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Variational calculations of the effective potential with non-Gaussian trial wave functionals
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Variational calculations of the effective potential, going beyond the Gaussian approximation, are dis-

cussed in the context of A,P theory. Following Polley and Ritschel we use trial wave functionals ob-

tained by a nontrivial unitary operator U=e " acting on a Gaussian wave functional. We discuss in

detail two cases in which the operator B has the forms (i) B=n', and (ii) B=n„$2r, where P is the field

operator and n is its canonical conjugate. [R and T refer to radial and transverse directions in the

O(N)-symmetric case.] We calculate the expectation value of the Hamiltonian in the non-Gaussian trial

states thus generated, and obtain the optimization equations for the variational-parameter functions of
the ansatz. These can be solved explicitly at q, =0 and lead to a nontrivial correction to the mass renor-

malization, with respect to the Gaussian case. Numerical results are obtained for the (0+ 1)-dimensional

case, and show a worthwhile quantitative improvement over the Gaussian approximation.

PACS number(s): 11.10.Ef, 11.10.Gh

I. INTRODUCTION

Variational methods using Gaussian trial wave func-
tions have a long history (see [1—4] and references
therein). Recent results for the four-dimensional A,P
theory are particularly tantalizing, since they challenge
the dogma that this theory is "trivial. " In fact, they im-

ply the existence of two distinct A,P theories: "precari-
ous" [5,6] and "autonomous" [7,8,9]. It is important to
try to improve upon the Gaussian approximation in order
to test the validity of these results. One way of doing so
is to formulate a quasiperturbative expansion which gives
the Gaussian result in its first order [4,10,11]. A comple-
mentary approach is to continue using the variational
method, but using more elaborate trial wave functionals.
Initially this might seem quite impractical since one can
essentially only compute Gaussian functional integrals.
However, the "method of nonlinear canonical transfor-
mations" (NLCT) introduced by Polley and Ritschel
[12,13] allows one to circumvent this difficulty. (Related
methods have been employed in quantum mechanics [14],
field theory [15],and in solid-state physics [16].)

The idea [12,13] is to consider trial wave functionals of
the form

reduces to the calculation of the Gaussian expectation
value of the "transformed Hamiltonian" H = U~HU.
Furthermore, H is easily constructed once one has corn-
puted the transforms of the field and its canonical conju-
gate

P(p) = U P(p) U, S(p) = U m(p) U, (1.3)

0 =UQG,

where %G is normalized Gaussian wave functional, and U
is a unitary operator U =e " . The computation of the
expectation value of H in this state,

(1.2)

since the transform of P is just P, etc. The unitary
transformation of an operator 0 is expressible as a multi-
ple commutator series:

' 11 fl

O=e" Oe "=g [BO]
n1

(1.4)

&+IHI+&= V, +s&, +s'V, + . (1.5)

where VG is the GEP. If the linear term V& is nonzero
we will certainly be able to lower the energy, and hence

where [B,O]„=[8,[8,0]„&]and [8,0]o=O. With a
suitable choice of the Hermitian operator 8 one can ar-
range that the series truncates after the first nontrivial
term. This then offers the prospect of a feasible calcula-
tion [17].

Possible operators 8 can be constructed from products
of P's and n's with various momentum arguments,
p„. . .,p„. (We use momentum-space arguments rather
than x-space arguments for the field; see Appendix A. )

The momentum arguments must sum to zero to preserve
translation invariance, but apart from this constraint we
may include any function f (p&, . . . , p„). We call this the
"correlator" and treat it as a "variational-parameter
function" to be determined, ideally, by minimization of
the energy. (The other variational-parameter function we
have is the kernel in the Gaussian wave functional. ) This
procedure will lead to a variational approximation to the
effective potential which can represent an improvement
upon the Gaussian effective potential (GEP). Thanks to
the variational principle we know that any lowering of
the energy (for fixed bare parameters) represents an im-
provement.

The parameter s serves as a convenient bookkeeping
device, helping us to identify and organize the non-
Gaussian terms. (Notice, however, that s is really redun-
dant, and could always be absorbed into the correlator f.)
With s we may write
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. ~qn ~P qi ''
qn

X5( —p+qi+ . +q„), (1.6)

with a correlator of the form [19]

f(p, q„. . . , q„)=g(p,q„. . . , q„)h(p)k(q, ) . k(q„),

obtain an improvement over the GEP.
This approach was used in Refs. [13,18] with operators

of the form

mation is considered in Sec. V. In each case we first
present results for arbitrary dimensionality, including op-
timization equations and a discussion of the mass renor-
malization, and then present numerical results in 0+ 1 di-
mensions. We summarize our conclusions in Sec. VI.
Appendix A gives some details of our notation.

II. )t.$ THEORY AND THE GEP

We study the A,P theory as the simplest example of an
interacting field theory. Its Hamiltonian density is

with %=—,
'm. + —,'(VP) + —,'ming +A, iig (2.1)

h (p)k(p}=0 . (1.8}

This constraint ensures that the argument of the ~ is nev-
er the same as the argument of any of the P's, so that
they will effectively commute. This then causes the
multiple-commutator series, Eq. (1.4), to terminate after
the first nontrivial term. However, it is hard to optimize
the ansatz [one would need to introduce a Lagrange mul-
tiplier function to impose the constraint (1.8)], and so one
is reduced to making rather ad hoc guesses for the func-
tions h, k, and g. References [13,18] used simple step
functions for h and k and took g to be constant.

