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We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex
sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at inanity, of
vortex solutions for the gauge and scalar fields in an Abelian Higgs model on a Euclidean Schwarzschild
background and interpolate between them by integrating the equations numerically. Calculating the
back reaction shows that the e6'ect of the vortex is to cut a slice out of the Euclidean Schwarzschild
geometry. The consequences of these solutions for black-hole thermodynamics are discussed.
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I. INTRODUCTION

The view that the quantum aspects of black-hole phys-
ics will play an important role in leading us towards a
quantum theory of gravity has been strengthened recent-
ly, not only by the discovery that some coset conformal
field theories correspond to string theory in two-
dimensional black-hole geometries [1], but also by the
suggestion that the more familiar four-dimensional
variety can carry "quantum hair" [2,3]. This latter devel-
opment is of particular interest to relativists, since the
conventional wisdom is that powerful theorems imply
that black holes are characterized only by their mass, an-
gular momentum, and electric charge (and other charges
that are associated with a Gauss law). Investigating these
"no-hair" theorerns, however, shows that while powerful,
they are not omnipotent. In particular, the existing "no-
hair theorem" for the Abelian Higgs model with the usu-
al symmetry-breaking potential makes restrictive assump-
tions about the behavior of the fields exterior to the hor-
izon [4,5], restrictions that are not obviously satisfied by
all physically interesting scenarios. It has been sho~n
that a black hole cannot be the source of a nonzero, stat-
ic, massive vector field [6] but the jury is still out on the
case where a U(1) gauge field acquires a mass through the
Higgs mechanism. However, since the expectation is
that, in this case too, black holes cannot support nonzero
massive vector fields, apparent contradictions are of great
interest since they would limit the conditions of validity
of the rigorous no-hair theorem.

It has been noted by Aryal et al. [7] that black holes
might have hair, quite literally, since they wrote down
the metric for a black hole with a cosmic string passing
through it. They used a distributional energy-momentum
source as the string, so one could not say with confidence
that this corresponds to a physical vortex spacetime since
such a limit is not valid for linelike defects [8]. However,

one might find this suggestive that a no-hair theorem
would have to be limited to the case where no topological
defects exist, thus reducing the physical relevance of such
a theorem since defects ail/ exist if they can exist. It was
also shown by Luckock and Moss [9] that black holes
could carry Skyrmion hair, although they conjectured
that such solutions were unstable.

More recently, it was pointed out by Bowick et al. [2]
that there exists a family of Schwarzschild black-hole
solutions to the Einstein-axion equations labeled by a
conserved topological charge. Thus, in some sense, such
black holes could be said to be carrying axion hair. It
was then rapidly realized that the same fractional charge
that could give rise to enhancement of proton decay ca-
talysis by cosmic strings [10] could potentially be carried
by black holes [3]. The full ramifications of this type of
quantum hair have been most eloquently argued by Cole-
man et al. [11,12], who suggest that this charge might
have dramatic implications for black-hole thermodynarn-
ics. Remarkably, their work implies that even if a black
hole does not carry discrete charge its temperature is still
renormalized away from the Hawking value. This means
that if we are to believe in spontaneous symmetry break-

ing and the existence of strings in nature, then we must
take into account such renormalization eft'ects indepen-
dently of whether or not discrete charge exists.

All of these claims rest on the existence of a family of
"vortex" solutions which are saddle points in some Eu-
clidean path integral. These solutions are obviously out-
side the domain of standard no-hair arguments; being Eu-
clidean, however, they are static in the sense that the
metric is static and the energy-momentum tensor is time
independent (though not in the restricted sense of Gib-
bons [5]) and establishing existence would set bounds on

the validity of future theorems.
In this paper we will focus on the problem of existence

of solutions of the above sort. The layout of the paper is
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as follows. We begin by setting up the general problem,
discussing what is meant by a "vortex centered on a black
hole. " We then show that a perturbative analysis is
justified for weakly gravitating vortices, after which we
focus on the specific example of a complex scalar (Higgs)
field with a "Mexican hat" potential, coupled to a U(1)
gauge field. We find numerically a vortex solution on a
Schwarzschild background and describe its asymptotic
behavior. We calculate the back reaction on the
geometry to first order in Gp, the energy per unit area of
the vortex (in Planck units), and also calculate the Eu-
clidean action of this geometry. We calculate the expec-
tation value of the metric in a black-hole state at a cer-
tain temperature and derive a relation between the mass
and temperature without appealing directly to the parti-
tion function. We also calculate the expectation value of
the area of the black hole. We draw analogies with
cosmic-string physics, and discuss problems with global
charge.

