VI '(v)+ V', '(v)+ V(v)„„g

C V gV 21$C V 27' V

2 4 64~ 12877
3/2

T T 2 T+ m (v) — m (v)+A,
24 12m 4

FIG. 7. Effective potential at T = T&.

inates. The effective potential has the shape shown in
Fig. 7 at T=T, . When the temperature is increased
above T&, the coefficient of the quadratic term and thus
the curvature at the origin becomes positive. Equivalent-
ly, the potential develops a local minimum at the origin.
This indicates a first-order phase transition. It has been
shown numerically that when the temperature is in-
creased above Tl, a first-order transition does occur [9].
In the next section we will perform the same calculation
for the standard model.

III. THE STANDARD MODEL

A. Notation

In this section we describe the calculation of the
effective potential in the standard model. As in the case
of the scalar model, the ring diagrams contribute terms
that are cubic in the condensate and are of the same or-
der in the coupling as the m (v) term from the one-loop
graph. In the standard model, however, the m (v) terms
do not cancel exactly in the gauge-boson sector. As dis-
cussed in the Introduction, for fields with zero bare mass
this cancellation is not necessary to avoid imaginary
terms in the effective potential. We will show that when
all terms of order A, are included, the phase transition
is first order in the weak-coupling expansion.

We will use the following notation for indices.
a, b, . . . have the values 1,2,3 and refer to the SU(2)
fields. We define a vector of gauge bosons ( A,",B")= A ~&

so that the indices A, B, . . . run from 1 to 4 in the
gauge-boson space. The indices l, m, . . . have values 1,2
and refer to the two components of the complex Higgs
doublet, and i,j, . . . run from 1 to 4 and refer to the four
real Higgs bosons. Vector products are written as in Sec.
II.

The Lagrangian is

gauge field +Higgs++fermions

+Yukawa +gauge fixing ' (19)

Each of these terms is described below. The fields are
eigenstates of isospin and hypercharge (denoted Y) and
the Lagrangian is symmetric under SU(2) XU(1)Y trans-
formations. The vacuum state is infinitely degenerate and
not invariant under SU(2) XU(1)Y transformations. This
degeneracy gives rise to spontaneous symmetry breaking.

The gauge-field kinetic terms are given by

&ga.g. field
= sF;E." sI'„.F"" . — —
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The Higgs-field part of the Lagrangian is

,=(D„$)D"P+c (PtP) A—(P P)

The covariant derivative is

a

D„=8„+ig—A „'+ig '
—,'B„,P

where the matrices r' are the SU(2) Pauli matrices. The
complex Higgs doublet

O2+te4

V'2 4't+t42

has an electromagnetically neutral lower component and
an upper component with electromagnetic charge +1.
These charge assignments give an eigenstate of hyper-
charge and allow us to select a vacuum state that has
U(1) electromagnetic symmetry by shifting the P, field:

Pi = v +g. The Higgs fields acquire masses:
mi(v)=3iu —c and mz(u}=m3(u}=m4(u)=AV —c,
and the symmetry of the Lagrangian is broken:
SU(2) X U(1) &

—+U(1)EM. Note that at the classical
minimum ( v )O=ck, ' the fields $2, $2, and p4 are Gold-
stone modes. The gauge bosons also acquire masses. The
gauge-boson-mass term is of the form —A„"M„s(v)Ag,
where the mass matrix is nondiagonal:

M (u)=

g2V 2/4

0
0

g2v2/4

0
0

0 0

g v /4 —gg'u /4
—gg'v /4 g' v /4

(20)

In the usual way, we define the fields W„+, W„, Z„, and A as linear combinations of the fields A „' and B„sothat the
new fields have masses mit, (v)=g u /4, mz(v)=(g +g' )u /4 and m„(v)=0.