In this paper we examine other transformations which
do not require constraints on the correlator f in order to
be tractable. One can then hope to determine, at least ap-
proximately, the optimal form of the correlator f. We
feel that this adds significantly to the power and elegance
of the method. To find suitable operators 8 we are guid-
ed by the following considerations. (i) Operators 8,
which are only linear or quadratic in P's and m's, do not
produce non-Gaussian wave functionals, and so do not
give any improvement upon the GEP. Thus, we must go
to cubic operators, at least. (ii) In the O(N}-symmetric
case, we want 8 to respect the O(N —1) symmetry that
remains in the presence of a nonzero, constant classical
field. (iii) Time-reversal invariance, which implies that
the wave functional is real, not complex, requires that B
should contain an odd number of ~ factors. (iv) We want
the multiple-commutator series (1.4) to truncate after the
first nontrivial term [20]. These considerations leave us
with three possible cubic forms for 8: m. , m.zPr, and

2
fag 777 ~

In this paper we explore the first two possibilities in de-
tail. We give unrenormalized results for the general
(v+ 1)-dimensional case, and briefly discuss how to tackle
the optimization equations and the mass renormalization
problem. We also obtain numerical results for the
(0+1)-dimensional case, and compare these to the GEP
and to exact results. We are currently working to obtain
explicit, renormalized results in the higher-dimensional
cases.

The organization of this paper is as follows. Section II
reviews the Gaussian effective potential (GEP) approach,
and its results in the (0+ 1}-dimensional case. Section III,
supplemented by Appendix B, provides formulas for the
expectation value of the A,P Hamiltonian in a trial state
O'= UO& for a general transformation U. The m. trans-
formation is studied in Sec. IV, and the m~Pz. transfor-

We begin by briefly outlining the GEP method and re-
sults; for a more detailed description see Refs. [4,5].
Some details of our notation are explained in Appendix
A.

The effective potential, in Symanzik s definition [21], is
obtained by minimizing the expectation value of & over
all possible states which have the expectation value of P
equal to the constant classical field y, . The GEP is ob-
tained by restricting these states to ones whose
Schrodinger-representation wave functionals are of
Gaussian form:

[0]=exp —f [0(p)—A@p)]
P

X W(p)[P( —p) —P 5(p)] . (2.2)

Thus, the GEP can be viewed as a variational approxima-
tion to the effective potential:

Vo(qr, ) =min (%o ~%~Co ),
w(p)

where, by a straightforward calculation,
= (+o I&I'Po ) =go, and

(%o &~To) =J+—,'m (I +Q )

+A a (Po+ 6Iogo+ 3Io )

where

(2.3)

(2.4)

kr~= 'f w(k)'"--', z = 'f w-(k)+ " . (2.s)
4 w(k)

Taking the functional derivative, it is easy to show that
the optimum kernel function, W(p}, is [2,22]

w(p)=+p +Q (2.6)

Q =m~~+12A~[Io(Q)+go] . (2.7)

The Io and I, integrals are divergent, of course, but the
GEP can be renormalized by eliminating the bare param-
eters mz and kz in favor of two new parameters, m~ and

k~, defined in terms of derivatives of V6 at the origin

In most discussions of the GEP the form (2.6} is, quite

[so that J reduces to I, (Q}—
—,'Q Io(Q)], with the mass

parameter Q given by [23]
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0 1I =—I =2' ' 2n ' (2.&)

and the problem reduces to a problem in ordinary quan-
tum mechanics (QM), where one has a lot of intuition and
where exact, or very accurate, numerical results are
readily available. We study this case in detail to see to
what extent one can improve upon the GEP by using the
nonlinear-canonical transformation (NLCT) method.

Even though the bare parameters are finite in 0+ 1 di-
mensions, it is convenient to introduce a "renormalized
mass" m& and a dimensionless coupling constant A,

through the equations [5]

mii =mit(1 —6A, ), A, ii =km~ . (2.9)

For the anharmonic-oscillator case (mii )0, i.e., 2( —,'),
the GEP gives energies to within 2% of the exact results
even in the strong-coupling limit. For the double-well
potential (mii (0}the GEP evolves, as A, increases, from
a single-well shape, through a triple well, to what is
efFectively a double-well shape. (Actually, the GEP al-
ways has a local minimum at the origin, but for large A,

this becomes just a tiny, shallow dip at the top of the cen-
tral barrier between the two deep wells. ) In field theory
one would describe this in terms of spontaneous symme-
try breaking, with a first-order phase transition from the

I

naturally, assumed from the beginning. However, it is
important in the present context to realize that it emerges
from an optimization of a general kernel function W(p).
When we go on to consider non-Gaussian trial wave
functionals Uip&, we will find that the optimum W(p) is
not necessarily of this form. (We will also find that the
classical field p, is no longer the same as the shift param-
eter 4o ' 'Pg.

In 0+ 1 dimensions the "integrals" reduce to

symmetric vacuum at go=0 to a broken-symmetry vacu-
um at ((}o=+u. The "critical A,

" at which the nontrivial
minimum becomes deeper than the one at the origin
(A.,„,=1.149) would be viewed as the onset of the phase
transition. In the QM case this language is, strictly
speaking, not correct. Because of quantum-mechanical
tunneling through the barrier, the two would-be vacua at
Po=+u can mix, and the true ground state is their sym-
metric combination. Thus the expectation value of (t}

remains zero, and there is not true spontaneous symme-
try breaking. However, once the barrier becomes
suSciently high, the tunneling rate becomes so small
that, for all practical purposes, there is symmetry break-
ing (viewing the system over some long, but finite, time
scale). Thus, it is still convenient to talk about a "phase
transition" from qualitatively different "single-well" and
"double-well" regimes, even though this is a smooth, not
a discontinuous, transition. (Above 1+1 dimensions the
tunneling becomes suppressed by a volume factor, and
then one does have a true phase transition. )

The GEP is very accurate both at small A, and at large
2 (which is the "extreme double-well limit, " where one
has two well-separated harmonic wells). The GEP is less
accurate in the transition region, where the error in the
ground-state energy can be 10—15 %.