II. EINSTEIN-MATTER EQUATIONS:
GENERAL FORMALISM

We have said we are interested in finding vortex solu-
tions to the Abelian Higgs model in a Euclidean black-
hole spacetime. First we should discuss what we mean by
a Euclidean black-hole spacetime.

Recall that a Schwarzschild black-hole metric has the
form

p=BA (r), (2.4)

where B =P/2m. is used for convenience. Regularity then
implies (A )'~r&=2/B In .principle we can leave the
metric in terms of the period P and the area of the event
horizon A; however, for calculation simplicity we choose
to use up the coordinate freedom

Einstein equations with the topology S XR, being
spherically symmetric on the S sections, and cylindrical-
ly symmetric on the E sections. (Note that we require
only the energy-momentum to have these symmetries. It
is quite possible that the constituent fields do not; for ex-
ample, a Nielsen-Olesen vortex is cylindrically symmetric
even though the Higgs field has a dependence on the az-
imuthal coordinate. ) The metric is then a function of just
one variable, a radial coordinate in the R plane. The
presence of a black hole is indicated by the existence of a
minimal value of the radial coordinate rs ( =2GM, say) at
which the metric and curvature are nonetheless regular.
Following Garfinkle et al. [13]we will write the metric in
the form

ds =A dr +A dr +C (dg +sin gd$ ), (23)

where A (rs ) =0, r is understood to be a periodic coordi-
nate with period P, and C(rs) =A/4n is given in terms
of the area of the event horizon. The regularity of the
metric at rz implies we can choose local cylindrical coor-
dinates in which the metric is regular

s = — 1 —2GM
dt + 1

2GM
T r

/p (dg +sin gdy )

dT

(2.1)

r ~ar+b, ~~a (2.5)

to set B =rs and C(rs)=rs. We may then reinterpret
our coordinates if required. The Einstein equations for
this metric can then be written as

ds =p d +dp +4G M dQ» (2.2)

We may formally Euclideanize this by setting t~i~.
However, we now see that the former Lorentzian coordi-
nate singularity at r =2GM is in danger of becoming a
real singularity in Euclidean space, since the metric
changes signature from four to zero for r &2GM. This
tells us that we must regard r &26M as the only region
of relevance in our Euclidean section, and that therefore
we must be able to include r =26M in a nonsingular
fashion into our manifold. Changing variables to
p =16G M r '(r —2GM) weseethat

C"=4m G i ( Tc —T„"),C

2A A'C'
C

1
2(1—A C' )=8rrGT„",

where

2 a(Z&g)
Qb ~ g gb

[( A )'C ]'=8n.GC (2Te+ T„' Tc ), —

(2.6a)

(2.6b)

(2.6c)

(2.7)

near r =2GM, which shows that ~ must be identified with
period 8~6M, and that r and ~ are analogous to cylindri-
cal polar coordinates on a plane. Thus, we arrive at the
conclusion that the Euclidean Schwarzschild background
has topology S XR, with a periodic time coordinate,
period P=gm. GM. The geometry of the t rsection o—f
the Euclidean Schwarzschild background can be visual-
ized as the surface of a semi-infinite "cigar" with a
smoothly capped end and tending to a cylinder of radius
46M as r~ 00.

In general there will be matter present as well as a
black hole; therefore, assuming that the matter is spheri-
cally symmetric and "static" (i.e., cylindrically sym-
metric), we will be looking for solutions to the Euclidean

is the energy-momentum tensor, which obeys the conser-
vation law

(2.8)

which is valid for a general spherical-cylindrical sym-
metric source.

In order to complete our preliminaries on formulating
the Einstein equations, we note that since we expect the
greatest variation of Tb to occur near the horizon, it may
be expedient to have a form of the Einstein equations in
terms of the proper distance from the horizon. For con-
venience we also scale out the dimensional fall-off behav-
ior of the energy-momentum tensor, rH say, to express
quantities in terms of the dimensionless parameter
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(2.9)

Setting C(9)=Clrs, and GATI', =8mGT.brH, the boundary
conditions at the horizon become

and

C'(0) = 1, C"(0}=0, C "(0)= + —,'ef~0
l r~,
(2.10a}

A (0)= A "(0)=0, A '(0) = 1

2R
(2.10b)

1 C 0

A 2 A

A".1 — 1+ ' + C'f'"
A'C'

1/2

(2.11b)

(2.11c)

where we have rearranged (2.6c) as a quadratic for C".
Regularity at the horizon fixes the sign of the root in
(2.11c), which is then valid in some neighborhood of the
horizon.

