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We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting
with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expec-
tation value v is less than or equal to a critical value v„, which is of the order of the Planck mass. In the
limiting case, the monopole becomes a black hole, with the region outside the horizon described by the
critical Reissner-Nordstrom solution. For v &v„, we find additional solutions which are singular at
r =0, but which have this singularity hidden within a horizon. These have nontrivial matter fields out-
side the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The
nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-
Nordstrom solutions are discussed.

PACS number(s): 04.20.Jb, 11.15.Ex, 14.80.Hv, 97.60.Lf

I. INTRODUCTION

Some spontaneously broken gauge theories contain
magnetic monopoles which have the remarkable property
that, despite being particles in a quantum theory, they are
described by a classical field configuration. This is possi-
ble because in the limit of weak gauge coupling e their
Compton wavelength -e/U is much less than the radius
—1/(ev) of the classical monopole solution. Another cu-
rious property emerges as the Higgs vacuum expectation
value v approaches the Planck mass Mz. The
Schwarzschild radius 2MG -v /(eM~ ) becomes compara-
ble to the monopole radius, suggesting that for U &M&
the monopole should be a black hole [1]. (This result can
be evaded in theories containing dilatons [2].) If e && I,
this occurs in a regime where the energy density is much
less than M&, justifying the neglect of quantum gravity
effects. By studying the classical solution, then, one can
gain insight into how the particle passes over into a black
hole.

In this paper we undertake such an investigation. We
consider an SU(2) gauge theory in which a triplet Higgs
field P breaks the symmetry down to U(1) this theory
gives rise to 't Hooft-Polyakov monopoles with magnetic
charge Q~ =1/e. We find that when v = (P ) is

sufficiently large, the only magnetically charged solutions
are the Reissner-Nordstrorn black holes. These are essen-
tially Abelian, in that the only nontrivial matter field is
the Coulomb magnetic field lying in the unbroken U(1)

'There has been some study [3] of black-hole-like solutions in
the theory without Higgs fields.

subgroup. They have a singularity at r =0 whose
strength is determined by the mass M. In order that this
singularity be hidden within a horizon, M must be greater
than M„=+4mQsrM~. For smaller values of v, howev-
er, we-find that a rather different type of black-hole solu-
tions is also possible. For these the horizon lies within
the core of the monopole, so that the non-Abelian struc-
ture is quite evident in the region outside the horizon. In
a sense, these solutions can be viewed as black holes lying
inside rnonopoles. The mass of these objects can take any
value down to the mass of the nonsingular monopole.
We find that there is also an upper limit on their mass.
In some cases this limit is greater than the critical
Reissner-Nordstrom mass, so that there are two different
black-hole solutions with the same values for the mass
and magnetic charge.

Classical solutions can also play another role in rela-
tion to semiclassical gravity. Black holes can reduce
their mass by Hawking radiation. By this mechanism ini-
tially macroscopic black holes can shrink to the micro-
scopic size characteristic of the classical solutions. (In
the weak-coupling limit this scale is much greater than
the Planck length, so gravity can still be treated semiclas-
sically. ) Once this happens, the classical solutions pro-
vide possible pathways for the further evolution of the
black hole by the Hawking process. An understanding of
the nature of these solutions as a function of coupling
constants and other parameters can thus lead to further
insight into the late stages of magnetically charged black
holes.

In Sec. II we review the essential features of the theory
and obtain the field equations which must be obeyed by
static spherically symmetric solutions. Much of this
reproduces, although with a somewhat different notation,
the results of van Nieuwenhuizen, Wilkinson, and Perry
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[4]. In Sec. III we study nonsingular monopole solutions
and their behavior as v approaches M~. In Sec. IV we ex-
tend our considerations to include solutions with singu-
larities inside the horizon which are essentially black
holes inside the monopole. Section V contains some con-
cluding remarks. There are two appendices. In the first,
we reconcile the absence of nonsingular solutions for
large v with the existence of a positive-definite functional
whose minima are solutions of the field equations. In the
second, we derive a number of inequalities which restrict
the properties of the various types of black-hole solu-
tions.

