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We consider a Friedmann-Robertson-Walker model with both classical radiation and a massive (con-
formally coupled) quantum scalar field in the framework of quantum cosmology. We define a density
matrix and introduce a notion of “relevance” which splits this density matrix into a “relevant” and an

“irrelevant” part.

A “generalized coarse-graining method” is used to obtain the evolution (in

Robertson-Walker @ “time”) of the relevant density matrix, taking into account the back reaction of the
irrelevant variables. We discuss the physical basis for the choice of a concept of relevance, and the

features of cosmic evolution brought forward by the effective dynamics.
universes,” the relevant subdynamics is dissipative.

PACS number(s): 98.80.Dr, 04.60.+n, 05.70.Ln

I. INTRODUCTION AND MOTIVATION

Cosmology is the study of the dynamics and structure
of the Universe, based on observational facts. To account
for these observations (isotropy and homogeneity of the
microwave background, Hubble’s law, etc.) the *“standard
model” has been proposed [1]. This model is based on
Friedmann-Robertson-Walker models of cosmic evolu-
tion, whose dynamics are characterized by a few relevant
parameters. More general dynamical systems describing
cosmologies (“‘minisuperspace models” [2]) are also based
on the study of the dynamics of a very restricted set of
modes. On the other hand, the configuration space for a
general cosmological model (superspace) is infinitely di-
mensional.

The selection of a few relevant variables which can
show the physical essence of a system is similar to the
main task of statistical mechanics [3]. However, the min-
isuperspace ‘“‘approximation” neglects the influence of the
ignored degrees of freedom on the dynamics of the
relevant ones. From the point of view of statistical
mechanics, this approach is questionable [4] and, in fact,
the consideration of the influence of “irrelevant” degrees
of freedom in quantum cosmology leads to important re-
sults such as the decoherence of the minisuperspace den-
sity matrix [5], and the dissipation of anisotropies [6].

Therefore, it is interesting to study the relevant dynam-
ics taking into account the back reaction of the irrelevant
degrees of freedom [7]. In cosmology, splitting the whole
system into “relevant” and “irrelevant” subsystems may
pose some conceptual difficulty since, by definition, the
entire Universe is a closed system and therefore has no
external environment. However, one is never interested
in observing more than a small subset of the potentially
measurable observables. This subset of modes evolves ac-
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In the limit of “small

cording to an effective dynamics in which the *“ir-
relevant” variables act as a “bath.” This description leads
(under certain conditions [6,8—11]) to dissipative evolu-
tion in the relevant variables [9,10,12—14]. The selection
of certain degrees of freedom as relevant is motivated by
the particular physical situation and by “robustness,” in
the sense that these variables change adiabatically and
are assumed to be almost insensitive to perturbations
[10].

In particular, we shall implement the “system-bath”
splitting in the context of quantum cosmology [15], for a
Friedmann-Robertson-Walker model with both classical
radiation and a massive inhomogeneous (conformally
coupled) quantum scalar field. Despite its simplicity, this
model contains the basic elements to simulate a more
realistic treatment.

To follow the effective dynamics of the relevant subsys-
tem, we shall use the “density operator method,” thus ob-
taining a generalized master equation for the relevant
density matrix. In this case, to make the distinction be-
tween relevant and irrelevant density matrices, one has to
specify the basis in which the splitting is going to be
made [10]. Here we shall use the “particle number”
basis, and adopt the diagonal part of the density matrix
in this representation as the relevant density matrix.

This concept of relevance is more “fine-grained” than
the usual one when dealing with decoherence (i.e., tracing
over all the scalar field), and will allow us to get the dissi-
pative behavior associated with the mechanism of parti-
cle creation [16], whose dissipative nature has been al-
ready demonstrated in the framework of quantum field
theory in curved spacetime [17-20].

The specification of a concept of relevance includes the
choice of a coarse-graining procedure to average over the
irrelevant variables. This procedure is a generalization of
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the coarse-graining concept developed by Gibbs. Con-
cretely, we shall utilize the projection techniques imple-
mented in statistical mechanics to obtain irreversible
master equations from reversible dynamics, based on the
application of an idempotent operator which maps the
density matrix into its relevant part [9,10,12-14].

