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The orthogonal circular ensemble is solved exactly in the double scaling limit. The partition function
describes unoriented strings with bosonic and fermionic propagators. The differential equations describ-
ing multicritical behavior are shown to be identical to those of the symplectic circular ensemble. In the
case of the m = 1 critical point, we 6nd the susceptibility and argue that the orthogonal circular ensem-
ble is unitary.

PACS number(s): 11.17.+y, 02.90.+p, 04.60.+n

I. INTRODUCTION

Large-N matrix integrals have been receiving attention
recently because of their connection to string theories
and quantum gravity. The graphical expansion of these
matrix models is equivalent to a sum over surfaces of ar-
bitrary genus [1,2]. In the past year, a method for taking
the continuum limit of these diagrams has been used to
examine the nonperturbative features of these models
[3—5]. In this limit near criticality, we find differential
equations and parametrize the susceptibility with their
solutions. Such studies have been completed for the real
symmetric [6—8], Hermitian [3—5], and real quaternion
self-dual matrix models [9]. The unit-circle counterparts
to the latter two of these cases have been solved; these are
the unitary circular ensemble [10—13] and the symplectic
circular ensemble [14]. The remaining case, the orthogo-
nal circular ensemble, is the subject of this paper.

The partition function for the circular ensembles is

ZN = p exp trv +

where R is a 2N X 2N symmetric unitary, unitary, or
self-dual unitary matrix for the orthogonal, unitary, or
symplectic circular ensembles, respectively. The invari-
ant measures for the respective circular ensembles, as
defined in Ref. [15],are symbolized here by p(2)G). We
approach the continuum in a double scaling limit so that
N/P approaches a critical value while P~ oo.

In order to understand the genus expansion, we first
expand the matrices [12]

Q= exp[i(2P) '~ R],

where R is real symmetric, Hermitian, or real quaternion
self-dual when 5 is symmetric unitary, unitary, or self-
dual unitary. By introducing 4 and %' as Grassmannian
counterparts to R, the Jacobian of the transformation of
Eq. (2) can be represented as an integral over these ma-
trices. Ignoring an overall multiplicative constant and
substituting V('M) =Q, we are left with the integral

ZN= % %exp tr —1 2+%%+ 2J+2( 1 )J+1

1 (2p)J( 2j+2)!

+
2 J(2P)J(2j+1) „ok!(2j—k)!

(3)

4;.O'J,- sin
2&2@

+%,, %,-,- .
2& 2P

The first and third terms in the exponent are just the usu-
al terms in a cosine expansion which results from
V(Q)=Q. The second and fourth terms can be under-
stood by first diagonalizing R and simultaneously making
measure-independent similarity transformations on
and 4. Denoting the eigenvalues of A as A, , and ignoring
the integration over angular variables, 2)A becomes
g; d A, ; Pk (t

leak

—
A, il~; where p is 1, 2, or 4 if % is real

symmetric, Hermitian, or real quaternion, respectively
[15]. Having diagonalized %, the second and fourth
terms can be rewritten as a sum over i and j of

r

I

When we integrate over the components of the
Grassmann matrices, we are left with the factor

1 ~k (1(N
l J

2&ZP

When 4'; or +., is real, complex, or quaternion, there are
either 1, 2, or 4 independent components, so that p
takes the same values as above. Since the

i&N lA. k
—

A, tl~ terms cancel, Eq. (3) provides us
with the correct representation of Eq. (1) with R diago-
nalized, apart from angular variable integrations and
overall multiplicative constants [15].