Similar results hold for the O(N)-symmetric A,P
theory, whose Hamiltonian density is

,'m;m. ;+—,'(V—P,)(VP, )+ ,'ms/;P;+—k~(P, P, ), (2.10)

where i =1,. . . ,N, and we sum over repeated indices. As
explained in [9] the most general Gaussian wave func-
tional will have different kernel functions for the "radial"
and "transverse" fields (where the "radial" direction is
defined as the direction picked out by the classical field).
The GEP is given by minimizing

(~P&gf~iP&) =J + 2miiIo +(N——1)(J + —,'m&Io )+—,'mzPo+XiiPo

+As[3(Io ) +(N 1)(Io ) +2(N——l)IoIo +6Io go+2(N —1)Io(('io] . (2.11)

Optimizing the kernels leads to

Wz(p)=V'p2+0, Wr(p)=+p +co (2.12}

to compute the transformed ((}'s and n's. Quite generally,
these can be written in the forms

with

02= m~2+4As [(N —1)Io +3Io +3$o],

co =mii+4A~[(N+1}Io+Io +go] .

III. GENERAL FORMULAS

(2.13)

(2.14)

4R ( P ) 4'R ( P )+4 o@P ) +s 0ii ( P )

Qr(p) =fr(p)+sPr(p)

~, (p) =~, (p)+s~, (p),

err(p) =~z (p)+sF~(p)

(3.1)

(3.2)

(3.3)

(3.4)
In this section we consider the NLCT method with a

general unitary transformation applied to the O(N}-
symmetric theory. As explained in the Introduction, we
need to evaluate (0'~H~%') = ('P6 ~H ~%'~ ), where
H= U HU. Hereafter we shall abbreviate Gaussian ex-
pectation values (iPo ~ A~~Po) by ( A ). One first needs

[where it should be understood that Pz, m. z-, etc. , are
O(N —1) vectors]. In general, the barred quantities will
be power series in s, resulting from the multiple commu-
tator series (1.4). For the specific transformations con-
sidered later the multiple-commutator series will natural-
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ly truncate after, at most, one nontrivial term, and the
barred quantities will then either vanish or be a single
product of P's and m's. However, in this section we do
not assume this simplification, and our formulas apply to
a general, unitary transformation.

The untransformed radial field (tz has been redefined

to include a shift $05(p), so that the Gaussian wave func-

tional for the radial quantum field is now centered on

Pz =0 (i.e., so that ((tz ) =0). However, in general, the
additional terms generated by the nonlinear transforma-
tion will have nonzero Gaussian expectation value, so
that the classical field, y„ is not $0. Instead we have

P 5(P) =('Plug(p)lq') =(p~(p)) =p 5(p)+s (p„(p)) .

(3.5)

The Po parameter no longer has physical meaning and
should be eliminated in favor of y, . This can be done
directly by substituting the last equation back into Eq.
(3.1) above.

Having obtained the transformed P's and vr's, it is
straightforward to construct the transformed Hamiltoni-
an H. The Gaussian expectation value of H can then be
written in the form (dropping an overall volume factor)

(~)=(~ )+(gf )+g [2(N 1)(I~Ir+Irq&)+. P~r+s2P~r+s3P~r+s4f3~r)

where

(&z ) =J +sa", +s Irz+ 2m'(I—O+sy", +s yz+p, )

+A, [3(I") +sf3", +s P +s P +s P +6qP(I +s y")+y ],
and

(%z. ) =(N —1)J +sr&+s azr+ —,'mz[(N —1)IO+sy&+s yz]+As[(N —1)(ID ) +sf3&+s f3z+s f33+s f34],

(3.6)

(3.7)

(3.8)

where the ~, P, and y integrals are given in Appendix B.
The NLCT effective potential VN„c~ is obtained by op-
timizing (H ) with respect to the variational-parameter
functions WR, Wr, and the correlator(s) in the operator
B.

IV. 7T TRANSFORMATION

There are no higher terms in the multiple commutator
series because this expression commutes with B.

For the N = 1 case there are no transverse fields, so the
effective potential can be obtained just from Eq. (3.7) for
(%~ ), and we may drop the R superscript. Evaluating
the Gaussian matrix elements involved [see Eqs.
(Bl)—(B8) in Appendix B], we obtain

A. General ( v+ 1)-dimensional case

In this section we consider the m transformation ap-
plied to the N=1 theory. This is perhaps the simplest
nontrivial example of the NLCT method. The unitary
operator U=e " is given by

8=—,
' f f f f(p, q, r)m(p)n. (q)n.(r)5(p+q+r) . (4.1}

p q r

This transformation obviously leaves n.(p} unchanged.
The commutator with $(p) gives us directly the "P" of
Eq. (3.1) as

P(k)= f f f(k, q, r)m(q)m(r)5(k+q+r) .
1

&2=
~ f f f p f (p, q, r)W(q)W(r)5(p+q+r),

p q r

y2= —,
' f f f f (p, q, r)W(q)W(r)5(p+q+r),

p

Pi= —2q, a

p2=6IOy2

4V'ca3 i

&4=3{yz+a4»

where the a's stand for

(4.3)

(4.4)

(4.S)

(4.6)

(4.7)

(4.8)

a, =f f f f(p, q, r)5(p+q+r),
p q r

(4.9}

P1+P2~ P1~ P2 P1+P3~ P1~ P3 P2 P3~ P2~P3 ~ 5 1 ~ ~2 ~ ~3
Pl P2 P3

a4= f f f f f(p&+pe pi pi)f(pi+p3 pi p3}

(4.10}

Xf{pz+p4, —pz,
—p4)f(p3+p4, —p3, —p4) W{p, ) W(p~ }W(p3)W(p4

Thus, (&) can finally be written as

(&) (&)G+s Ki+ ~~ mss y2+k~ [
—2|p,sa, +6s (ID+ g, )yi+4y, s'a, +3s (y2+ a4)]

(4.11)

(4.12)



45 VARIATIONAL CALCULATIONS OF THE EFFECTIVE. . . 2897

where the GEP part & &&G is given by Eq. (2.4).
Note that in writing these expressions we have as-

sumed that f (p, q, r) is symmetric in its three arguments.
There is obviously no loss of generality in so doing since
only the symmetric part of f contributes in Eq. (4.1).
However, when attempting to optimize f, one should
take care to explicitly symmetrize the above equations be-
fore taking a functional derivative with respect to f.
(The point is that the functional derivative considers an