Having set up this formalism, we now turn to the prob-
lem of deciding under what circumstances we expect a
vortex black hole to exist.

where prime denotes d/dk and R =rslrH is the ratio of
the Schwarzschild radius to the vortex width. The Ein-
stein equations are now

( A 'C )' =eC' A ( f'e +—,
' f'„"——,

' f 0 ), (2.11a)

pect A'=0 at any finite r . (We cannot make a similar
statement concerning C', since the effect of the radial
stresses can conspire to make C actually decrease near the
horizon. ) Inspection of (2.11a) shows that A'(9) &0 is
guaranteed if

J(r ) =ef C A (2f'e+ f'„" T0—}fi" (3.2)

& A'C' & (3.3)

converges, and its modulus is less than 1/2R. What we
will now prove is that if e= 8m.GE « 1 (the vortex is suit-
ably weakly gravitating) and if the energy-momentum
satisfies certain fall-off conditions then J is not only con-
vergent, but is of order e/R. By a fall-off condition we
mean that outside the core (r&few)

l fbi &E(r ") for
some E of order unity, n )0. Our aim is to find a value
of n which will guarantee that we can integrate out the
metric functions to large values of 9. This will then tell
us what sort of energy-momenta we expect well-behaved
vortex solutions to have. Since we are not, at this stage,
trying to argue the existence of a full solution to the cou-
pled Einstein-rnatter system, we restrict our attention to
only two of the metric equations, (2.11a) and (2.11c). The
reason for this is that the three Einstein equations impli-
citly contain the matter equations of motion, conserva-
tion of energy-momentum being an integrability condi-
tion for (2.11a)—(2.11c). Now let us turn to proving our
claim —and finding the value of n.

We start by assuming the contrary —that J is diver-
gent. Then there exists an 90 at which J(ra)=1/(4R};
thus, on [O, ra] (2.11a) implies

III. ASYMPTOTIC SOLUTION
OF EINSTEIN'S EQUATIONS

We would like to show that solutions exist which cor-
respond to a vortex at the horizon of the black hole.
However, rather than taking a specific field theory source
for Tb, in this section we remain more general, investigat-

ing what minimal conditions Tb must satisfy in order to
have an asymptotically Schwarzschild metric. We natu-
rally have in mind that Tb has some, as yet unspecified,
field-theory vortex solutions as its source; therefore, we

expect Tb =Efb lrH, where E is an energy per unit area
characterizing the source, fb is the rescaled energy-
momentum referred to in (2.11) which is of order unity,
and rH represents a cutofF scale of the vortex. Thus, for
example, a Nielsen-Olesen vortex has E —g and

rH —1/V)t, i), where rj is the symmetry-breaking scale and

X the quartic self-coupling constant. Because we are in
Euclidean space, we do not have a conventional set of en-

ergy conditions for T&, but since we know that Tb is de-

rived from a 8 and P independent field-theoretic Lagrang-
ian, we do have a modified dominant energy condition,
namely, that

being positive. Let rf &ra be chosen so that f &0 on

[OPf ]. Then, on this interval

(3.5)

using (1 i/Pyl —v I+x+y —1+&x+lyl) for x &0,

Let us consider the implications of each bound in turn.
The lower bound on C' implies

C &exp v'ef lf—'„"l'" &e (3.6)

where a will be order unity if we use the fall-off assump-
tion with n 4 (and so in particular C is always positive).
Hence

A' e ' A e ' on[Or ]
1

2R 2R
(3.7)

Now, in order to use (2.11c) to bound C, we must be sure
that the sign of the root is fixed; this relies crucially on

I2 2

(3.4)

(3.1)

Now, as we have already remarked, we are looking for
a nonsingular asymptotically Schwarzschild metric. This
means that we do not expect C =0, nor in fact do we ex-

ee
—4av el f rl

AT

Using this bound and (3.3) we see that

A r2+4 —2a&e
+eC T„"&

A
(3.8)
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is strictly positive on [OP&] provided e« 1 and the pre-
vious fall-off assumption holds. Therefore C' f & C /R
on [OPf ], and without loss of generality, we may choose

Pf =Pp.
Now we examine the upper bound on C':

c'& —+~ec I1'"I'"
R

f„(r —rs)I To —T,"I/A dr is bounded .But then we

use A & A (rs+5) on (rs+5, ao ) to conclude that

f r
—rs)I To-

dT
rS+ A

f r If'o —f'„"i'd% & ao . (3.13)
4R A (rs+5) e(r~+s)

exp v ef If',"I'"

R
+v ~c'If'"I'" (3.9)