S,«„= 4—n Jdt dr r &AB ' +U(u, h)
K(u, h)

A

(2.10)

where

&2

K= +—vhu 1

82r 2

and

(2.11)

first transforming to spherical coordinates. Once this has
been done, the matter part of the action can be written as

II. GENERAL FORMALISM

The theory is governed by the action
U= u 1) +uh v +k v2(h2

2 2 2 2 2

2er r 2
(2.12)

S= Jd'x& —g
1

(2.1)

where

with Latin indices a, b, . . . referring to the internal SU(2)
indices,

(D„P)'=B„P' ee,s, A—„"P' (2.3)

(F„'„)+——(D„P')'——[(((')'—v ]', (2.2)

' 1/2
A(1 er v )—u(r)=

8
(2.13)

(primes denote differentiation with respect to r).
U ( u, h ) may be viewed as a position-dependent field

potential. For later reference, we enumerate here its sta-
tionary points.

(a} u =21, h =0: This is a local minimum of U if
r & 1/(v )(,v ), and is a saddle point otherwise.

(b) u =0, h =0: This is always a local maximum of U.
(c) u =u(r), h =f(r), where

and

(2.4)

' 1/2
A,r v —1(r)=

(A. —e }r2v
(2.14)

ds =B(r)dt —A (r)dr2 rz(de~+sin2edp2) —. (2.5}

The normalization of t is fixed by requiring that
B ( oo }=1, while the requirement that space be asymptot-
ically flat imposes the condition A(oo)=1. For later
convenience we define At(r) by

2GJK(r)
r

(2.6)

For the matter fields we adopt the standard spherically
symmetric ansatz corresponding to magnetic charge

Qst =1/e. In flat space this ansatz is usually written in
terms of Cartesian coordinates as

A constant term has been included in the scalar field po-
tential so that the energy vanishes in the symmetry-
breaking vacuum. The elementary excitations about this
vacuum are a massless photon, two charged vectors with
mass mz=ev, and a neutral massive Higgs scalar with a
mass mH =2~A, v.

In this paper we consider only static spherically sym-
metric solutions. For these, the metric may be written in
the form

These are both real only when ru lies between 1/~e~ and
1/~A, . Within this range of r, this point is the global
minimum of U if A. )e, and a saddle point otherwise.
When A, =e2, u and f are undefined, and this stationary
point is replaced by a degenerate set of minima, with
h +u = 1, which exist only when

~
e

~
ur = l.

(d} u =0, h =El: This is a local minimum of U if
r ) 1/(ev), but only a saddle point otherwise.

The gravitational field equations reduce to two in-
dependent equations, which may be written as

( AB)' = 16mGrK (2.15)

and

The equations for the matter fields are

An invariant way to write the ansatz for the vector potential

At'=4nr —+U =4nr (K+U) SwGrKJK . (2.16}—K
A

P'= D'h (r), (2.7)
1s

A i umiak~ (2.8)

30=0 . (2.9)

The extension to curved space [4] is most easily done by

A„'dx"=fr. '"g„„dx",

where L'"8/Bx" are the three Killing vectors corresponding to
the rotational symmetry and f is a function invariant under the

action of these Killing vectors. For the choice of spherical
coordinates in Eq. (2.5), this is the same as Eqs. (2.8) and (2.9).
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&AB u'

A
2r BU

2 Bu

+e2uh 2v2u(u —1)
2 (2.17)

quiring that the solution be nonsingular at the origin,
which implies that u (0)=1, h (0)=0, and At(0) =0.