These coarse-graining techniques, originally developed
in the field of nonequilibrium statistical mechanics, have
been widely used in various branches of physics, such as
laser optics [ 13], nuclear physics [14], astrophysics [21],
quantum measurement theory [22], quantum tunneling
[23], quantum field theory [20,24], inflationary cosmology
[25], and semiclassical gravity [11,17,18,19,26]. In quan-
tum cosmology, they have been employed to study the
quantum to classical transition [5] and the issue of anisot-
ropy dissipation [6]. In fact, this work can be considered
as a quantum extension of previous semiclassical work
that deals with the problem of dissipation from particle
creation [17-19,20].

To confirm the dissipative evolution of the relevant
subsystem, we shall construct a Lyapunov functional
(such that it remains constant for reversible evolutions
and changes monotonically in Robertson-Walker a
“time” for irreversible ones [27]) from the relevant densi-
ty matrix, related to the mechanism of particle creation.

Let us summarize the organization of this paper. Sec-
tion II introduces the model and the corresponding
Wheeler-DeWitt equation for the wave function of the
Universe. In this model, particle creation arises when

J

2

m
S= [d*x(—g)"" —lzl(R—12pc)—%(g“"aMCDaVCD-f-%R(DZ)-F%mCDZ ,

where m stands for the mass of the field’s quanta, and p,
represents the contribution of classical matter.

We shall incorporate into the action some
simplifications. Concretely, we assume that the metric
corresponds to that of the closed Friedmann-Robertson-
Walker model. Thus, it is not possible to satisfy
Einstein’s equations unless the quantum scalar field is
homogeneous. Recall, however, that we are interested in
the identification, within our model, of an irrelevant sub-
system (a “bath”). That would not be possible if we have
only two degrees of freedom (the scale factor a and the
homogeneous mode of ®). For this reason, we must go
beyond the minisuperspace “approximation.”

To obtain a consistent model with inhomogeneous
matter fields, it would be necessary to introduce metric
degrees of freedom (which, in a first approximation, can
be described in terms of gravitons). Nevertheless, for our
purposes, it will be enough to retain the inhomogeneous
scalar field (from which we shall define the irrelevant in-
formation) and, in place of introducing gravitons, we
shall not impose the momentum constraints, but only the
Hamiltonian constraint averaged over each spatial hyper-
surface. Formally, this will result from the fact that the
lapse function N depends exclusively on time.

Thus, the interval takes the form
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conformal invariance is broken by the scalar field’s mass.
This feature allows us to treat the mass as a coupling con-
stant between matter and geometry. When the scalar
field’s mass is zero, matter and geometry are uncoupled
and the Wheeler-DeWitt equation can be solved exactly.
Thus, in the massive case, we can follow the evolution of
the wave function in the “interaction picture,” in which
the uncoupled dynamics is already solved and the evolu-
tion is due to the coupling between metric and scalar
field. This issue is treated in Sec. III.

Section IV deals with the “interaction picture” evolu-
tion of the density matrix, which describes a given
configuration of the quantum field. In Sec. V we specify
our concept of relevance and find the dynamics of the
relevant density matrix. This “subdynamics” is very
complicated, but it can be shown, through the definition
of a Lyapunov functional, that in the limit of ‘“small
universes” the evolution is dissipative. This is done in
Sec. VI. Finally, we briefly state our conclusions in Sec.
VII.

II. THE MODEL: WHEELER-DEWITT EQUATION

Let us consider a simple model, but with enough ele-
ments as to allow a physically meaningful separation be-
tween relevant and irrelevant variables. For simplicity,
we shall use a quantum, conformally coupled, scalar field
to represent the matter degrees of freedom. In this case,
the action is (myp is the Planck mass)

(2.1

ds’=—N%dt*+a(t)g;dx'dx/ 2.2)
where g;; is the metric tensor defined on the spatial hy-
persurface labeled with time z.

The mass term in the action (2.1) is a key term for our
purposes, since particle creation depends strongly upon
it. Indeed, when m =0 there is conformal invariance and
particle creation is suppressed. Therefore, the quantum
field mass acts as a coupling constant, whose intensity is a
measure of the “interaction” between our subsystem and
the “bath” (to be defined below).

At this point it is convenient to introduce the eigen-
functions of the spatial Laplacian, the spherical harmon-
ics on the two-sphere Q/,,. In terms of these functions,
we can write an arbitrary scalar field configuration as

d>(x,t)=% 3 0,(x)8,(1) ], (2.3)

where n denotes the whole set {n,/,m} and we assume
that we have chosen the Q, functions real, so that the
amplitudes ¢, are real too.