We may then use a theorem' from ordinary difFerential
equations to conclude that

which implies that C-cr+d as r~ac . (3.14)

c &exp ~if I&,"I'" 1+—

Bounding f I
f'„"I '~ by a as before, we see that

'2
"~- 1+- I2f'+f" foIu-

0 2R 8 r 0

(3.10}

(3.11)
A — 1—1

c2

where

rs+I
as r~~, (3.15)

Examining (2.6b) and (2.6c}as r ~~ shows that c@0and

(2.6b} then implies (A')'~0 as r~ao, and a rearrange-
ment of (2.6c}gives

This is readily seen to be convergent on [OPo] if n 5 in
the fall-off assumption, and we may write

1=8~6 C (2TO+T, —To)dr'=rsRJ .
S

(3.16)

{3.12)

for some y of order unity provided R & 1. Therefore, for
R & 1, J(fo) cannot be equal to 1/4R, thus contradicting
the initial assumption about Po. Therefore we conclude
that no such ro exists, and provided that I

f's
I
&Er we

may (formally} integrate out the metric equations to
infinity keeping A', C &0. Note again that this argu-
ment only involves (2.11a) and (2.11c}.

We now use the following argument to conclude that if
a solution does exist then it is asymptotically
Schwarzschild.

Note that the initial conditions imply that

2AA'C =rs+I f =r, [1 +O(e)]] (3.17)

implies

(C T,")'—C C'(T„"+2Ts)
o
—T )=2

{ +I) (3.18)

using the equations of motion for Tb. Then, using (2.6c)
at the horizon to determine C'I„=l+8nGrsT„"I„, we
may rewrite (2.6a) as

Thus we see that any solution must be asymptotically
Schwarzschild. We can also see that the solution will be

changed by 0 (e) from exact Schwarzschild. Indeed,

C2( T„+2?
(rs+I)E E rs+I

eC T' ~2 C T'To—C' dr dr
(r +I}E E (r +I}

~1— f C (T„'+2Ts)dr+0(e } as r~oo,
Eps rs

(3.19)

which gives the value of c to order e.
It is possible to write integral expressions for the

changes in the Arnowitt-Deser-Misner (ADM} mass [15]
and the period of the space time from their vacuum
values. Recall from (3.14) and (3.15) that the asymptotic
form of the metric is

rs+I
ds =c dH

r'=r/c, r'=cr +d

to obtain

(3.21)

coordinates are not those of a "Euclidean observer" at
infinity. In order to identify the true period and ADM
mass of the space, we must rescale the r, ~ coordinates so
that A ~1 at infinity. Thus we set

rs+I+c 1— dr +(cr+d) dQtt, {3.20}

where c is given by (3.19). If c%1, then clearly the r, r

The theorem states that if J xIa(x)Idx is bounded, then the
nonzero solutions of the second-order equation u"+a (x)u =0
have the asymptotic form u —Ax+B where the constants A
and 8 cannot both be zero [14].
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(rs+I)c
ds = 1—, d~' F—„,+(SF')'2)„P+—( ~Q~

—q ) (4.1)

(rs+I)c
+ 1—

r

and hence

dr' +r' dQ (3.22)
For a simple vortex solution we choose the variation of
the phase of the g field to distribute itself uniformly over
the periodic ~ direction. This is simply a gauge choice
which allows us to simplify the equations of motion by
setting

p'=p/c =p 1+ f C (T„"+2T&)dr
rg ~s

(3.23) ~X ( r )eikr/B
(4.2)

M„=c[rs+I( ~ )]/2G = 1 — f C Tadr
r,E ~s

(3.24)

are the period and ADM mass of the space to order e.
Thus, to order e, the period of the geometry decreases,

whereas M„may increase or decrease according to the
details of the specific vortex model chosen.

The preceding expressions give the modified period and
ADM mass of the spacetime, if one knows what the solu-
tions are. However, a perturbation expansion in e for
solution is justified if e « 1 and we wi11 now give the solu-
tions for the metric functions in the perturbative case.
One can solve for the sources T&(r) as test fields on the
Schwarzschild background. In the next section we will

study the equations for the matter fields in the Abelian
Higgs model; so for now let us assume that we have
solved the equations and know what the vortex sources
are. These solutions on the background are exact if @=0;
i.e., the matter and gravity decouple. The next step is to
compute the corrections to the metric coefficients when
e@0.