From the partition function in Eq. (3), we now com-
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piete the propagators. As P~ ao, we are only left with
the first two terms of the exponent. Under these condi-
tions, the propagators in the circular orthogonal ensem-
ble are

(+ij+kl ) 8 k~jl+8 18/k )

(e,j%„,& =-,'(S,„fi,, +8,,8,„),
(+ij+kl ) (+'j+kl

(4)

—( trA ) = 16N 220N + 10,1

Thus the symmetric unitary matrix model, like the real
symmetric matrix model, contains crossed propagators.
Contributions from oriented and nonoriented surfaces ex-
ist, but some of the symmetric unitary model diagrams
contain a fermion double-line propagator. Similarly, the
self-dual unitary matrix model is a theory over unorient-
ed strings. The propagators are [18]

(+ j+kl ) '(8 l~jk +'+ik +jl )

(+ij+kl ) T(6ilfijk++ik+jl) &

(+ij +kl ) (+ik+kl )

where V'r= 7; 7 =——1, and T'='T. In Ref. [8],
propagators are employed to compare di'agram contribu-
tions for the real syxnmetric and real quaternion self-dual
matrix models by comparing the efFect of crossed propa-
gators. Diagram contributions for the latter are obtained
from the former by the replacement of N by N. Equa-—
tion (3) contains additional Grassmannian matrices, but
the corresponding propagators are identical to the non-
Grassmannian counterparts. Since the original argument
is based solely on the form of the propagators, we con-
clude that diagram contributions for the self-dual unitary
matrices are obtained from those contributions for the
symmetric unitary matrices by the substitution of —N for
N. To better illustrate the point, we end with some exam-
ples. Knowing that N-P in the scaling limit, the first
contributions are proportional to

difFerential equations in the double scaling limit. Finally
we expand the susceptibility in terms of solutions to the
differential equations. One of the two branches of the ex-
pansion has alternating signs between terms of odd and
even powers of N. This branch corresponds to the sym-
plectic circular ensemble because the same pattern ap-
pears in the diagram contributions. The orthogonal cir-
cular ensemble is identified with the branch that has the
same sign for all terms but the first.

II. Z~ AS A DETERMINANT

Our objective is the susceptibility in the scaling limit.
In the process, we follow previous work [6,14] to obtain a
recursion relation for the partition function and the re-
sulting scaling-limit equations.

Diagonalizing NXN symmetric unitary matrices in
Eq. (1), we obtain an integral over the complex eigenval-
ues [15]

dzI
ZN Zk ZI

1 2mizl

N
X exp —g PV(zj+zj ')

We shall remove the absolute norm in the measure by
integrating over alternate eigenvalues z2j+1. Since the ei-
genvalues are complex, the integral is first rearranged us-
ing the identity

1&k (1~N

'ek '~1 N(N —1)/2(e' "—e '~=iN'N " /d2et[exP( P81)j], (8)

where p = —
—,'(N —1),——,'(N —3), . . . , —,'(N —3), —,'(N—1) and j=1,2, . . . , N with 8 ordered ( n(8, (8—

2i errt(8N (n) If z =e. . then the partition function
is rewritten as

—(

trial

%% ) =8N +SN+ 2,

—( tra%We& =+4N+6,1

—( tr1Ii% 1Ii ) =SN +8N+2 .
N

N
ZN=i ' " Nt p zI det z~

(6) where

z N

de, (z) = . exp —g PV(z+z ')
2&lz

(9)

The upper and lower signs arise in the orthogonal circu-
lar ensemble and symplectic circular ensemble, respec-
tively. In the unitary case, where there are no nonorient-
able surfaces, the terms of odd order in N are absent.

In the next section we diagonalize the symmetric uni-
tary matrix identities to write the partition function as a
determinant over polynomials of the eigenvalues. Rows
and columns of this matrix are then added to eliminate
matrix elements and produce a recursion relation for the
partition function. From the recursion relations for the
polynomials and the partition function, we derive a set of

and p is defined as before with the z's "ordered. "
For N =2M, p are all half-odd integers. A set of poly-

nomials (over dIj2(z)=(dz/2niz) exp[ —2@V(z+. z ')])
can be defined [9]:

k —1

s ( )
—z +1/2 z k —1/2+ ~ g (

j+1/2 —j —1/2)Z Z

(10)
c (z)=zk+ +z ' + ~ g .( j+' + jk kj Z Z

j=0
which satisfy fdp 2 ck ci =hk 5k l, fdF2 sksi =h k 5k i, and

fdp2cksi=0. ,Now,
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det[zf]= det

SM —1(21)

SM —1(22 )

M —1( 2M)

so(z, ) co(z, )

so(z2) co(z2)