I

arbitrary variation of f, and does not necessarily stay
within the subspace of symmetric functions. ) Also note

that f must be invariant under an overall rotation or in-

version of our coordinate system. Therefore, in particu-

lar, f (p, q, r) =f ( —p, —q, —r).
Taking functional derivatives of Eq. (4.12) with respect

to the kernel function W(p} and the correlator f (p, q, r)
yields

5&%&
5 W(k)

5&a&, + ,' f—fs f (p, q, k)[(p +Q2)W(q)]5(p+q+k)
q

+12s Atttp, f f f(k, r}f(q, r)f(k—,r)W(q)W(r}+6s Atty2f f (q, k)W(q}
q r q

+12s As f f f f(p»p2)f(p»p3}f(p2, k)f(p3, k)W(p, )W(p2)W(p, ),

5&%& s'
5f(p, q, r) ' 6

—2sksqr, +—f(p, q, r)[(p +Q )W(q)W(r)+(q +Q )W(r)W(p)+(r +Q )W(p}W(q)]

(4.13)

+4Atttps f W(t)[f ( —q, t) W(q)f (r, t) W(r)+ f( —p, t) W(p)f (r, t)W(r)+ f ( —p, t) W(p)f(q, t) W(q)]

+2s Asy2f(p, q, r)[W(q)W(r)+ W(r) W(p)+ W(p) W(q)]

+4s4X, f f f(t, , t, ) W(t, ) W(t2)[f(q, t, ) W(q)f(r, t, )W(r)+ f(p, t, ) W(p)f(r, t2) W(r)

+f(p, t, )W(p)f(q, t2)W(q)] 5(p+q+r), (4.14)

where

f(q r)= f f(p q r}5(p+q+r) (4.15)

The product sf is proportional to p, near the origin, so
one can solve the equations explicitly at p, =0. In (4.13)
only the Gaussian term survives, so that

and

Q'= ms'+ 12za(lo+q ') (4.16)

Setting these derivatives to zero yields optimization equa-
tions that determine the optimal kernel and correlator.

Wo(p) =Qp'+Qo2, (4.17)

where the zero subscript indicates a quantity evaluated at
y, =0. In (4.14) the first two terms dominate as qr, ~0,
so that

s = 12A~q, ,

fo(p, q, r) = [(p2+Qo) Wo(q) Wo(r}+(q +Qo) Wo(r) Wo(p)+(r2+Qo) Wo(p) Wo(q)]

=
[ Wo(p) Wo(q) Wo(r)[ Wo(p)+ Wo(q)+ Wo(r)]J

(4.18)

(4.19)

d V
m R

dip y =0
(4.20)

This is most conveniently obtained by first eliminating

(Recall that only the product sf is really meaningful: We
have simply chosen to normalize f in a convenient
fashion, letting s carry the other factors. ) Stepping away
from the origin, one could proceed to solve the equations
iteratively, obtaining f and Was power series in y, .

The second derivative of the effective potential,
V=min&&&, at the origin can be used to define a renor-
malized mass:

the redundant parameter s, setting it to be 12K,~y„ there-
by making &&& manifestly an even function of y, . One
can then obtain mR from a partial first derivative with
respect to y, :

z dV 28&H &
mR 2

d(q, ) q, =o B(qP, ) q, =o
(4.21}

Only the partial derivative is needed because the (func-
tional) derivatives with respect to f and W vanish by vir-
tue of the optimization equations. This gives

mz =Qo+2(12As) (a2+ —,'Qoy2 —
—,'a&), (4.22)
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but from the f equation (4.14), multiplied by f (p, q, r)
and integrated, we obtain the identity

m~ =Qo —24K,~a, ~ o,

Qo=mii+ 12k,sIo(Qo) .

(4.24)

(4.25)

iraq+ ,'Qo—@2=—,', a, (at tp, =0) . (4.23)

Therefore, the relationship between mz and m~ is given
by

In the Gaussian case we would have had mz =Qo. The
extra term involves the a, integral of (4.9) evaluated with
the y, =0 forms of f and W above, which can be rewrit-
ten as

1 — Mt DV —ix.(p+q+r) ~ t fVO{p)+ Wp(q)+ Wo( )~ta)(0— ut u X e e
0 p q r Wo(p) Wo(q) Wo(r)

(4.26)

G(x) =
(2m. )"+' p "p„+Q~

—ix p —a(~t

p 2N
[with co= 8'o(p)] (4.28)

is the (Euclidean) x-space propagator. In this form we
recognize (4.24) as the same modification of the mass re-
normalization that one finds in second order in the post-
Gaussian expansion [11]. In fact, a, ~o corresponds to

3
I ' ', the integral arising from the "barred circle" vacu-

um diagram. This is finite in 1+1 dimensions, logarith-
mically divergent in 2+ 1 dimensions (whereas the Gauss-
ian term in the bare mass is linearly divergent), and qua-
dratically divergent (like the Gaussian term) in 3+ 1 di-
mensions.

B. Numerical results in 0+ 1 dimensions

In quantum mechanics, with f =1 and W(p) =Q,
&%& becomes

&~ &
= &m & G+ —,'mss Q

where we have used the Fourier-transform form of
5(p+ q+ r ). This integral reduces to

ai ~
o=4fd"+ 'x [G (x) ] (4.27)

where

ms

(2A, )
(4.30)

The effective potential is obtained by minimizing this ex-
pression with respect to s and 0, for each value of y, .
We have carried out this procedure numerically and in
Fig. 1 we show the resulting potential, compared to the
GEP, for two illustrative cases. As expected, the curves
lie below the corresponding GEP curves. The two curves
coincide at the origin because there the optimal value of s
is zero. As ~p, ~

increases, the optimal s becomes positive,
and the optimal 0 changes a little from its GEP value, re-
sulting in a lowering of the effective potential.