One finds that, to first order,

C =C, =r+ f dr'I, (r'),
rs

where

I~(r)=eErs r T„" f dr'r'2(T„"+2—Tea)
s

and

(3.25)

(3.26)

+ dr
"s ~, I (r')
r 's r ,3 f dsIi(s)

r 's

IV. AN ABELIAN HIGGS VORTEX SOLUTION

We now examine the specific energy-momentum source
of an Abelian Higgs vortex centered on the horizon. The
Lagrangian for the matter fields is

(3.27)

where I(r) is given by (3.16) with C replaced by r~ In.
Eqs. (3.25) and (3.27} everything on the right-hand side is
known, in terms of the sources.

For larger r one can then extract the derivative of C
and the ADM mass, to give the modifications to the
period and mass which are just Eqs. (3.23) and (3.24) with
the metric functions in the integrals replaced by their
Schwarzschild forms.

This implies that the Lagrangian and equation of motion
simplify to

P2 XP2X2 A 2+ 2 + i) (X2 1)2
2B2 " g2B2 4

1 (CPP )
Ag XP

C2

PX(C A X„)„= + X(X —1),
C2 3 B

(4.3)

(4.4a)

(4.4b)

where v=k/2e .
It is straightforward to check that the asymptotic be-

havior of the bounded solutions to (4.4) is

X~(r rs)~"~~ —P =k —a(r —rs) as roars,
where a= Be/(4m. rs }—jH A„'dS and

—"(/ A.gr I A
1 —X~r 'e b

—&Xgrl&v A „P~r e

(4.5a)

2This limit might seem problematic since it involves taking ei-

ther G~O or E =q ~0. The former limit must be taken at

finite rs in order to preserve the background geometry; this

would mean that the Euclidean black hole would have a formal-

ly infinite "mass. " The latter limit is equivalent to sending the

symmetry-breaking scale to zero which would require sending

the self-coupling A, and the charge e to infinity in order to keep

rH and v fixed. Since, by rescaling the fields, one can express the

equation in terms of e, rH, rs and v only, both limits are

equivalent as far as the equations are concerned. However,

since G is a measured physical constant, it may be easier to

think of the limit as g~0.

as r~ ca (4.5b)

where a =1+GM„v'A, i), b =1+6M„i/A, g/v'v, and

A „ is given by (3.15). The appearance of the square root
in the dependency of X on r near the horizon simply

rejects the dependence on the local proper distance
there. Note that at this level there is no obvious obstruc-
tion to the fall-off condition on f'I', being satisfied.

If solutions to the coupled Einstein-Higgs equations ex-

ist, then we expect that there is a perturbative limit as

e~O, as we have noted. Indeed, many of the demon-

strations of the lack of "hair" on Lorentzian black holes

have shown that on a fixed Schwarzschild background
the interaction between tests fields and a source is ex-
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tinguished as the source approaches the horizon [16].
Therefore we first consider the question of the existence
of solutions for the matter fields on a fixed Euclidean
Schwarzschild background, setting C =r and A = 1

rs—/r in (4.4). Rescaling the radial variable to
F=(r —rs)/rH gives

[(r+It }P']'=
(F+R) V

[p(y+ R}X']'=, =—X(X —1) .
(p+g)& 4g ~ y' 2

(4.6)

The question is as follows: Is there a solution to (4.6)
which connects the bounded behavior at the horizon
(4.5a) to the bounded behavior at infinity [(4.5b) with
A „=I]? The existence of such solutions is similar to the
difficult question of the existence of Abelian Higgs vor-
tices in Minkowski spacetime, first investigated by Niel-
sen and Olesen [17]. To see this, consider flat space and
make the ansatz (4.2) with p and 8 replacing r and r, re-
spectively, where p and 0 are cylindrical polar coordi-
nates in the plane perpendicular to the infinitely long
straight static Nielsen-Olesen vortex. Setting XNQ and

PNO as the Nielsen-Olesen solutions, the equations of
motion that these satisfy can be readily seen to be

The two sets of equations (4.6) and (4.8) become identical
as z, r «R. However, far from the horizon, z, r »R, the
equations are very different, and we cannot simply infer
the existence of well-behaved solutions to (4.6) from the
Nielsen-Olesen case.

We do not currently have an analytic proof of the ex-
istence of regular solutions to (4.6); however, we have in-
tegrated the equations numerically using a relaxation
technique, and these results show that the bounded eigen-
functions at the horizon do indeed integrate out to the ex-
ponentially decaying eigenfunctions at infinity. Figure 1

shows a plot of X and P with k =1, v=1, and R =2,
compared with the Nielsen-Olesen solutions. The radial
coordinate is F for the Schwarzschild case and p for the
Nielsen-Olesen case. The difference in the types of be-
havior at the origin reflects the fact that for the
Schwarzschild case r is not the coordinate in which the
metric near the horizon looks flat. At r =0, Xs=00,
Ps —1.92, XNo 1 37, and PNQ 0.