Following the canonical quantization procedure, and
choosing the factor ordering so that the term in second
derivatives becomes the Laplacian operator in the
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midisuperspace metric, we obtain the Wheeler-DeWitt
equation for this model [28,29]:

1 o Mp 5, >
maa —— a tmppg
+% S[-3 +n2+miadg2] [¥=0, @4)
n
where we used p, =pga ~* for the classical radiation den-
sity.

III. “INTERACTION PICTURE”
IN QUANTUM COSMOLOGY

A. Exact solution when the interaction is “turned off”

When studying the dynamics of the relevant subsys-
‘tem, but taking into account its coupling with the
“bath,” great simplification is achieved by working in the
interaction picture. In this picture, the ‘“trivial” uncou-
pled dynamics has been previously worked out, and the
evolution is solely due to the interaction between relevant
and irrelevant degrees of freedom [13]. A comparable
simplification can be obtained in the framework of quan-
tum cosmology, reducing the Wheeler-DeWitt equation
to a set of two coupled first-order differential equations
(6].

To proceed with this reduction technique, we have to
solve first the ‘“‘uncoupled” dynamics. In our model,
when the scalar field’s mass vanishes, particle creation
ceases and the Wheeler-DeWitt equation (2.4) can be
solved exactly through separation of variables. For the
scalar field modes, we seek solutions which go to zero
when ¢, —+; i.e., we want a normalizable scalar field
wave function, since in the semiclassical limit we expect
to retrieve the usual interpretation of quantum field
theory in curved spacetime [30]. For this purpose, we in-
troduce the functions H,(¢,,p, ) satisfying

185 —n’¢0) H,($,,p,)

=—(p,+3mH,($,,p,) (p,=0,1,...). (3.1)

Now we propose a solution to the Wheeler-DeWitt
equation, in the zero-mass case, of the type

¥'m=9=3% C(a,p)H(,p) , (3.2)

p
1
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where p denotes the set {p, }, the sum extends over all the
possible sequences of natural numbers (including zero),
and H(¢,p)=[],H,(¢,,p,). Substituting this ansatz
into the Wheeler-DeWitt equation (2.4) we get

13 —1x*+y, |C(x,p)=0, (3.3)

where x =mpa, and y,=mppp+ 3, (p, +1)n; thus, the
zero-point energy of the field can be absorbed into a re-
normalization of the classical radiation density (i.e.,
mipp+ S.3h =mipp). This ad hoc renormalization
will be sufficient for our purposes. Satisfactory renormal-
ization schemes have been proposed in the literature
[31,32]. Putting C(x,p)=exp(—x2/2)F(x,p) and substi-
tuting in (3.3) we obtain

2 p Yo T3
= Z(zzz’ Ly %—z dF;i,p) + p2 = |Fz,p)=0,
(3.4)

where z=x2. Therefore, F(z,p) satisfies the hyper-

geometric confluent equation. In this way, one can ob-
tain a solution to the Wheeler-DeWitt equation as

w(m:O).__z‘e—xz/z[alU( —Np/2,1/2,x2)
P

+a,V(—N,/2,1/2,x*)]H(¢,p) ,
(3.5)

where N, =y, —3=3,p,n +m} —+, and U and V are
the independent solutions to the hypergeometric
confluent equation [33].

B. Evolution of ¥ in the interaction picture

Let us see what happens in the case of interest, i.e.,
when m+0 and particle creation takes place. The last
(“interaction”) term in the Wheeler-DeWitt equation
(2.4) can be rewritten by means of the relation

¢62H($,p)=3 A,(p,q)H($,q) , 3.6)
q

where

A,(p,q)= An<q,p)=51n-[(2pn +1)8(p,,4,)+V p,(p, — 18(p, —2,4,)+V (p, +1)(p, +2)8(p, +2,4,)18,(p,q) , (3.7

with §,(p,q)=1],%.6(p,q, ). Notice that 4,(p,q) con-
tains the information about the interaction term, and it
connects ‘“‘states” that differ in their sequences of particle
numbers by the creation or destruction of one pair [we
shall see later that the first term in (3.7) does not contrib-
ute to the evolution equation of the density matrix in the
interaction picture]. We now make the ansatz [remember
(3.95)]

V=3 a,(x,p)F(x,p)H (¢,p) , (3.8)
p

where we use summation convention in the index i =1,2
(henceforth, indices i, j,k and / will run from 1 to 2, and
summation convention will be used), and

Fl(x,r)=2"12"*"2U(=N, /2,1/2,x?) , (3.9)
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Fix,r=2"2(—1) NV =52y (N 2,1/2,%7) .
(3.10)

The F”s are real and satisfy
Fi(x,r)d,F/(x,r)—F(x,r)d,Fi(x,r)=io¥ , (3.11)

where o, is the usual Pauli matrix.