The fermion part of the Lagrangian is given by

;,„,=g iy" t}„+i YB„Q +f iy„B„+i YB„+i A„'r,
2

There are three generations of fermions, which are
grouped into left-handed SU(2) doublets and right-
handed SU(2) singlets. For example,

pe =
—,'(1+y5)e, —,'( I+y5)u, —,'(1+y5)d',

~e Q

PL g(1 r5), —,'(1 —re) d 3 colors

The primed quark states are electroweak eigenstates,
which are constructed as follows. We define a vector of
the mass eigenstates of the charge —1/3 quarks:
x =(d, s, t) The elec.troweak eigenstates are denoted x'
and are given by x'=Ux where U is the unitary 3X3
Kobayashi-Maskawa matrix (the specific form of U is not
needed for this problem).

We work in the approximation that the only nonzero
Yukawa coupling is the t-quark coupling denoted f.
When the Higgs field is shifted, only the t quark will ac-
quire mass and thus, this approximation is equivalent to
setting m&/T-0 for m&Xm, . In this approximation,
the usual Yukawa term becomes

Xyugana fg L, fatti +H. C.

The Yukawa term is invariant under a U(1} hypercharge
transformation. The t-quark wave function is represent-
ed by t and qL is the isodoublet:

b
= ,'(1 rs) b——

L

The field p =i o 2p' is the Higgs doublet with hyper-
charge —1. After shifting the Higgs field the Yukawa
term becomes

&y„i„„,= f —«+ (tpit) —t —(tyfi$2t)
v f . f
2 2 2

+ —[ b'(1+y, )( $2+i $4)t—
2 2

t(1 —re)($—3+i/4)b'],

and the t quark acquires a mass ttt, (v) =f u /2.
We work in the R

&
gauge, where the gauge-fixing part

of the Lagrangian is

gauge fixing (8"A „' ——,'/guy')

2
(a&B„——,'gg'VX')'1

(21)

where y, =$2,$3,$4. We choose the Landau value of the
gauge-fixing parameter (~0. The cross terms in Eq. (21)
combine with the cross terms from (D„P)t(D"P) to pro-
duce total divergences, which integrate to zero. In the
Landau gauge, the ghost fields are massless and do not
contribute to the v-dependent part of the one-loop
effective potential. Note that the effective potential itself
is gauge dependent, as noted in Ref. [7(a)]. However,
physical quantities obtained from the effective potential,
such as the critical temperature, are gauge independent
[14].
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In the original basis, where the relevant fields are the
gauge bosons A"„=(A,",B"),the vector propagator is

' AB

gB . gpv qpqv/q

q M—(v}+i@

where M (v) is the nondiagonal mass matrix given in Eq.
(20}. After diagonalization, we obtain the propagators
for the W„and Z„ fields,

. gpv qpqv q/ 2

q' —m2(u)+ie
'

m (v)=ms, (u) or rnz(u),

and the A„ field,

/ 2
gpv .qpqv/q

q +is

The function g{m„(v)) is equal to the one-loop finite-
temperature potential for the simple scalar model [Eq.
(7)]:

g(rn„(u})= f dk k= T

Xln{1—exp{ 13[—k +rn„(v)]'r j) .

(23)

The t quarks are fermions and their contribution to the
one-loop potential is proportional to

h(rn, (v))= fdk k ln(1+exp[ P[k—+m, (v))' rJ) .= T
2772

(24)

With these definitions we have

The ghost, Higgs-boson and quark propagators, and the
vertices are standard.