Having justified the existence of a background solution,
let us remark on the behavior of a fully coupled system.
Setting

p =p/rH =2 A (r),
a local cylindrical coordinate, we find

(PXNo)'=

PNO

p
2

XNOPNO

2
XNoPNo 2

1+ 2PXNO(XNO
(4.7)

1 rs(rs+I)' Xr'(PX')'= +—X(X —1)
p
AX'(2f's—+ f'„" I+0 ), —(4.9a)

1 XP 1—[zx, ],= +—X(X —1),R ' ' 4Rz 2

RXP
7 ZZ v

(4.8)

p

The existence of solutions to these equations was shown
numerically by Nielsen and Olesen, and their stability
properties discovered by Bogomoln'yi [18). Much is
known about the behavior of Nielsen-Olesen vortices, or
cosmic strings. In particular, Bogomoln'yi showed that
for a special value of v, v=1, the second-order equations
in (4.7) reduce to two first-order equations:

pXNo XNQ No ~ ~No/p gXNQ XNQ

This is often referred to as the supersymmetric limit,
since the model is supersymmetrizable for this value of v.
The above relations also have the direct consequence that
the radial and azimuthal stresses Tp Te vanish identical-
ly. For v%1, these stresses become nonzero, changing
sign according to the value of v. This idea will be impor-
tant in our later discussions of the mass and entropy.
However, for the moment, let us just note that for v~ 1

vortex solutions are stable for all values of the winding
number k, whereas for v & 1, solutions with k ~ 2 are un-
stable.

In order to see the similarities (and diff'erences) be-
tween our problem and the Nielsen-Olesen case we have
just discussed, let z =p /4R; then (4.7) becomes

or, alternatively,

p( f'„")'+(f'„" f'0)+ [0—(e)+0(p R )]( f'„" f's) =0, —

(4.10)

where I =0 (rsvp) is given by (3.16).
Now, noting that C=rs[1+0(e)+0(R )] for

p «R, from (3.6) and (3.10), we readily see the similarity
of (4.9) with (4.7). We also see that the matter equations
can be written as some background piece plus an order-e
piece coming from the interaction of the vortex with the
geometry. This then justifies the iterative procedure for
the matter part of the fully coupled system.

To zeroth order, the space is Euclidean Schwarzschild:
' 1/2

C=r, A = 1—2 rs
p=2R 1—

r
(4.11)

In order to calculate the back reaction we will focus on
thin vortices, since these are more physically relevant.
This limit corresponds to R »1, and we therefore expect
our solutions to be well approximated by the Nielsen-
Olesen solution for p «R, of the exponential form (4.5b)
for p & R, and having some transitionary nature from p-
exponential decay to r-exponential decay for intermediate
radii. We will in fact assume R «e to facilitate the

1 r,'(r, +I)' X(I'/ )'= —e (2f's+f'" f' )—
p vp p

(4.9b)
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P~AP (4.13)

C'( ~ ) = 1+@(P+—,'P ) . (4.14)

I
ener y per unit area of the vortex, andthe o malized energy per un

p r p~

(3.18) implies that, to first ordering e,

. Th s making the coordinate transfor-to first order in e. us, rn
mation defined in (3.21),

r'=[1—e(p+ —'p)]r, r'=[1—e(p+ —,'p ]g,
the asymptotic metric ta eses the form

(4.17)

2GM
ds~= l—, d~

T

' —1

2GM~ '+ 'dQP (4.18)

m totic solution takes the
Schwarzschild form, with an adjusted perio

13'=Pl 1 ~(P+ ,'P)]-
=8mGM„(1 sP)— (4.19)

ad'usted that is, relative toan d a mass parameter" mass- eriod relationship derive ap -p
horizon. o. N te also that the area of t e ac
related to the ADM mass via

Then, noting from (4.10) that

p 0+," dp=O e

the ADM mass parameter from, .oin, 3.23) is

M = (1—
—,ep)

"s
2G

(4.15)

(4.16)

A =4mr =16m 6 M (1+ep) . (4.20}

(4.21}

rities with a self-gravitating cosmic
string. . There the R sections perpendicn ar o

m t' "de6cit ang eacquire an asymp t'm totic
58= —(2m)4G p, , where

p —2&'g p cfp=2ll'g
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identify

/, ! /, ! / !&}'&/',!' /: / I!'//ltd /// —gw = 9vrGM 4Gp.