Note that we are using for the massive case (3.8) the
same scalar field wave function as in the conformal case
(3.5). Since in the semiclassical limit of quantum cosmol-
ogy we obtain quantum field theory in curved spacetime
in the Schrédinger picture [15,30], this wave function is
the Heisenberg state corresponding to an n-particle state
of the conformal particle model, in the usual formulation
of quantum field theory in curved spacetime [34]. There-
fore, particle creation arises because we are using approx-
imate (zero-mass) modes to expand the scalar field, and
that leads to creation and annihilation operators which
depend on x. In fact, the analogous situation in quantum
field theory in curved spacetime leads to the conclusion
that creation and annihilation operators at two times are
related via a Bogoliubov transformation [16].

Since we have one differential equation (2.4) for two
unknown functions a;, we may add the condition

Fi(x,r)d,a,;(x,r)=0 . (3.12)

Taking this into account, and substituting (3.8) into the
Wheeler-DeWitt equation (2.4), we get

id,a;(x,p)=3 FH¥(x,p,r)a;(x,r) , (3.13)
with
2

H¥(x,p,r)= [ml xsz(x,p,r)z A,(p,r), (3.14)
P n

and

of(x,p,r)=(0,) ;Fi(x,p)FX(x,r) . (3.15)

Equation (3.13) represents the evolution in the interac-
tion picture of the wave-function ‘“components” (in the
uncoupled basis of solutions F). As stated before, this
equation becomes trivial when the interaction is
suppressed (m =0), since ?{f‘(x,p,r) vanishes. Therefore,
particle creation appears when the components a; de-
pend on x. To study the dynamics of these components,
we shall define a density matrix. This provides a natural
way to follow the evolution and also allows the im-
plementation of coarse-graining techniques.

IV. THE DENSITY MATRIX: EVOLUTION IN THE
INTERACTION PICTURE

The Wheeler-DeWitt equation (2.4) corresponds to a
Klein-Gordon equation in a Minkowski spacetime; there-
fore it preserves the inner product

o(x,p,s)=w*(x,s,p)= —w(x,s,p)E%cof(p,s)=

N |~
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(©,9)=i [ []d¢,(0%*3,¥—¥3,0%). 4.1)
Recalling (3.8), we obtain

(¥, ¥)=3 o¥a;(x,pla}(x,p) . 4.2)

p

From (4.2) we define the diagonal elements of the den-
sity matrix as [6]

p(x,p,p)=c¥a;(x,pla}(x,p) . (4.3)

This definition has the advantage of constant total
“weight”; i.e., the sum of diagonal elements remains con-
stant as the scale factor a varies. However, we must no-
tice that the definition (4.3) has a serious drawback,
namely, that the diagonal elements are not positive
definite. Therefore, we shall not attempt to give them a
probabilistic interpretation [35]; it will be enough to con-
sider them as giving a characterization of the quantum
field state at “time” x.

More generally, we shall define the density matrix as

plx,p,q)=0c¥a;(x,p)at(x,q) . (4.4)

Although this definition is somewhat arbitrary, it will
suffice to study the dynamics of the diagonal elements.
From Eq. (3.13) it is straightforward to find an equation
for the matrix,

pij(x,p,q)=a;(x,plaj(x,q) , 4.5)
and, introducing the vector
pu= a{fp i (4.6)

(#=0,1,2,3;0( is the identity matrix and the others are
the Pauli matrices), we get

i3,p,(%,p,9) =3, L[ Hi(x,p,5)p,(x,5,9)0%;

s

+ 7 (x,q,5)p,(x,p,5)0k] . @)

We are only interested in the evolution equation for p,.
Unfortunately, (4.7) indicates that each component p,, is
coupled to the others. To find a closed equation for p,,
we would have to apply reduction techniques to the sys-
tem of coupled equations (4.7). Nevertheless, we shall
consider in a first approximation that we can neglect the
irrelevant components (pg,p,,p3), and keep the equation