0( 2M ) CO(Z2M )

CM —1(21)

cM 1(z2)

CM —1(Z2M )

We use the notation z(8)=e'; z, is integrated from
z ( Ir) to z2 z3 rom z2 to z4, . . . , and zN/2 1 from-

z~&2 2 to zz. The top odd rows are then added to all the
lower odd rows to make the lower and upper limits:
z( —Ir) and z2J. Now the integral is symmetric in the
variables z2, and the range of integration can be
switched from z21~, 1

& z2~ & z21, +, 1
to z( —Ir) &z2J

&z(Ir) if we divide by 1/(M!). '

The integral can now be written in terms of the Pfaffian
of an antisymmetric matrix [15]. Using the notation

f f a;b~= f dp, (x)f dp1(y)[a;(y)b (x)

+ Ck Ck+1 XkCk Akck

Vk
z+ Sk —Sk + 1+XkSk + CXkSk

7k —1

(15)

z ck —sk+1+ Yksk+
Vk —1

Sk —1

z sk —ck+, + Yky kck+ y kakck

where +k =—hk /hk 1 and yk —= /hk. These equations
have the same form for any potential. The following
equations are valid for V(y) =y (zd—:z B/I)z):

we write

b, (y)a—, (x)],
(12)

CXk
z dck —(k+ —,

' )sk+2P sk»
7k —1

z dsk =(k+ —,
' )ck+2Pykakck

(16)

C; C~ C;S)

Z2M =CzM det

1/2

where C2M =—i' " ' (2M)!= i (2M)!. Since c,
~c; and s, ~—s; as 0~ —9, the upper left and lower
right sections of this matrix are zero. Thus

Meyers and Periwal obtain the exact same recursion
relations in their paper on self-dual unitary matrices, ex-
cept for the substitution of p by 2p. With the understand-
ing that g = (N+ —,

' )/2—p [not (N+ —,
' )/p] we arrive at the

same critical values in the double scaling limit: y = —1,
+=+1, and g=+1. The scaling solutions are also the
same:

Z~= IC det[g;, ]I, (14)

ifg,, =2f fcs,
Before we compute the elements of the matrix g, , we

further discuss the properties of the polynomials in the
next section.

2f —h —h'=0,
h" —4hf +2hh'+ 8ht =0,

and therefore

h" —2h +Sht =0 .

(17)

III. THE POLYNOMIALS
These differential equations were obtained using the
Ansatz

In this section, we basically reiterate material from
Myers and Periwal [14] for the sake of clarity. We even
use the same notation. Notice, however, that p has been
replaced by 2p. This stems from the difference in the
measure. In this case, the polynomials are orthogonal
with respect to d p2, whereas in the papers by Myers and
Periwal, the polynomials are orthogonal with respect to
dP1.

The recursion relations for the polynomials are
(z+ —=z+1/z)

y~- = —1+(2p) ' h (trav ),
a+= 1 —(2P) f(tz),

with2

I:—(2p) 'i3[(2p) —(N+ —,')] .

Equation (18) is the Painleve II equation. For equivalent
potentials, the scaling equations will always be identical
to those of the self-dual unitary case because the recur-
sion relations for the polynomials only differ by the
change P~2P.

'Observe that for N =2M + 1, similar polynomials of integer

powers can be defined. The bottom row of the matrix will be in-

tegrated from z( —m) to z(~) so that all of its elements will be

zero except the center term, which will be ho in the new polyno-

mial basis. All of the remaining calculations of this section are

the same except that the normalization of the integral is

changed.