As a quantitative measure of the degree of improve-
ment we can examine the ground-state energy estimate,
obtained from the value at the global minimum of the po-
tential. This can be compared with the corresponding
GEP estimate and with the exact result. For mz positive
(the anharmonic-oscillator case) VNLcT changes only
insignificantly from the GEP and its minimum remains at
the origin, yielding the same ground-state energy as the
GEP. This value is within 2%%uo of the exact result. For
ms negative (the double-well case) there can be more
significant changes in the shape and in the ground-state
energy. A quantitative comparison is given in Table I
(with "exact" results taken from the numerical calcula-
tions of [24]). As in Ref. [4] we use the dimensionless
variable

2Q

+4y, s Q + —,5s Q (4.29)

and quote the energies, relative to the minimum of the
classical potential, in units of

~ ms ~.

The NLCT calculation starts to yield lower ground-
state energies than the GEP once g (—1.41278, be-
cause then the global minimum moves away from the ori-
gin. For example, at g = —2 [Figs. 1(a) and (b)] the GEP

TABLE I. Comparison of n NLCT and GEP energies to exact results [24] for (0+1)-dimensional
A,P theory.

—2
—4
—5
—7

—10
—50

Eo(GEP)

0.441 942
0.651 360
0.669 565
0.685 542
0.694 821
0.706 043

Eo(m')

0.439 712
0.631 827
0.656 809
0.678 318
0.690 719
0.705 688

Eo(exact)

0.402 268
0.572 412
0.635 011
0.676 348
0.690 392
0.705 686

% Error (GEP)

9.86
13.79
5.44
1.36
0.64
0.05

% Error (~')

9.31
10.38
3.43
0.29
0.05

3 X10-'
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still has a single-well shape, but V~ACT has developed
lower minima away from the origin. For g = —4 [Figs.
1(c) and (d)] both the GEP and VNLCT have a double-well
shape, but the latter has a lower minimum value. The
GEP value is 13.79% too large [25]; the NLCT calcula-
tion improves this, but only by an additional 3%. How-
ever, as we get into the "deep-double-well" region
(g (—10) the percentage error is reduced by an order of
magnitude or more. Thus, the moral is that the NLCT
method provides corrections to the GEP results in the
same sense that a "second-order" calculation can be ex-
pected to improve a "first-order" one: That is, in the
"transition region, " where the GEP itself is least accu-
rate, the changes are large in absolute terms but small as
a percentage of the actual error: In the "deep-double-
well" region, where the GEP itself is quite accurate, the
changes are small in absolute terms, but dramatically
reduce the percentage error.

Next we discuss the changes in the shape of the poten-
tial. For this purpose, it is convenient to use the "renor-
malized parameters" mII, A, defined in Eqs. (2.9). As A, in-
creases the effective potential changes from a single-well
to a double-well shape. This can be seen in Fig. 2, which
compares the GEP and the m effective potential. The
GEP always has a local minimum at the origin, whereas
for the ~ potential, the origin becomes a local maximum
once R exceeds 1/&8, and a pair of shallow minima de-
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05 -- 10
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FIG. 1. (a) The effective potential for the NLCT n' (solid
line) compared to the GEP (dashed line) and the classical poten-
tial (dotted line) in 0+ 1 dimensions, for g = —2. A closeup of
the difference between the two effective potentials is shown in
(b). Corresponding plots for g = —4 are shown in (c) and (d).
(Units: !ms! = 1.)

FIG 2. The GEP (a) and the effective potential for the ~
transformation (b) in 0+ 1 dimensions for A, =O. 5, 1.0, 1.5, 2.0
(from top to bottom). This plot utilizes the "renormalized pa-
rameters" of Eq. (2.9).
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velop on either side of the origin. If we were in higher di-
mensions, this could be described as a "second-order
phase transition. " However, as A, is increased further, a
second pair of minima appear, farther out from the ori-
gin, and these soon become deeper than the original pair
of minima. This "first-order transition" happens at
k=1.119, very close to the "critical k" obtained in the
GEP case.

This behavior can be seen in Fig. 3, which plots P;„,
the value of ~y, ~

(in units of ma} at which the global
minimutn of the effective potential occurs. (If we were in

higher dimensions, P;„would be an "order parameter"
for a spontaneous-symmetry-breaking phase transition. )

The general features of Fig. 3, that the transition occurs
"earlier" (at a lower R), and is "softer" (involves a
smoother variation of P;„}than the GEP would imply,
can be expected to be true in higher dimensions as well.
Indeed, this is what Polley and Ritschel have found in
their (1+1)-dimensional NLCT calculations (see Fig. 2 of
Ref. [13]).

V. n„P~r TRANSFORMATION

A. General ( v+ 1)-dimensional case

f(k, l)=f(l, k)=f( —k, —I) . (5.2)

In the O(N)-symmetric case (N ~ 2) there is a nice form
of the operator 8 similar to Ref. [13],

B= pqm& p+q &p. &q, 51
s'

for which the multiple commutator series (1.4) automati-
cally terminates, since n.a commutes with Pr. The corre-
lator f needs no restrictions, other than overall momen-
tum conservation, already used to write f as a function of
two variables instead of three, and invariance under
overall rotations or inversions of the coordinate system.
We may also take f (p, q) to be symmetric in its two ar-

guments, without loss of generality. Thus, in particular,

1.0—

0.8—

I I I I I I I I I I I I I I I—

0.6—

0.0
0.0 0.5 1.0

I I I I

1.5 2.0

FIG. 3. The value II;„ofy, at the global minimum of the
effective potential as a function of k for the n' ansatz (solid) and
the GEP (dotted). The ansatz shows a "second-order phase
transition" at A, = 1/&8 and a "first-order transition" at
X=1.119.

r.„(k)=0, Pr(k) =0 .