(p=p,)
i9,p(x,p,q)=3 [F(x,p,s)p(x,s,9)—p(x,p,s)H(x,s,9)] ,

s

(4.8)

with

2
H(x,p,s)= [_:_1 o(x,p,5) S A,(s,p) , 4.9)
P n
and
J

[FXx,p)F\(x,s)—F\(x,p)F¥x,s)] . (4.10)
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Owing to the antisymmetry property, the first term in
(3.7) does not contribute to #, and therefore 7 has only
extradiagonal elements. Observe that total “weight” is
still conserved, i.e., from (4.8) we get 9, 3, p(x,p,p)=0.
On the other hand, the condition (3.12) leads (in the
decoupling approximation) to

H(x,p,q)9,p(x,p,q)=0, @.11)

which, due to the antisymmetry of 7, means that the
nondiagonal elements of p remain constant during the
evolution. Therefore, the neglect of (pg,p;,p3) Will be ac-
ceptable if the extradiagonal elements of p are “slowly
varying.” This can be justified from the relevance con-
cept we shall use and by the approximation that the bath
is “sluggish” [6]. Under these hypotheses, Eq. (4.8)
represents the evolution of the density matrix in the in-
teraction picture.

V. THE RELEVANT DENSITY MATRIX: EVOLUTION
IN THE INTERACTION PICTURE

Now we shall specify our concept of relevance and find
the dynamics of the relevant density matrix in the in-
teraction picture. To reach this end, it is convenient to
start defining the tetradic operator

E(x,p,q,r,5) =F(x,p,r)8(s,q)—8(p,r)F(x,s,q) ; (5.1)

thus, Eq. (4.8) resembles a Liouville—Von Neumann
equation:

id,p(x,p,q)=73, E(X,P,q,r,s)p(x,r,s)
rs

=[L(x)p(x)](p,q) . (5.2)

As discussed in Sec. II, we shall define our irrelevant
variables from the scalar field modes. First, we have to
choose the basis in which the division between relevant
and irrelevant portions of the density matrix is going to
be made. We adopt for this purpose (as we have been us-
ing so far) the “particle number representation,” since in
the limit of weak particle creation (to which it will suffice
to restrict ourselves to demonstrate the existence of dissi-
pation) the number of particles is an adiabatic invariant.
On the other hand, one could work in a complementary
basis, such as that associated with the phase of each
mode [36] or the coherent-state basis [17]. However, we
shall deal with particle creation in the first stages of the
cosmic evolution, when occupation numbers are small
and spontaneous particle creation dominates over stimu-
lated creation. In this case, the uncertainty in the parti-
cle number is much less than that in the phase [17].

Concerning the specification of the relevant density
matrix, recall that the information about particle number
sequences is much more accessible from the “observa-

J

p,(x)=@(x,xo)p1(x0)—if:dy G(x,y)1—P)L(y)pg(y
0

where

N

8(x,%0)=T exp [—if"dyu—ﬁ)ﬁ(y)u-m :
*o0
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tional” point of view than that related with the interfer-
ence among distinct quantum states, since these relative
phases could be lost as a consequence of interactions, de-
cays, and annihilations that would destroy the coherence
of the state, but presumably not the probability distribu-
tion of the occupation numbers [18,26,37]. A good exam-
ple is the spectrum of the cosmic background radiation,
which is characterized by a thermal spectrum (i.e., a state
represented by a diagonal density matrix in the number
representation).

Therefore, we shall consider as a relevant density ma-
trix the diagonal part of the density matrix defined in
(4.4), since these elements give the “weight” of a given
state specified by its sequence of particle numbers. Note
that the specification of this concept of relevance does
not imply neglecting the extradiagonal elements of the
density matrix; in fact, it is the back reaction of these ele-
ments into the relevant ones that cause dissipation, as we
will see below.

Observe that, in contrast with other work [5], we are
not considering irrelevant the whole scalar field, but only
the extradiagonal elements of the density matrix. On the
other hand, this concept of relevance is the most impor-
tant within quantum mechanics [10], since it leads to
Pauli’s master equation and its generalizations [10,12].

In this connection, it is interesting to observe that, in
the usual derivation of Pauli’s equation, decoherence is
invoked to justify discarding nondiagonal terms in the
density matrix [10]. In the approach we shall follow,
leading to a generalized master equation, those terms are
not neglected, although eventually we shall assume that
the density matrix is diagonal at the initial “time.” This
choice of initial data, and the reasons behind it, will be
discussed below [cf. Eq. (5.10)].