Thus

f z- v'g d x=—0(» ) .
16m.G G

(5.4)

Therefore, we come to the conclusion that, to first order
in e, the Euclidean action is, as with Schwarzschild, equal
to its boundary term, —,'P'M„. However, reading off the
relation between P' and M „from (4.19},we see that

FIG. 2. The deficit slice in the Euclidean black-hole cigar
(8,$ dimensions suppressed).

&2

Iz= (1+eP)+—O(e )
1

(5.5}

is the energy per unit length of the cosmic string in its
rest frame. Here we see that our "deficit angle" is
Sr= 8mGM—„eP= —( 8m GM „)4Gp. Since we expect
the period of r to be 8mGM„(as we expect the 2m period
in 8), we see that the form of the correction in both cases
is the same. Thus, the gravitational effect of the vortex is
to "cut" a wedge or slice out of the Euclidean black-hole
cigar outside the vortex. In Fig. 2 we show a schematic
representation of the black-hole vortex geometry.

As we remarked at the end of the preceding section,
the vortex always decreases the period compared to its
Schwarzschild value for a black hole of a given horizon
area. The ADM mass, on the other hand, can be larger
than, smaller than, or equal to its Schwarzschild value of
fixed horizon area, depending on p. The existing results
for a self-gravitating cosmic string [20] indicate that, for
v) ( & )1, P ) ( ( }0. These results were numerically ob-
tained and so may only be true to a certain order; howev-
er, they indicate that there is some critical value of v,
close to 1, for which the average pressure p changes sign.
Now, in our case, the background is fat space only to
zeroth order in R so we expect that the critical value
of v, vc, differs from the flat-space value by O(R ) and
thus is still close to 1.

V. ACTIONS, TEMPERATURE AND ENTROPY

Having calculated the gravitational effect of the vortex,
it is instructive to calculate the Euclidean action

Ig —f XM V~g d x
16m.G

in terms of the period. However, note that

P eP P f C2Tegr
16m'G rs I's

= ~' f~ ~gd
4mrs

=fXM&g d x+O(e ) .

Hence

(5.6)

&2

Is(p')= + fXMv'g d x =Io(p')+II(p'), (5.7)
16m G

to first order in e, where Io(P') is the action of
Schwarzschild with period P' and Isr(P') is the action of
the XO, PO solution in the background of Schwarzschild
with period P'. Therefore, taking into account the back
reaction of the vortex on the geometry, we confirm the
value of the Euclidean action used by Coleman et al.
[11].

The interest of computing the Euclidean vortex solu-
tions is that their actions contribute to the gravitational
path integral. In the path integral one must decide which
fields to include in the sum. One prescription is to in-
clude all metrics and matter fields with a particular fixed
period P and this describes "a system at temperature
1/P." Here we compute what follows from such a
prescription. Other boundary conditions are possible,
which will be explored in further work.

Having calculated the vortex geometry we are in a po-
sition to directly calculate the expectation value of the
mass of a black hole of temperature 1/P using

' —1

f(K —K)&hdx,
8~G x

(5.1) (g., )= 1+pc,e

Iz =
—,'P'M (5.2}

For the pure vortex source, we may use the Einstein
equations to deduce the Ricci scalar %=16nGXM—8nG(T„"+To). .However, from (4.15) we see that

fC (T+To)dr =—O(e ) .=1 (5.3)

where E is the trace of the extrinsic curvature of X, a
boundary "at infinity, " calculated in the true geometry
and E the extrinsic curvature trace calculated for X
isometrically embedded in flat space. For our asymptoti-
cally flat geometry, C —r', A = 1 —2GM „/r '+ 0 ( r '

);
this boundary term has the value

—I~ —2IgX goab+ XC+e g+ b +O(e *), (5 8)

where go, b is the Schwarzschild metric with period Il,
g+,g =g,b a« th k =+1 vortex geometries with
period P, and I+ =I are the matter parts of their ac-
tions. C+ =C are the determinants of quadratic Quc-
tuations about the vortices.

This formula is derived from a Euclidean path integral
and must be used with caution since the metric is not a
gauge-invariant quantity. One must add the metrics at
the same point of the space-time manifold, which concept
has no diffeomorphism-invariant meaning. However, in
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this case, since the metrics are all asymptotically flat, we
can fix coordinates in the asymptotic region and only use
the formula (5.8) there. In each case we choose coordi-
nates such that goo ~1, and the area of the two-spheres is
4mr as a function of r at infinity.

