
PHYSICAL REVIEW D VOLUME 45, NUMBER 8 15 APRIL 1992

Zero-momentum limit of Feynman amplitudes at finite temperature
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In the real-time formalism, we show that, if carefully evaluated, the zero-momentum limit of the real

part of the scalar self-energy exists and is unique.
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I. INTRODUCTION II. THE CALCULATION

lim lim Re~& Re~(0) .
0 0 P~P

(2)

The real part of the self-energy at finite temperature
would, therefore, appear to display a nonanalyticity in
the sense that it is discontinuous at p"=0.

In the real-time formalism [4], on the other hand, it
was argued that Rem(0) is not at all defined although the
two different limits of vanishing p" for Rem(p) exist and
coincide with the expressions obtained in the imaginary-
time formalism [5]. In the imaginary-time formalism, the
limit p —+0 is ambiguous since p is defined to take only
discrete values in this formalism. A method for comput-
ing Rem(p) for small .p", in the imaginary-time formalism,
was proposed in Ref. [1] which gives an analytic Rem. (p).
However, there is no compelling reason to accept this
proposal over any other within this framework. The
nonanalyticity of Rem(p) has also prompted various peo-
ple [5—8] to postulate additional Feynman rules in the
real-time formalism. These rules are, however, quite ad
hoc.

In this paper we reexamine the calculation of Rem. (p)
within the framework of the real-time formalism. In the
framework of the conventional rea1-time formalism
(namely, without any new ad hoc Feynman rules), we
show that, when carefully evaluated, Re~(0) is well
defined. Furthermore, Rem(p) is analytic at p"=0 and,
for small p", it almost coincides with the results of Ref.
[1].

The zero-momentum limit of Feynman amplitudes at
finite temperature has generated much discussion in the
past few years [1]. As an example, let us summarize the
results on the self-energy of a scalar field at finite temper-
ature which has been well studied both in the imaginary-
tirne as well as the real-time formalisms. In the
imaginary-time formalism [2] it was shown at one loop
[3] that, for the real part of the self-energy, Rem. (0) is well
defined and corresponds to

Rem.(0)= lim lim Rem. (p) .
p~0 p —+0

Here the limit p~0 is assumed to be taken after the limit

p ~0 has been taken. It is also known that reversing the
order of the limits leads to a different result: namely,

Here B and P are two real scalar fields and Xo(B)
represents the free Lagrangian for the field B. For com-
pleteness, we note here that our metric is diagonal with
the signatures (+,—,—,—). Let us next calculate the
self-energy of the B field at one loop and at finite temper-
ature in the real-time formalism. At one loop, the tilde
fields of thermofield dynamics do not contribute to this
amplitude and, consequently, we have (see Fig. 1)

d4k
rr(p) = J Gp(k )Gp(k+p),

(2~)

where the thermal propagator G&(k) is given by

(4)

Gtt( k ) = lim
1

e 0 k —m +is

+ sinh 8I,
k —m +ie k —m —iE

1= lim
k —Pl + l E

—2isinh Op 2 22 2(k —m )+E

with

2 1 1
sinh 8k =

PI& Io 1 kT

(5)

We note here that the factor —,
' in Eq. (4) is the symme-

try factor and that if we use the representations

p+k~

FIG. 1. Graph corresponding to B-field self-energy.

To be specific, as well as for convenience of comparison
with other works, let us consider the Lagrangian

2

X(B,P)=So(B)+ ,'t)„Qt)"P—P—— BP—
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1 e
lim —,, =5(x),
&~o~x +6

x
lim

2 2
=P

~~o x +E x 7

(7)

then the thermal propagators will take the more familiar
form. However, we will continue to work with the form
of G&(k) as is given in Eq. (5). The real part of the self-

energy can now be easily obtained from Eq. (4) and has
the form

d4k Plkol e (k+p) rn-
Rem(p) = lim- coth

o 2 (2~)4 (k —m ) +e [(k+p) —m ] +e

Plko+pol+ coth
2

We can set p"=0 in Eq. (8) to obtain

k2 —m2

[(k+p)2 m2]2++ (k2 m2)2+ 2

Plkol k2 —m2
Rem. (0)= lim —

A, coth
(2~)4 2 (k2 m2)2+e2 (k2 m2)2+~2

If we take the limit @~0in Eq. (9}and use the formulas in Eq. (7), this can also be written as

Rem.(0)= Anf—. coth 5(k 2 —m 2)
(2~) 2 k —m

(9)

(10)

It is clear that the integrand, in this case, is meaningless and this is the origin of the claim [5] that Rem(0) is not well
defined in the real-time formalism.

Let us, however, note here that the proper way to do the integrations in Eqs. (8) and (9) is to take the limit @~0only
after doing the integration. The parameter e, indeed, defines a regularization of the quantities being evaluated. Alter-
nately, note that we can write Rem. (0) of Eq. (9) also as

a d4k Plkp I

Rem(0)= lim —
A, coth

E o 2 gm (2~) 2 (k2 —m )2+g

f f dko coth 5(k rn )—
Bm (2m. )

8 d k 1 Prok

2 3
coth

4 Bn (2 )

where

cok=(k k+m )' (12)

This is, of course, the result also obtained in the imaginary-time formalism. Let us note that we can take the limit e—+0
before doing the integration in Eq. (9) provided we define the singular integrands using the identities

5(k —m }P
k —m

5(k —m ).1 8

Bm
(13)

That this relation is true can easily be seen using the representations in Eq. (7}and we note here that such relations have
already been discussed earlier in the literature [9,10].