Matters become more complicated if horizons are
present, i.e., if 1/A (r) has zeros. At a horizon rH, the
vanishing of 1/A gives

and

1

r &AB
r &ABh'

A

1 aU
v2 Bh

2hu +2gh (h 2 —1)v2
2

H
At(rH }=

This, together with Eq. (2.16), implies that

1 1=——8nGrU(u, h), r =rH .
r

(2.23)

(2.24)

(2.18) Substitution of this into Eqs. (2.17) and (2.18) gives two
conditions,

By rescaling of distances in these equations, it can be
shown that u, h, and eAt/v are given by functions of evr
whose forms depend only on A, /e and Gv = (v /Mz ) .

By integration of (2.16} we see that the mass can be
written as and

1 e2r2 8u' ——8mGU(u, h) =, r =rH, (225)
r 2 Bu

M=At(~)
=4m f dr r e '"'(K+U)+e ' 'At(0),

0
(2.19)

h' ——8nGU(u, h) =, r =r~,1 1 U
r v

(2.26)

where

P (r) =f dr 8n GrK . (2.20}

If At(0) ~0, the mass defined by (2.19) satisfies the in-
equality [4]

M~e ' ' 4n f dr r (K+U)+At(0) & e
0 e

(2.21)

which follows from the positivity of E and the
Bogomol'nyi bound [5]. For a nonsingular solution,
At(0)=0. A solution u, h is then a minimum of M,
viewed as a functional of u and h, and so we have

M(u, h) ~M(uv, hv)

~4m f dr r (K+U)~„& ~Ms«, (2.22)

where u0 and h0 are the flat-space solutions and M&„ is
the flat-space monopole mass. This inequality is of
course in accord with our intuition that gravity tends to
reduce the mass.

Because the function space is noncompact, there is no
guarantee that there will actually be a configuration
which minimizes M. Instead, there could be an infinite
sequence of configurations of decreasing energy which
does not converge on a limiting configuration. Indeed,
for Gv sufficiently large we find that there are no non-
singular solutions. In Appendix A we display a sequence
of configurations for which M approaches, but does not
reach, it lower bound for this case.

Equation (2.15) can be used to eliminate B(r} from the
remaining field equations, leaving one first-order and two
second-order equations to be integrated. A solution for
these is determined by five boundary conditions. Two are
provided by the asymptotic conditions u ( ~ ) =0 and
h ( oo ) = 1. The remaining three can be obtained by re-

which must hold if the solution is to be nonsingular.
Since these additional conditions overdetermine the

solution, we do not expect there to be any nonsingular
solutions containing horizons, except perhaps for special
values of A, and v. If singularities are allowed at r =0,
then it should be possible to obtain otherwise nonsingular
solutions with a single horizon, but not (for generic
values of A, and v} with two or more.

Finally, note that a solution [6] of the field equations is
obtained by taking constant field u (r) =0 and h (r) =1,
with

2m
At(r) =M—

e r
(2.27)

where M is arbitrary. This yields the Reissner-
Nordstrom metric

B( ) A( )
)

1
2MG+4nG

e2r2
(2.28)

which has a singularity at r =0. There are horizons at
1/2

r =MG+ M 6—
e

(2.29)

provided that M is greater than the critical value
M„=+4m./(Ge ).

III. NONSINGULAR MONOPOLES

For values of v much smaller than the Planck mass,
gravitational effects on the monopole are small and the
nonsingular monopole solutions should be similar to their
flat-space counterparts. On the other hand, as we have
argued above, if v )&M&, the Schwarzschild radius would
be greater than the size of the monopole, so the monopole
must be a black hole. In this section we examine the
transition between these two regimes.

Near the origin, a nonsingular solution must behave as
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u(r)=1 —C r +
1l

h (r) =Cqr + .