Since the geometries for k =+1 are identical, setting
C =C+ +C yields

(g ) ( 1 +Ce M
)

i

hole thermodynamics has now apparently been violated,
and depending on the specifics of the vortex (i.e., the size
and sign of P) S can either be greater than or less than
(1/46)( A ). Note that the result (5.12) could not be ob-
tained from the partition function since it contains an ep
term.

VI. CONCLUSIONS

26 —IMX 1+Ce — (M+Ce M )
r

(g„„)-(1+Ce (5.9)

X 1+Ce + (M+Ce M„)r

(gqq)
(gss&=

sin 8

as r ~~, where IM =I+ and

M=, M„= (1+eP) .

Substituting in for the masses we obtain

(goo ) —1 — (1+epCe ),4n.r

(g„„)—1+ (1+ePCe ~) .
4mr

Thus we have

(5.10)

(M(P)) = [1+Ce eP]
8mG

(5.11)

as the predicted value of the mass of a black hole with
temperature p '. Noting that, for k =+1, ep is the same
as 4T„„„ in the notation of Coleman et al. , this is readi-

ly seen to agree with their expression for the modified
Hawking temperature of the black hole [11].

The horizon is another place where we can make sense
of (5.8). It is a two-sphere and for each metric in (5.8) we
know its area A in terms of the period, giving

2

(A ) = [1+Ce (2eP+ep)]
4m

(5.12)

for the expectation value of the area of the black hole.
We compare this with the entropy S(P) calculated from
the partition function Z (P) via

S =P2 ( —P 'lnZ') .
a

(5.13)

2

4GS(P) = [1+2ePCe ]+46Ce
4m.

(5.15)

We find that the central formula S =(1/46) A in black-

Approximating the Euclidean path integral for Z(P)
semiclassically yields

Z (P )
—P /16~G( 1 +C hf

) (5.14)

and thus

To summarize, we have argued the existence of solu-
tions of the coupled Einstein-vortex equations by showing
that under suitable fall-off conditions of the energy-
momentum of a weakly gravitating vortex a perturbative
analysis is justified. We have demonstrated a suitable vor-
tex for beginning an iterative procedure by numerically
obtaining a vortex solution of the Abelian Higgs model in
a Schwarzschild background. We calculated the mass-
period-area relations for the corrected geometry to first
order in e, the gravitational strength of the vortex, and
used these results to derive the renormalized mass of a
black hole of a certain temperature. We also found that
the expected value of the horizon area is not related to
the entropy of the black hole in the usual way.

Our work also provides a potential "no-go" argument
for global vortices. In the cosmic-string scenario, local
strings have asymptotically conical spacetimes whereas
static global string spacetimes are singular [21], the
energy-momentum tensor having only a 1/r falloff in
fat space. In our Euclidean case, the energy of a global
vortex in the Schwarzschild background would have no
falloff due to the fixed circumference (P) of r, 8, / =const
circles. Therefore, drawing an analogy between these two
situations, if static global cosmic strings are singular, we
do not expect global black-hole vortices to be otherwise.
Not having asymptotically fat geometries, they would
therefore not contribute to the partition function.

We mentioned the effect of varying the parameter v on
the results obtained. For the flat-space Nielsen-Olesen
vortex, the critical value of v is exactly 1. In that case,
v& 1 means that a string with winding number k 2 is
unstable [17], alternatively, that the vortices repel one
another, whereas v & 1 implies that they attract. Since we
have argued that just such a critical value of v, v~ close
to 1, exists for the black-hole vortices, it is interesting to
speculate that, for v) v&, the k &2 solutions are unsta-

ble, i.e., are not minima of the Euclidean action. In that
case the k ~ 2 solutions that we have found would not
contribute to a Euclidean path integral. It seems plausi-
ble to suppose that stable solutions of the matter equa-
tions on a Schwarzschild background do exist, which
would consist of two separate string world sheets sitting
opposite each other (rz —r&= —,'P) at finite distance from

the horizon, where any further loss of energy due to mov-

ing farther away would be balanced by an increase in en-

ergy due to an increase in the area of the world sheets.
Such a solution would not be cylindrically symmetric and
its action would differ from the form calculated in (5.6),
although presumably the difference would be small.
However, it would be interesting to investigate such types
of solutions.
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Our derivation of the geometry not only enabled us to
con6rm the results of Coleman et al. , but we were also

able to calculate the expected area of the black hole. We

obtained what looks to be a discrepancy in the usual

area-entropy relationship, though, in this case, virtual

string world sheets "dress" the black hole around the

horizon and one should not expect the area-entropy rela-

tion to survive. However, it is the pressure, rather than

some combination of energy and pressure, that is contrib-

uting to the discrepancy and this result certainly merits

further thought.
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