Now, let us evaluate next Rem. (p) for small p" using the method of residues. First, let us write

Rem. (p) = Rem. ,(p)+ Re~2(p),

where

Pl ol (k+p) —m

(2n) 2 (k —m ) +e [(k+p) rn ] +e— (14)

d k Plko+ppl
Revr2(p) = lim — f 4 coth

(2n. ) 2

Note that, under a redefinition,

kp~ (kp +pp ), Re~2(p)~ Rem, (p)

E k —m2

[(k+p) —m ]2+@ (k2 —m ) +@2
(15)

(16)
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Thus we can write

Rem(p)=2Ren, (p) .

The first problem one faces in trying to use the method of residues is that coth~x~ is not an analytic function and, there-
fore, the method cannot be applied directly. But let us note that we can write

Rem. (p) =2 Re~, (p)

= lim —
A, dk0 coth

~-0 (2n }4 —~ 2 (k —m ) +e [(k+p) —m ] +e
Pkp e (ko+po }'—~~k+,= lim —k dkG coth +

~~p (2~)4 p 2 (k2 m2)2+&2 [(k +p )2 2 ]2+&2

(ko po} k+p

[(ko po
—)' k—+, )'+ e'

(18)
The integrand is now analytic in the upper right-hand quadrant of the complex kG plane except for isolated singulari-
ties. Therefore, we can do the integration using a contour C as shown in Fig. 2. Clearly, the integral vanishes along the
arc. However, since cothPko l2 has a series of poles along the imaginary axis, the integration along this axis will appear
to give a nonvanishing contribution. A little analysis, however, shows that the e term would regulate any such contri-
bution to zero in the e—+0 limit. An alternate and more intuitive way to recognize this is to note that the 5 function in
the integrand cannot support any contribution from the imaginary axis. Therefore, the integration along the contour
gets a contribution only from the real axis which is, of course, the desired result.

Let us next rewrite Rem(p) as

d'k 8
Re~(p) = lim lim fp+ E «(2n)

Pkp
X f dx f dkp coth

0 p 2

lG l E'

kp+xpo+0k kp+xpo 0k2 k k

l E' l E'

ko xpo+ 4k
— ko x—po 4k+ —2—

k k

kp +xpp +pk + kp+xpp —
pk

—
22 k k

ie
kp —xpp+p„+ k —xp fk—

2 k k

1 1 1

1 —2x i(1—2x)e
k + + i(1 2x)e-

0+xpo+ k . o+ po

1 1

1 —2x i(1—2x)e k
i(1—2x)e

0 xp0 k 2~
0 xp0 k

1 1

1 —2x i(1—2x)e
kp+xpp+Pk + kp+xpp —Pk-

2gk

i (1—2x)e
2/k

i(1 2x)E-
2gk

Here x is the Feynman parameter and we have defined

1 1

1 —2x i(1—2x}e
ko —xpo+Pk+ kp —xpp Pk

——
k

(19)
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Pk=[(k+xp) +m —x(1—x)p ]'

and we note that, when p"=0,

4'k ~k .

The expression in Eq. (21) can now be evaluated by considering the poles enclosed by the contour C and the result is

iA, dk B & P ie 1
Rem.(p)= lim f 3 f dx coth —

Pk
—xpo+

0 8 (2~)3 Be 0

(20)

(21)

+ x coth — k+xpp+p ie 1

p 2 2 k ~ + le
24k

1 P i(1 2x)e — 1

0k—

+f dx coth —Pk+xpo-p
1/2 1 2x

i(1—2x }e 1

2/k i(1 2x)e-
20k

+ x coth —
k
—xpp+

l/2 1 p i(1 2x)e-
o 1 —2x

1

i(1—2x}e
24k

1/2 1 P i (1 2x)e — 1+ dx coth —Pk+xpo+
o 1 —2x 2 2 k ~ +l 1 2xe

24k

The @~0limit can be taken after taking the derivative with respect to e and the result can be simplified to

d k B l/2 1 P 1/2 1
Rem(p) = — f f dx coth —(pk —xpo)+ f dx cothp2(pk+xpo)

(2n ) Bm k

(22)

(23)

It is obvious from Eq. (23) that

B d'k 1 P~k
Rem(0}= — f 2

coth
4 Bm' (2~)' ~k

(24)

which is the same as Eq. (11). Furthermore, we can Taylor expand Rem(p) for small p& and up to order p, it has the
form

8 d k 1
Rem(p) =-

~ .f(..) -,
„&~k x' B

coth +
2 24 Bm 2 (2m )3 cok

B d k
( 0}2 1 B

coth +O(p ) .
96 Bm (2n. ) ~ Bco

~~k
coth

(25)

It is obvious now that Rem. (p) is analytic at p"=0 and its
value there is equal to Rem. (0). We also note that our re-
sult, namely, Eq. (23) has the same form as the result of
Ref. [1] [see their Eq. (3.33)] except for the limits of x in-
tegration. This corresponds to the fact that our result in
Eq. (25) agrees with that of Ref. [1] [see their Eq. (3.24)]
except for the coefKicient of the last term. This difference,
however, disappears for values of p = i2n n /P, and
agrees with the usual imaginary-time result, as can be
checked by making the change of variables x ~1—x and

FIG. 2. Contour in the complex k plane used in the integra-
tion.
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k~ —k —p in the second term of Eq. (23) and perform-
ing the x integration, following Ref. [1].

about the singularity structure of Imm. (p) at the present
time.

III. CONCLUSION

We have shown within the framework of the conven-
tional real-time formalism (namely, without any new ad
hoc Feynman rules) that, when evaluated carefully and
consistently, the real part of the self-energy for a scalar
field is well defined at p"=0. We have nothing to say
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