We can calculate the effective potential for the stan-
dard model in the same way that we did for the scalar
model in Sec. II. We work in the loop expansion. To
zeroth order, we have the tree potential

VP~(u)= f(m, (u))+3f(m2(v)),

VPs'b(v) =3f(mz(v))+6f(ma, (u)),

V'P&(v) = —12f(m, (u)),

(25a)

(25b)

(25c)

V(v)„„=——'e v + —,'A, v

To go beyond zeroth order consistently we calculate the
one-loop and ring diagram contributions separately.

and

V', ~(v)=g(m, (v))+3g(rn2(u)),

V'& s'b(v)=3g(mz(v))+6g(m~(u)),

(26a)

(26b)

B. One-loop contributions

We will write separately the zero- and finite-
temperature contributions to the one-loop result, and the
contributions from the Higgs-boson, gauge-boson, and t-
quark loops. We have

V, (u)= VP'(v)+ VI (v),
v',"(v)= v", ,'(v)+ V", ,', (v)+ V", ~(v),
v'"(u) = v'"(u)+ v'" (u)+ v'"(u) .

r 1,gb 7

We will rewrite each of these contributions in terms of
the three functions f(m„(u)), g(m„(v)), and h(m„{u)),
which are defined below. The argument m„(v) represents
one of the masses in the problem: m

&
(v), rn 2(u), m~(u),

mz(u), or m, (v). The function f(m„(v)) is equal to the
one-loop zero-temperature potential for the simple scalar
model [Eq. (4)]. Regularizing as in Sec. II, f(m„(v) ) de-
pends on the cutoff parameter A:

V', ~(v) = —12h (m, (v) ) . (26c)

dV' '(u)

dU

The numerical factors in Eqs. (25) and (26) arise as fol-
lows. There is a factor 3 for the three Higgs bosons that
have equal mass, a factor 3 for the three polarizations of
the Z boson, a factor 6 for the three polarizations times
two 8'bosons, and a factor 12 for the t quarks from two
spins times two particle-antiparticle degrees of freedom
times three colors.

We consider VI '(v) first. As in the case of the scalar
theory, this term contains all of the ultraviolet diver-
gences and we can renormalize by adding counterterms
[Eq. (5)] to remove the cutoff dependence. To determine
A and B we write A =a(A) —5c and B =b( A) +5k, ,
and choose a (A) and b (A) to cancel the infinite
coeScient of the v and v terms, respectively. Then we
impose the conventional renormalization condition

Af(m„(v))= 2 m„(v)
32772

m„(v)+ ln
64m

m„(v)

A

1

2
(22}

where V' '(u)= V(v)„„+V', '(u). This condition gives
5c =5k,c /A, . We use 5A, -A, -0, since corrections to
the tree potential will not be significant in the high-
temperature region. We have
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V(0) v v2 1c2+ 3~ 2 + 4 lg 1 6gP+ 3g 3(g +g ) 3f
2 32~2 4 64~ 16 32

+ 6m~(u)ln +3z(u)ln
1 4 A, V 4 kV

64m c c
A,

2—12m, (u)ln
C2

+m ~(u)ln
m f(u)

2c

m2(u)
+3m 2(v)ln

2c
(27)

Next we consider V', '(v). We do not want to restrict
ourselves to the ultrarelativistic regime m (u)/T « 1 and
therefore we do the integrations in Eqs. (23) and (24) nu-
merically. There is no diSculty with this procedure for
the gauge-boson sector. For the Higgs sector, however, a
calculational problem arises as a result of the fact that
the Higgs-boson masses squared are negative for finite
values of u. Specifically, m f(u) =3k,u —c is negative for
u &c /3A, , and mz(u)=m3(v)=m4(u)=Av —c is neg-
ative for v (c /A, . In these regions, the square root in
Eq. (23) is imaginary. To avoid this difficulty, we need to
combine the ring diagrams and one-loop contributions.
As discussed in Sec. II, the sum is the one-loop expres-
sion with the masses replaced by the shifted masses,
m;(u)+m. ;(0), which are positive for T large enough.
The calculation of the ring diagrams is described in the
next section and the condition on T is discussed. The
sum V', &(u)+ V(v)~„ is given in Eq. (31).