To obtain the dynamics of the relevant density matrix,
we begin defining the projection operator P that corre-
sponds to our concept of relevance:

P(p,g,r,5)=8(p,r)5(q,5)8(p,q) , (5.3)
and the complementary operator
(1—P)(p,q,r,5)=8(p,r)8(q,s)[1—8(p,q)] . (5.4)

The single “Liouville-Von Neumann” equation (5.2) is
equivalent to the coupled system:

id,pr(x)=PL(x)pg(x)+PL(x)p;(x), (5.5)
id,py(x)=(1—P)L(x)pg(x)+(1—P)L(x)p;(x), (5.6)

where pg(x,p,q)=p(x,p,p)8(p,q) is the relevant density
matrix, and p;(x,p,q)=p(x,p,q)[1—8(p,q)] is the ir-
relevant density matrix (pg +p;=p). In terms of an ini-
tial condition at “time” x,, Eq. (5.6) can be formally
solved to yield

), (5.7

(5.8)
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and T denotes a time-ordering operator. By inserting this formal solution back into Eq. (5.5), we get an exact closed

equation for pp:

id,pr(x)=PL(x)pg (x)+PL(x)G (x,x0)p,(xo)—i [ " dy PL(x)G(x,9)(1—P)L(y)pg(y) .
X0

Let us look into the meaning of each term in the right-
hand side of (5.9). The first term is the trivial part of the
relevant dynamics and takes the form of an instantaneous
“self-interaction.” This term does not contribute to our
conjcs:ept of relevance, i.e., from (5.1) and (5.3) we obtain

=0.

The second term of (5.9) arises from the irrelevant den-
sity matrix at “initial time” x,. To evaluate this contri-
bution, we must specify the initial conditions. Within the
framework of quantum cosmology, one would not be free
to choose the initial conditions arbitrarily, but in agree-
ment with a fundamental principle that defines the quan-
tum state of the Universe [38]. No such principle has
been definitely established yet. For simplicity, we shall
assume that the quantum state of the Universe is con-
sistent with the hypothesis that our system can be de-
scribed initially only in terms of relevant variables, and
impose the initial condition:

p1(x0)=0 . (5.10)

Although this “generalized molecular chaos hy-
pothesis” is stronger than the molecular chaos assump-
tion, it is assumed to hold only at the initial “time”. Us-
ing this method we can be sure that the evolution is con-
sistent with Eq. (5.2). Moreover, (5.10) corresponds (in
those cases where a probabilistic interpretation exists) to

G (x,,5,t,u,0)=8(s,u)8(2,v) + 8 (x,,5,t,u,0)[ 1 —8(s,u) ][ 1—8(£,v)] ,

(5.9)

[

the usual initial condition of equal fine-grained and
coarse-grained probabilities [39].

The last and essential term in (5.9) takes the form of a
(non-Markovian) “memory term,” since it describes the
dependence of the ‘“time” derivative on the previous his-
tory of pp throughout the interval x, <y <x. Finally, in-
troducing the kernel

R(x,y)=PL(x)G(x,y)1—P)L(y) ,

[which, in view of (5.1) satisfies E,k(x,y,p,p,r,r)=0] we
may rewrite the evolution equation for the relevant densi-
ty matrix in interaction representation in the final form:

(5.11)

3.pr(x,p,p)=— [ ;;dy 3 R(x.y.p.p,r,7)

X[PR(y,r,r)—pR(y,P,P)] . (5.12)

VI. EFFECTIVE EVOLUTION FOR
“SMALL UNIVERSES”

Now we shall attempt to derive a simpler effective evo-
lution equation from the approximation of ‘‘small
universes” to Eq. (5.12). To reach this end, we must ana-
lyze the structure of the kernel K in (5.12). We begin
writing

(6.1)

since in the expansion of (5.8) the only diagonal term is the unit tetradic operator. In terms of this characterization of

G, we may rewrite R as

k(x,y,p,p,r,r)= > f(x,p,p,s,t)f(y,s,t,r,r)+

Recalling (3.7), (4.9), and (5.1), we may interpret the
first term in (6.2) as giving the ‘““transition rate” between
“states” of pp that differ in the creation of a particle pair,
and the second term as coming from the contribution of
states that differ in the creation of more than one pair.
Let us see that for “small universes,” the first term in
(6.1) and (6.2) is dominant.