Since each of these commute with B, there are no further
terms in the multiple commutator series. Inserting these
into the general formulas of Sec. III, all the radial ~
terms, along with all transverse y and p terms, will van-
ish. The remaining terms, employing a notation
"y„.. . , y~" parallel to Polley and Ritschel's [13],are

Taking the commutators of the fields and their canonical
conjugate quantities with B gives

( R(k}=f f f(p q}( (p}.I (q+(p+q —k»

n r{k)= 2f—f(p, k)~„(p+k)Pr(p), (5.3)

&2'=X7= ,'(N 1-}f —f {p+q}'f'{pq}Fr(p}Fr(q}+,'(N 1)-f f—f'{p q}[Fr(p}+Fr(q}]~Fz(lp+ql»

=
—,'(N —1)f f f (p, q)Fr(p)Fr(q)

P3 4q, y4=4q, (N —1 ) f f f f(P,q)f (P, r)f(q, r)Fr(P)Fr(q)F—r(r)
p q

P4 =3(yz+y6)=3yz+3(N —1)f f f f f (p, q}f(p, r)f (q, s)f(r, s)Fr(p)Fr(q)Fr(r)Fr(s},
p q 7 s

Pi '=4q, &3=4q, ,'(N 1)—f f—f{P q}Fr(P)Fr(q»
p

Pz =2y&=2(N —1)f f f f{P,q)f(q, r)Fr(P)Fr(q)Fr{r),
p q r

where

F~ 1 /Wg ~ F~ 1 /$V~

(S.4)

(5.5)

(5.6)

(5.7)

(5.8}

(S.9}

(5.10}

This leaves us with

(% ) =(%)G+s (g7+ ,'msg2)+As [4y—,sg3+s [6Io +2(N —1)Io +6y, ]gz+2s g~+4y, s g4+3s (y6+gz}], (5.11)

where (&)G is the Gaussian result, given by Eq. (2.4) and

y~~=' f F~(p), Ior= ,' f Fr(p) . - (5.12)
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Functional difFerentiation with respect to the (inverse) kernel functions Fz (p), Fr(p}, and the correlator f (p, q) yields

(5.13)

+2As 4y, s f f(p, k)FT(p)+s g2
P

+2s' J I [2f(p, q)f(q, k)+f(p k)f(k q) ]FT(p)FT(q)
s'

+ 12',s f f f(p, q)f(p, k)f(q, k)FT—(p)FT(q)
p

+12s f f f f(p, q)f(p, r)f(q, k)f(r, k)FT(p)FT(q)FT(r)

t &m& ~&&G

5F '(k) 5F~ '(k)
+ s—2(N —1}J f (p, k —p)Fr(p) —3Ass yzF„(k),

K&A& 8&~&
5FT '(k) 5FT '(k) ,'(—N——1)Frz(k) s'f (p+k)'f'(p, k)FT(p)+s'f f'(p, k)/F~(ip+ki)+s'O' I f'(p, k)FT(p)

+6s'gz f f (p, k)FT(p)

8&%& =s ,'(N ——1)f(p,q)Fr(p)FT(q) (p+q) + + +Q
p~q

(5.14)

+2As(N —1)FT(p)FT(q} y,s+s I [f(p, r)+f(q, r)]FT(r)
T

+6p, s3f f (r, p)f(q, —r)FT(r)+3s y2f(p, q)

+6s J J f(r, s)f(r, p}f(s,q)Fz.(r)FT(s) ',
S

(5.15)

where

Q =ms+4As[(N —1)Io +3Io +3q), ] . (5.16)

The optimal values for the kernels and f are found by set-
ting these expressions equal to zero. As with the ~
transformation, the optimization equations greatly sim-
plify at the origin. The (inverse) kernels reduce to the
GEP solutions

1
Fs (p) =FT(p) =

Qp'+Q,'
(5.17)

Qo ms+4As(N+2)Io(Qo),

and we have fixed s to be

s = —4A,~q), ,

(5.19)

(5.20}

so that f is normalized conveniently. The solution can be
written as

fo(p q) =R (p q}[1+g(I)+g(e)],

and the correlator obeys the integral equation
T

F(lp+ql) F ( ) F ( )

4&a I [fo(p, r)+fo(q r)]Fr(")
T

(5.18)

where

where

R(p, q)= 1

Q(p+q) +Qo

h(p)= —4As I R(p, r)F (rT)
T

(5.24)

is a known function of p. For dimensional reasons g(p}
behaves as A,~/p at large p, so that, below 3+1 di-
mensions, it can be neglected in (5.21}as far as leading ul-
traviolet divergences are concerned.

As explained earlier in the context of the m. transfor-
mation, we can obtain the renormalized mass from a par-
tial differentiation with respect to y, at the origin. This
gives

m~ =Qo+2(4A.s) (y7+ —,'Q y2+2}(,sy, —y3)~
0

(5.25)

but the optimization equation for f implies the identity

X 1

Q( p +q )2 +Q2+ Qp 2 +Q2+ Qq 2 +Q2

(5.22)

is similar to the correlator used in Ref. [19],and g (p ) is
determined by a linear integral equation in one variable:

g(p)[1 —h(p)]=h(p) —4As f R(p, r)F (rT)g(r), (5.23)

where
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&7+ 2Q4'2+2~aXs= 2X3 (at y, =0),
so that

(5.26)

(5.27)

B. Numerical results in (0+1)dimensions

In quantum mechanics the correlation function f can
be set to unity and the nontrivial transformations reduce
to

with Qo given by (5.19) above. If we take f=R we can
reduce y3, by the same tricks as in the m case, to

y3=2(N —1)fd"+' x[G(x)], (5.28)

so that the same I' ' integral emerges. In 2+1 dimen-
sions the neglect of the g(p) terms is justified in that it
would only affect the mz, mz relation by a finite term.
However things will definitely be more complicated in
3+ 1 dimensions.

p~ =/~+I, —s (N —1)Io +spT,
rrz. rrT —2srr—it PT .