C. Ring diagrams

There are contributions to the ring diagrams from
gauge-boson and Higgs-boson loops. We need to calcu-
late the gauge-boson and Higgs-boson polarization ten-

~~ "(0)=
,', (g +g' )T—

~'~'(0) =-,'XT2,7TQ

rr'~'(0)= ' f T-7TQ

(28)

The Higgs-boson ring diagram contributions are given by
[compare with Eq. (15)]

sors in the infrared limit. As in Sec. II, we work to lead-
ing order in m(u)/T, even when m(u)/T-l, since
V( u)„„s-0 there.

First we consider the Higgs polarization tensors. The
diagrams that contribute are shown in Fig. 8. The nota-
tion is as follows: m;(0) is the polarization tensor for the
ith Higgs field, and m~„,

,
(0), mes ~(0), mP'&~(0), and ~t&~(0)

indicate contributions to the Higgs polarization tensor
from the SU(2}, U(l), Higgs, and t-quark fields, respec-
tively. The results are

(A ) (8 )n.;(0)= mp
" (0)+m~ " (0)

+~,'~'(0)+ ~',~'(0),

(0)=—,'g T
(3 )

'N

V(u)„'„s= ,'T g I —
3 —g——

2
n;(0).d q

"
1 1

(2n ) ~=~ & co„+q +m, (u)
(29)

As discussed previously, we combine Eqs. (26a) and (29) to obtain functions of the shifted mass:

V& '(u) = V', &(u)+ V(u)~;„

=g(m f(v))+3g(mz(v))+ V(u)„'„+3V(v)„'„

=g(m, (v)+ m. ,(0))+3g(m 2 (u)+ m2(0) } .

The functions g(m„(u)+sr (0)), for x = 1,2 are given by

(30)

(31)

g(m (u)+m„(0)}= Jdk k ln(1 —expI —P[k +m„(u)+m.„(0)]'r j) . (32)

The argument of the square root in Eq. (32) is real for all
values of k when m„(v}+rr„(0)~ 0, and for all values of v

when vr (0) ~ c . From Eq. (28) this condition becomes
(A„}

(p)
2

T T- 16c
8A, +3g +g' +4f (33)

FIG. 8. Contributions to Higgs polarization tensors.
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Differentiating we obtain

+3mz(v)+6m, (u)] .

2meff—
(3 V(u) "'

BU u=0
=m„(0)—c

which is positive for m„(0) ~c . Thus, both the Higgs
contributions to the effective potential and the Higgs-
boson effective masses are real when T & T, . Note that,
for any values of the parameters, the phase transition will
be first order as long as there is some temperature T, for
which m, ff =0. Increasing the temperature
infinitesimally above T, will produce infinitesimal posi-
tive curvature at the origin, which indicates a local
minimum at the origin and a first-order phase transition.

Next we calculate the gauge-boson polarization ten-
sors. We work in the original basis, where the relevant
fields are A„', and B„. We will write both the mass term
and the polarization tensor in matrix form. The mass
matrix M„2)(u) is given in Eq. (20). The polarization ten-
sor in the infrared limit is denoted n z2) (0). We obtain an
expression for this quantity as follows. We define the
projection operators T„and L„„by

kik
Too =0, Toi = Tio=0, Tij =~ij

As in the case of the scalar model, this condition is
equivalent to the requirement that the effective mass [Eq.
(18)] is positive. To lowest order, we obtain the effective
mass from the quadratic term in the effective potential.
The quadratic term in the finite-temperature one-loop po-
tential is obtained by expanding Eq. (26) in m(v)/T.
Combining with the quadratic part of the zero-
temperature term [Eq. (27)] and dropping the first-order
corrections to the tree potential gives

C U TV(u)'J~'d= + [ m, (v)+3m 2(v)+6m~(v)

n„"„(0)= —L„„m.oo (0) . (35)

In the limit m)r( u) /T and mz( v) /T ((1,moo (0) is diag-
onal:

n.(~(0)=
o ~")(0) o

0 m.I)0'(0) 0

o ~' "(o)

(36)

~(2)(0) ig2T2

~(2)(0) g2T2

n'"(0)= —'g' T
( 1 )(0 ) 5gl2T2

7TQ

(37)

The gauge-boson ring diagram contribution is given by

d4 00

V(v)„b = ——f q Tr g —[—iW"2)(0)iD,2 (q)]
(2m. )'

(38)

where the superscripts (2) and (1) indicate the polariza-
tion tensors for SU(2) and U(1) bosons, respectively.