Taking into account that G is the propagator for Eq.
(5.6) when py is zero, we can see that §~x|#(x)| or, in
the limit of small x, g=(m2wA/mi)x3, where
o=|w(x —0) and A=3,4,. Using the expressions of
F' and F? for small x [33] (e.g., for x smaller than the
classical turning point xtpzZpo%), and assuming the
creation of only one pair from vacuum in the homogene-

ous mode, we may estimate
g=mlwAx} /m}=m?/m}< <1, (6.3)

for m%p p~0.5-1, and reasonable values of the mass of

S Lxpp.s,008(x,p,5,6u,0L(p,u,rr) .
st SFELU UF,L

(6.2)

—
the field’s quanta. Within this approximation, we may
assume that py and £ change slowly and put y =x [18] in
(5.12) to obtain

axPR(X,P,P)
=—2(x —xq) 3 FH(x,p,r)pg (x,7,7)—pg(x,p,p)] .

(6.4)

This is the evolution equation for the relevant density
matrix in the “small universes” approximation. Since #
is imaginary, this is a ‘“Pauli-type” equation and an H
theorem could be proved for H= Tr(pg Inpg ) if one as-
sumes the positiveness of the diagonal elements of p. To
avoid this hypothesis, one may verify instead the dissipa-
tive behavior from (6.4) through the definition of a func-
tional Q according to
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Q(x)= Trlpg(x)pr(x)] . (6.5

From (6.4) we confirm that Q(x) is a Lyapunov func-
tional, since

3, Qx)=2(x —x¢) S F(x,p,r)
br

X[pg(x,r,r)—pr(x,p,p)* <0,
(6.6)

which indicates that the relevant density matrix obeys,
for “small universes,” a dissipative evolution equation.

VII. CONCLUSIONS

We implemented the “system-bath” splitting in the
context of quantum cosmology, for a Friedmann-
Robertson-Walker model with both classical radiation
and a massive inhomogeneous (conformally coupled)
quantum scalar field. Despite its simplicity, the model we
have presented has the basic ingredients that allow the
specification of a physically meaningful concept of
relevance.

In this model, particle creation appears when confor-
mal invariance is broken by the scalar field’s mass. This
feature allowed us to work in the “interaction picture”
(using the mass as a coupling constant), in which particle
creation appears as a dependance of the wave-function
components (with respect to the zero-mass solutions of
the Wheeler-DeWitt equation) on x.

To follow the evolution of these components, we
defined a density matrix. This provides a context suitable
for the application of coarse-graining techniques. The
effective dynamics of the relevant subsystem is described
in this case by a generalized master equation for the
relevant density matrix.

The specification of a concept of relevance, from which
we constructed the projection operator, was based on our
interest in following the evolution of a certain combina-
tion of the wave-function components, i.e., that associat-
ed with the “weight” of a given configuration of the wave
function (characterized by a sequence of particle num-
bers). Thus, working in the “particle number” basis, we
defined the diagonal part of the density matrix in this
representation as the relevant density matrix. This elec-
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tion is justified because the relative phases are not ‘““acces-
sible” in the physical situations relevant to cosmology
(for example, the observation of thermal spectra).

This concept of relevance is more “fine-grained” than
the usual one when dealing with decoherence [5]. Here
the “environment” is constituted by the nondiagonal ele-
ments of the density matrix in the number representation;
in this way we retain part of the scalar field modes as
relevant information.

Once we have obtained the evolution equation for the
relevant density matrix in the interaction representation
(using the condition that only ‘“relevant information” is
present initially), the “small universes” approximation
led to the evolution equation (6.4), which is manifestly
dissipative. To confirm the “dissipative” evolution of the
relevant subsystem, we have constructed a Lyapunov
functional Q from the relevant density matrix.

In this model, “dissipation” results into the building of
a correlation between the size of the Universe and the dis-
tribution of occupation numbers of the scalar field. In
effect, as we consider universes larger than the “initial
size” x, the distribution of occupation numbers “‘spreads
out” with increasing Universe size.

The use of coarse-graining techniques makes it possible
to focus on relevant physical phenomena (in this case, the
correlation between the size of the Universe and the
physically accessible occupation numbers of the matter
field), as described by effective evolution equations [e.g.,
Eq. (6.4)] much simpler than the original Wheeler-
DeWitt equation (2.4). In this sense, coarse-graining
techniques are a valuable tool for concrete model build-
ing in quantum cosmology. We are continuing our
research into their manifold applications.
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