(5.29)

The expectation value of& can then be written as

The (inverse) kernel functions in the Gaussian become
single variables: Fz ~1/Q, FT + I / —co and it is also con-
venient to make the change of variable

(5.30)

(%)=(&)o+2o y, (N —1)Qro+mscrzq&2(N —1)

+As(N —1) y, [4—o+4rr (N+3)]+6o (p,
—+y, [12o +32cr +12cr (N+3)] (5.31)

Optimizing (ff ) with respect to Q, ro, and rr gives the
effective potential. The three optimization equations can
be solved numerically, beginning at the origin, where the
solutions coincide with the GEP ones. The o equation is
cubic, but only one of its roots is real. At the origin o is
given by oo= —22/(3+8K) [with 2 defined by Eq. (5.32)
below]. However, s, being proportional to y„ is zero at
the origin, so the potential coincides with the GEP there.
The optimal values of 0 and ~ remain quite close to their
GEP values near the origin and for large y, (q&, )P;„,
where P;„ is the position of the global minimum of
VN„cT). The NLCT mass co is always less than or equal
to the GEP co. The NLCT Q starts off bigger than the
GEP Q but at about —,'P;„ it becomes smaller until they
practically agree for (p, )P;„. The parameter s is nega-
tive and its magnitude grows to a maximum (whose
height is proportional to A,) located near P;„. Beyond
(();„,s goes rapidly to zero and the two effective poten-
tials match closely.

The quantitative comparison with the GEP and exact
ground-state energy eigenvalues is very similar to the m

transformation case, so we shall not discuss it in detail.
The corrections are moderately large in the "transition
region, " but give only a modest decrease in the percen-
tage error. In the single-well and deep-double-well re-
gions the changes are very small, but they provide a sub-
stantial reduction in the percentage error.

One can gain insight into how the NLCT improves
upon the GEP by looking at the form of the new wave
function O'. To illustrate this we show in Fig. 4 a contour
plot of the optimized ~%~ versus Pn and PT (N =2 case)
for A, =2.0 (g = —5.95) and for y, =(();„.A correspond-
ing plot of the Gaussian wave function would show con-
centric, elliptical contours with major axes aligned in the
transverse direction. Thus, the unitary transformation is
lowering the energy by bending the wave function around
into a "banana shape, "so that it fits better into the circu-

In Fig. S we show a comparison of the GEP with the
NLCT effective potential for a range of X values for the
N =2 case. As with the m transformation, we see that
the "phase transition" occurs earlier and is "softened. "

0— XG

0 1

I I I I I I I I I I I I I

3 4 5

FIG. 4. Contour plot of ~%~ for the (optimized) wave func-
tion 4 produced by the msgr. transformation. This example is
for the N=2 case with 2=2.0 (g'= —5.95) for q, at the
minimum of the NLCT effective potential. The Q, co, and cr pa-
rarneters have been appropriately optimized. The cross corre-
sponds to the position of y, (i.e., (P)), while the dotted half-

circle indicates the minimum of the classical potential.

lar valley of the potential.
To discuss the changes in the shape of the effective po-

tential it is again useful to use the "renormalized vari-
ables, "which in the O(N) case are given by

ms =mI([1 —2(N+2)A, ],
(5.32)
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The "critical A,
" is 0.84, compared to 1.05 for the GEP,

and at k, ., the potential is flatter and the nontrivial mini-

ma are closer to the origin. Furthermore, while the GEP
always has a local minimum at the origin, VN&CT has a

A. A.
local maximum at the origin once A, & A,, = 1.29.

Similar behavior is seen for higher N values. The
"phase transition" is again "earlier" and "softer." This
can be seen clearly in Fig. 6, which plots P;„, the value
of !y, ! at which the global minimum of the potential
occurs, as a function of A, . For N 5 the "transition" is
still "first order, " involving a discontinuous jump in P;„,
and it occurs at the A.„;,value tabulated in Table II. At a
somewhat larger A, value, A,„the origin becomes a local
maximum. As N increases A,„;,and A,, come together, un-

til for N &6 the "transition" becomes "second order. "
The "transition" then occurs at A,, :

2++6N —2
4(N —1)

(5.33)

I

V
1.0—
0.5—
0.0

—0.5—
—1.0—

I

0.0
I I I I I I I t I

0.5 1.0 1.5

which is the value of k at which the second derivative of
V at the origin vanishes.

Interestingly, the GEP and the m.a(()r potential do not
coincide in the "extreme double-well limit, " X~00 ~ In
the NLCT case the energy is lowered in the region be-
tween the origin and the minimum of the potential, pro-
ducing a minimum which is much flatter on its inward
side, and reducing the value of t));„. (The effect becomes

TABLE II. 2,„,and 2, for different N for the ez Pz NLCT in

0+1 dimensions. For N ~ 5 the theory undergoes a "first-order
phase transition" at X,„.„while for N~6 it undergoes a
"second-order phase transition" at A,

3
4
5
6
7

10

0.85
0.66
0.54
0.45

1.29
0.75
0.56
0.46
0.39
0.35
0.27

more pronounced for larger values of N. ) However, the
depth of the minimum is hardly changed, in agreement
with the fact that the GEP result for the ground-state en-

ergy becomes exact as A, ~oo. Moreover the shape
differences would be wiped away if one performed a
Maxwell construction to produce a convex effective po-
tential.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied non-Gaussian variational
calculations of the effective potential of A,P~ theory. The
non-Gaussian trial wave functional was generated by a
nontrivial unitary operator U =e " acting upon a
Gaussian [13]. Expressions for the general case were
given in Sec. III. Two specific transformations 8 =n.
and 8 =ma PT were investigated in detail.