The diagrams that contribute to n((())(0) and n((())(0) are
shown in Fig. 9. We define n.s(b)(0), n.

4(, '(0), and n(& '(0) as
the contributions to the SU(2) gauge-boson polarization
tensor from the gauge-boson, Higgs-boson, and t-quark
sectors, respectively. Similarly, ~(&"(0) and n &"(0) are the
contributions to the U(1) gauge-boson polarization tensor
from the Higgs-boson and t-quark sectors, respectively.
The results are

1T' '(0) =Or' '(0)+fry '(0)+Ore '(0),
(')(0)=~(~')(0)+~(~')(0),

m' '(0)= 'g T—
gb

k„k„
P~ 2 P"/ P~k AB

iD„", (q)=i(T„„+L„„) 1

q +M (v)+is
(39)

Expanding the polarization tensor we can write
n„"„(0)=mz(0)T.„„+rrL .(0)L„,. In the infrared limit,

—
~L, (0)=~(x) (0), 2m. (T0)=m.;"; (0)=0 and, therefore,

Since T„T &= —T„&, L„L &= —L„&, and L„T&=0,
we have, from Eqs. (35), (38), and (39),

(34) In the Landau gauge the gauge-boson propagator is

V(v)s„=—( L")f Tr g-b l d4q

2 " (2~)4 )v, N
1

q +M(u)+i@
H'(0)

~here the trace now operates only on the indices A, B. At finite temperature we have [compare Eqs. (15) and (29)]

V(u)s„s= —
—,'Tg f Tr gd q

"
1

(2n. ) N, N

AB N

H'(0)
co„+q +M(v)
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M„(T)/I' vs T.
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FIG. 12. The effective potential at T =102.52 GeV (dotted
line) and T= l.02.37 GeV (solid line). Masses and temperatures
axe measured in GeV.

FIG. 14. The F-boson mass (open circles) and Higgs-boson
mass (crosses) as a function of critical temperature.

perature at which the two minima are degenerate. For
this choice of parameters, we obtain T, =94.66 GeV.
Figure 12 shows the efFective potential when the vacuum
Higgs-boson mass is 60 GeV (A, =0.030) and the vacuum
t-quark mass is 110 GeV (f =0.632). The solid line cor-
responds to a temperature of 102.37 GeV and the dotted
line to T =102.52 GeV. The critical temperature is
102.47 GeV. In Fig. 13, the vacuum Higgs-boson mass is
60 GeV (A, =0.030) and the t-quark mass is 115 GeV
(f =0.661). The solid line corresponds to T =99.69

GeV and the dotted line to T =99.87 GeV. The critical
temperature is T =99.82 GeV.

Figures 14 and 15 show plots of the W-boson mass and
Higgs-boson mass as a function of critical temperature
( T, ) and the temperature T„which is defined in Eq. (33).
In both figures, the open circles indicate the 8'-boson
mass and the crosses indicate the Higgs-boson mass.

There has been a lot of work done with models that in-
clude more than one Higgs doublet. It would be interest-
ing to see if this phase transition persists in such models.

M„ 60

M, 11
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FIG. 13. The effective potential at T=99.87 GeV (dotted
line) and T =99.69 GeV (solid line). Masses and temperatures
are measured in GeV.

FIG. 15. The F-boson mass (open circles) and Higgs-boson
mass (crosses) as a function of the temperature T& as defined in
Eq. (33).
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