For the case of N =2M+1, the scaling equations above are

exactly the same. The only change in the recursion relations is

the replacement of k +
2 by k. In addition, all further calcula-

tions in the scaling limit are identical up to the previously men-

tioned normalization adjustment to the partition function.
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IV. RECURSION RELATIONS FOR Z2~

Recall that

g,,=2f dp, (y) f dp, (x)c(y)s, (x),
z ( —7r) z( —7r)

(19)

P

fk } g ( +k —ik,gk —i +isk+ik, gk+i )+Xkgk

P
d(zgk } g ( &k —i kfk —;+&k+ikfk+i )

+( rk—)Xkfk

(22)

Z~~ =
I C2M det[g;, ]I, (20)

g,"=2f dy f dx f;(y)gi(x) . (21)

Using Appendix A, we find recursion relations for the
new functions:

I

and Czar =i (2M)!. We will now use the properties of
c; and s; to express Z2M as the determinant of a banded
matrix. —~~(z+ )

Define new functions fk (z) =ck (z)e + /z and—PV(z+ )
gk(z)=sk(z)e + /z. Thus g,i is written as

Jh.

j—1

hj
Qj 1 j= P9

h
(23}

J+1 i J+1 J p
If we proceed through the matrix adding two

consecutive columns with the correct weights to the
following column, we change the g;(x)'s into
[1/( —p) ] [d (xf,(x ) ) ]'s. Integrating by parts, we ob-
tain new values for g,j:

where

fdp2si[ PI (z+ }(z-}]c =iii, fbi=a, ih

for lcm and yk =
—,'(k + —,

' )(1—1/r „) .
In our case, V(z+ ) =z+ so that p = 1 and

h;
E,j 1

l &P
(24)

J

Notice that we can add the first and second column to the third, the first column to the second, but we cannot add any-
thing to the first column. %e are left with

Zzl =C2M( —1) det

go, o

N1, 0

g2, O

ho

imp
0

h1

i m.p
0

0

0

(25)

gM —2,0 0
hM —2

gM —1,0 0

go, o

[The factor of ( —1) assures positivity of Z2M, since h; (0, g; &
is negative imaginary, and C2sr ~ i .]

In order to similarly set terms in column 1 to zero, we first notice that

g;0= 2f —dy f dx go(y}f, (x) . .
z( —m) z( —m)

Then we add rows in the same way as we added columns previously. The result is

h 0
0

(26)

(2M)!
2M

= et
l

hor0 (1 ro}ho-
~p 4~p'

n.p

h1

mp

3(1—r, )h,

4m.p
(27)

h~ 2r~ 2(M —
2-}(' -rM-2}hM-2

n.p 2nP.
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Now we write the recursion relation, ignoring the first
2X2 matrix,

Z2M+4

(2M+4)!
(M+ —,

' )(1—
yM )h~ z2M+2

2~p2 (2M+2)!

h Z2M

~'p' {2M)!
=0 . (28)

Substituting

2M+2Z n.p
2M (2M +2)(2M+ 1)(1—y~, )(hM, )

(29)

leaves the equation

M�—,
'

+~2M�~2M ~2M2

M PM =0 . (30)
(1—y~)(1 —

yM —()

This is the same equation obtained by Myers and Periwal
for the symplectic circular ensemble. In fact, the equa-
tions for fVM for the two ensembles are found to be iden-
tical for all potentials (see Appendixes A —C). We use the
critical values of a, y, and g to find the limiting value of
8'z, W= —,'. Using the Ansatz Wz= —,'[1+p ' w(t~)],
we find [14]

w'=w +2t- 3h

4

Finally, expressing Z,M+, Z,M, /Z,'~ in te~~s of ~~,
yl, and W~, we find that the susceptibility is h /2+ w'

in the scaling limit. In the unitary matrix model, the sus-
ceptibility is h . Since there are only orientable diagrams
in the unitary matrix model, we conclude that the
nonorientable contributions in the other two models
come from w'.

(31)

V. WEAK-COUPLING EXPANSION

9k —1 1
rk+2 rk+ g rlrmrn

64 8 I+
(33)

Observe that r2k+, =0. From Eq. (31), we have for k ~ 0
and I, m &k+1,

1
wk+i =

wp

(3k —1)
Wk

I+m =k+g
wi wm

3+— g r,r.
i+j=k+1

(34)

Knowing the differential equations for h and w, Eqs.
(18) and (31), we expand the susceptibility as phoo.
First we expand

h(t)=t ~ g rkt ~ w(t)=t ~ g skt
k=0 k=0

in the differential equations. From the Painleve II equa-
tion, we see that ro=+2. For k ~0 and 1,m, n &k+2 we
have