In 0+1 dimensions we obtained numerical results for
both transformations, and these share the following com-
mon features. (i) Both transformations improve the GEP
upperbound on the ground-state energy of the double-
well potential. The improvement has the characteristics
of a "second-order" correction to a "first-order" result:
When the GEP is accurate the changes are small in abso-
lute terms, but they substantially improve the percentage
error: When the GEP is less accurate the changes are

15 I I I I [I I I t
J

I I I I
]

I I I I
[

I I I I!.--I I I I

.rr

1.0—
0.5—

1.0—

0.0

—0.5—
—1.0—

I

0.0 0.5

b)—
I—

1.5

0.5—

10 5 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 5. The GEP (a) and the effective potential for the nqPz
transformation (b) for N =2 in 0+1 dimensions for A. =0.5, 1.0,
1.5, 2.0 (from top to bottom) in terms of the "renormalized pa-
rameters" of Eq. (5.32).

FIG. 6. The value P;„ofy, at the global minimum of the
effective potential as a function of X for the mzPz ansatz (solid)
and the GEP (dotted) for various N.
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larger, absolutely, but they only modestly reduce the per-
centage error. (ii) Both transformations produce effective
potentials whose shape differs noticeably from the GEP
in the transition region from single- to double-well behav-
ior: The "phase transition" occurs at lower A, values and
is "softer" and in several cases becomes "second order. "

In higher dimensions we have obtained the unrenor-
malized effective potential for both transformations, as
well as the optimization equations which determine the
variational-parameter functions. We have solved these
equations at the origin, and thereby obtained a correction
to the Gaussian mass renormalization. Interestingly, this
correction corresponds to that found in the second order
of the post-Gaussian 5 expansion [11]. It should be possi-
ble to so1ve the optimization equations iteratively, as a
series in g, . The next iteration will determine the
coupling-constant renormalization, necessary in 3+1 di-
mensions. The way is open, therefore, to obtain explicitly
renormalized effective potentials from these non-
Gaussian variational calculations.
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It is convenient to work in momentum space, employ-
ing Fourier transforms of the field P(x) and its conjugate
n.(x):

P(p}=fd "x e 'i'*P(x},

ir(p)= fd x e'i'*m(x) .
(Al)

The signs are such that

[P(p), m(k)] =i5(p —k), (A2)

5(p) = (2n )'5(p),

and we employ the convention that (Zir)" factors are to
be associated with momentum-space integrations, delta
functions, and functional derivatives involving fields with
momentum-space arguments (v=No. of spatial dimen-
sions):
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f f (2 P

5$(p) 5$(p)

The Hamiltonian H = f d "x & can be written as

(A4)

(A5)

H =f —'ir(p)ir( p)+—,'(p +—m )Rp(p)p(
—p)+AR f f f p(p)p(q)p(k)p(r}5(p+q+k+r) (A6)

APPENDIX 8

The ~, y, and P integrals of Sec. III are

Ki =
2 & 'irR 'rrR +77R 'rrR & + ,' f p'[—&&R ( P )PR ( —P ) & + & P~ (p }((iR( —P ) & ]

S.Z= —,'& RnR &+ ,' f p [—&&R(P)PR(—p)& —&PR(P)&&PR( —P)&],

(81)

(82)

(83)

yR —
&

pR

pR

pR

pR

OR& —&(tR&'

"%RA"&+ %a& "A4R" & f'c&~R &&NR &+6+e& '4~R

4R4R & 4&OR && PR'4 &+6&AR & &0R & 12P &4R && PRIER &+4% & 4'R4R

PRPR & &4R && PR(t'R &+6&NR & & (t'RPR &+ 0 &4R+2&NR & &0R &4R

y'. &+6&y, &'&y', &
—4&y„&&y,' &

—3&y„&',

(84)

(8&)

(86)

(87}

(B8)

where quotation marks denote all permutations of the enclosed operators: e.g. ,

(89}PR'4 & &4R0R+4R4R4R+4R4R4R+4R4R &

For the transverse fields the expectation value &Pz & will vanish, provided that the transformation preserves the

O(N —1) symmetry among the transverse fields, and hence the formulas are simpler:

vr +m rr &+—' f p [&p.r(p) pr( —p}&+&yr(p.) pr( —p) &],

2r= ,'&err err&-+ —,
' —fp'.&pr(p) pr( —p)&,

P

(810)

(811)
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r i'= & NT'AT+AT 0T )

7 T=((()2 &

Pl (4T0T IT+4'T4'T IT+IT 4T4T+4T ATILT)

P2 (0T4T+0 T4T+(4T 0T) +(4T 4T) +AT 0T4'T AT+4'T ATILT NT )

P3 (0T 0T0 T+0T0T IT+IT 4T0 T+4' TNT 0T)

p,'=&y', ((', & .

The P" integrals are given by

Pl (0R0R4T+4R0R4 T+0R4T 4T+4R0T 0T) (0R )(PRAT ) Pc(NR )&4T)

+ Pc & NRNT+4R4T 4T+ PR4T 4T + Pc ( IT 4T+0T 4T ) +

P2 &0R4T+4R0R0T 4T+0R4R0T 4T+4R4R0T 0T+4R PR4T 4T+0R4 T)
—2(NR &&0R0T+tt'Rtt'T 4T+ttpRNT I T&+(OR ) &0T&

+2fc[&ORNT 4T+4R4T 4T+0R4T tt'T& &4R &(PT 4'T+ttPT fT)]+tPc(ttpT)+C. C. ,

P3 —((1' R QT PT+$ R PT'PT+ $RfR P T+PRfRf T ) —2( $R ) ( PRfT'fT+ PRfT'fT+PRf T )

+&( R ) &4T AT+AT 4T)+ P [&c( RPT 0T) &0R )&0T)]+

P4

&CREST

—
& 2&PR &&—PRAT&+&(('R ) &4 T)+C

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

Momentum arguments have been suppressed in the above formulas. Written out in full we would have, for example,

(gyes &= f f " f &(((,)(((,)(((,) &~(,+,+ + „),
Pp ~n

)=f f f ((()(p ))(y(p, ))(y(p, )y(p, ) )5(p, +p, + +p„) .
P) Pp J'n
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