The first coefficient is given by wo =kl (the superscript
is included here because, unlike the double-valued r2, 's,
the two cases result in two branches in the susceptibility
expansion with the correct leading asymptotic behavior).
In fact, the final expansion for the susceptibility is

f—2t+ ' t ' — ' t ——+ " t —"'r——+
2 16 128 256 (3&)

Since this expansion is identical to the one obtained for
the self-dual unitary matrices, one would suspect that
each branch corresponds to one of the two matrix mod-
els. The difference between the two solutions is a sign re-
versal for terms of odd order in N. As explained in the
Introduction, however, the finite-order topological expan-
sion predicts a replacement of N by —N from the sym-
metric unitary matrix model to the self-dual unitary ma-
trix model. Thus we claim the unitary branch, that
which has only negative terms following the first positive
term, to be the correct expansion for the symmetric uni-
tary matrix model, and the other branch to be the correct
one for the self-dual unitary matrix model.

Since the differential equations are nonlinear, we ex-
pect to find instanton contributions. By substituting
r ' +ek for h in Eq. (18), we find a one-parameter family
of solutions [10]

Ek=t ' exp( ——'t ) .
3 (36)

VI. DISCUSSION

In this paper, we have derived the scaling equation for
the m = 1 critical potential [14]. However, we follow Sec.
III to state that the same modified Korteweg —de Vries
(MKdV) hierarchy of differential equations that result
from the multicritical potentials for the self-dual unitary
matrices will appear here for the symmetric unitary rna-
trices. These potentials are given by [14]

V(z) = J —[(1—r)(1 tz)]" . —
o t

Although the integral is divergent, the divergence is z in-
dependent and does not cause problems in the integral's
role as a definition of the potential as a function of z.

We also conjecture the equivalence of the m =1 syrn-
metric unitary model with the real symmetric model for
an inverted potential V(x) = —x +gx and separate
scaling limits for R2„and R2„+,. This guess extends the
work of Douglas, Seiberg, and Sheuker [16],who recently
demonstrated the equivalence of the I =1 unitary model
and the Hermitian model with both the above potential
and mentioned scaling limit. In both cases, the f ~h,
where h is defined by the Painleve II equation. They at-
tribute the similarity to existence of a "hump" that

The above effect further induces an instanton e2=+—', ez,
where the sign ambiguity comes from that present in ro.
There is an additional instanton for w (t),

= exp(wo —', t ~
) .

Because of the asymptotic behavior of the susceptibility,
this instanton only exists for wo, and thus does not ap-
pear in the self-dual unitary matrix model.
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separates two groups of eigenvalues, and which disap-
pears at the phase transition (due to a quadratic singulari-
ty}. More generally, we suggest that higher multicritical
behavior in the symmetric unitary and the real symmetric
models with the inverted potentials and scaling limits will
be identical.
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by parts, and compare it to the first integral. We note
that for I (m, —2ar =b& . For l =m, —2a =b
+b (h /h ) = b (1 + I/y ) =(k+ —,')(1+I/y ).
For l )m, bI m

=0 and al mhr=am, rhm. Now,

p
d (zfk } y ( ~k —', kgk —j +~» +i, kgk+ j }+Xkgk

For convenience, we have defined Xk
———,'(k + —,

' )(1
—1/yk ). Similarly,

p
rT» —', kfk —'+~»+ , kfk+ '}+( Yk }Xkfk

(A4)

Observe that the coefficient of the (k+p)th term in the
above equations has the same coefficient —pu, where v

is the coefBcient of the pth-order term in the polynomial
V.

APPENDIX A

APPENDIX B

In this appendix we continue the calculations of Ap-
pendix A to prove that the scaling equation that follows
from the recursion relations for the partition function
[Eq. (31) in the text] is the same for the symmetric uni-
tary and self-dual unitary matrix models for a general po-
tential.

Let us first calculate this recursion relation for the
symmetric unitary matrix model. We start the Z2M as a
determinant

(Al)

For V as a polynomial of order p, we can rewrite this
equation in the suggestive form

p k

fk } g k+i, kg»+i + X bk+i, kg»+i (A2)

In this appendix, we mix c,s and f,g notations when—PV(z+ )
convenient. Remember that f [,g] =c [,s]e + /z and—2pv(z+ )
dp2=(dz/2miz)e +, where z+ —=zeal/z. Let us
calculate the quantities z df, z dg. For simplicity we only
discuss z df and later generalize. First we note that

—PV(z+ )
z dfk = —PV'(z+ )(z )fk+z deke + (1/z) f» . —

where

p p (Bl)

and

J dp, si[ pV'(z+ )(z —)]c
Knowing

(B2)

Jdp2s&z dc~ =b& ~hi .

We can simplify things if we integrate the second integral
I

we then add the 2p previous columns to the following
column with the correct weights as ordained by Eq. (A3).
As in the calculation in the main text, this leaves

go, o

g1,O

(2M)!
Z2M = det

( i—
go,p —1

g1 p —1

ho

cpu

h,
mpv

(B3)

gM —1,0 gM —1,p —1

hM —1

mpv

To turn most of the terms in the first p columns to zero we first write (for j=0, . . . ,p —1)

(B4)

and then add the 2p previous rows to the following row with the correct weights according to Eq. (A4}. This leaves the
partition function as
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2p X2p

matrix

hPa 0' ~p2u2
P

Ph
a' ~p2u2

P

(2M)!
Z2M=

'
det

( i—
0h—a0

cpu P

1—a,"mp2u2
P

h

~P~P rQ
77g UP

0

Since the positions of the matrix elements may be confusing, we note the following: terms containing y are along the
diagonal, and terms containing a „appear at the (n +p +1)th row and the (m +p +1)th column.

APPENDIX C

Now we are ready to look at the partition function for the self-dual unitary matrix model. After diagonalizing the
2N X 2N matrices, the integral can be written in terms of the eigenvalues zl,

N dz( N

ZN = zk —zl exp — V z +z- '
277lzl

Removing the absolute magnitude and then adding and subtracting the resulting columns leaves us with [14]

SN —1(Z I )

z dsiv 1(z1)—
1„det sN -1(Z2 }

2N

z dsN 1(zN )

s11(z1 }

z ds11(z1 )

s11(z2 }

z dsp(zN )

c11(z, }

z dcp(z1)

Cp(Z2 )

z dCp(zN )

CN —1(Z1 )

z dcN, (z, )

GN 1{Z2)

z dcN, (zN )

(C2}

In this case, the c s and s s are defined to be orthogonal
with respect to dp„not dye.

From here, we can follow our earlier procedure carried
out from Eqs. (11}—(14). This will leave us with

For the symplectic circular ensemble,

P
z dck —X Qk i, ksk —i+(k+T)sk

Z = '
I det[g, ', ]I,Nt

N

where

(C3) P

X k —ikck —i+( +2} k

(C5}

g, =I dp, (z)[c,(z)zds (z) —s, (z)zdc, (z)] .
z( —n)

(C4} so that the partition function is

N!
ZzM= N

det
2N

a0 Ph0

0

p Xp matrix

a, h,

—a0 h0 0
—a, h,

2y y h

(C6)
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Here, terms containing g appear along the diagonal,
terms containing a „appear at the (n+1)th row and
the (m +1)th column, and terms containing a „appear
at the (m +1)th row and the (n +1)th column.

Taking the transpose of the above matrix and recalling
that at ht =a th, it is apparent that the recursion re-
lations for 8'z will be identical to those produced by Eq.
(B5}provided that

ZN 1

morph N+2z
m uG

ZN(N +2)(N + 1)
(C7)

where the P dependence of GN is removed through the re-
lations {N+ z' }Ig=P and (N+ ,')I—g=2P, respectively.
A factor of 2 discrepancy in these relations causes the
doubling of the diagonal elements from Eqs. (B5)—{C6).
From the identical recursion relations, we conclude that
the models have the same scaling-limit equations and
critical values. In terms of the scaling variables, the sus-
ceptibility will be identical for any potential V.
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