2
4~ 6C„3 2 2 k 4 3A(r)= +—CIv +—v r
3 8 2 2

(3.1)

(3.2)

(3.3)

where C„and C& are constants which must be chosen so
that u and h approach the correct values as r~ ~. In
the absence of gravity, the possibility of making such a
choice is ensured by the existence of a positive-definite
energy functional whose minimum is a solution of the
static field equations. This argument can be extended to
the case of weak gravity [4) [see Eq. (2.19)]; although, as
discussed in Sec. II and Appendix A, it fails when v/M~
becomes too great.

Just as in flat space, the matter fields u and h remain
nontrivial inside the monopole "core" of radius —1/(ev)
and then approach their asymptotic values exponentially
fast:

u(r)=O(e "),
h (r)=1—O(e ) .

(3.4}

(3.5)

It then follows from Eq. (2.16) that

A(r) =M ~+—O(e r )
8 T

(3.6)

In fiat space, the monopole mass M,„=M fl

=(4~v/e)f (A, /e ), where f ranges from 1 to 1.787 as A,

ranges from 0 to oo [7]. As mentioned above, gravita-
tional effects cause M to be somewhat smaller; our nu-

merical results indicate that the monopole mass can be
reduced to about two-thirds of its flat-space value.

We now turn to the discussion of how a horizon devel-

ops as the mass increases. From the large- and small-r
behavior of JR, it is evident that 1/A will have a
minimum, corresponding to a maximum of A jr, at some
intermediate value of r. The asymptotic form Eq. (3.6)
suggests that this occurs at a value r -4n/(e M).
—1/(ev), with 1/A (r ) =1—O(Gv ). As v increases, this
minimum should become deeper, until eventually a criti-
cal value v„ is reached for which 1/A (r ) =0 and a hor-
izon appears. One would expect this horizon to persist if
v were increased further, but, as was argued in the
preceding section, it will not in general be possible for a
solution with proper asymptotic behavior to be well

behaved at both the horizon and at r =0. We therefore
expect that only singular solutions exist when v )v„.
More specifically, our results for the critical case suggest
that in the supercritica1 case there are only Reissner-
Nordstrom solutions with u(r)=0 and h(r) —1; in the
next section we will prove this to be the case if v is
sufIIciently great.

Let us examine the critica1 case v =v„ in more detail.
To begin, note that Eqs. (2.25} and (2.26}, together with
the fact that 1/2 is stationary at the horizon, imply that
u ( rH ) and h (rH ) must correspond to one of the station-

ary points of U(u, h), which were enumerated in Sec. II.
The first two, u =+1, h =0 and u =0, A. =0, are easily
ruled out. For the former, one can show that if 1/A and

(1/A)' both vanish, then (1/A )" must be negative, in

contradiction with the assumption that 1/A is at a
minimum. In the latter case, it is easy to show that all

solutions of Eq. (2.17) and (2.18) develop singularities as
r~rH if (1/A)" &0.

We have not been able to completely eliminate the
third case, u =u(r), h =h(r). There are however several
constraints which the parameters must satisfy for a solu-
tion to exist [8]. The condition (1/A) =0 implies
4n.G(u +h )=1 at the horizon. With the values of u(r),
A(r) from Eqs. (2.13) and (2. 14), this leads to a quadratic
equation for r~. The requirements that vrH lie between

1/e and I/&A, , so that u and 0 are both real, and that
(1/A )"& 0 eliminate one of the solutions of the quadratic
equation and lead to the conditions

1++e'/A, & 8~Gv' & 2, A, & e',
1+V e~/A, &8nGv &2, A, &e

(3.7)

In addition to these requirements, the solution in the re-
gion within the horizon must be such that
2GJkf, (rH ) =rH; we do not know whether this can be done
with v in the range specified above. Furthermore, we
have not addressed the question of whether these solu-
tions are stable; this seems particularly doubtful for the
case A, & e, where f, u is not a minimum of U (h, u ).

Finally, we come to the case u =0, h =1. This corre-
sponds to a solution in which u and h have already
reached their asymptotic values at the horizon which,
from Eq. (2.24), must occur at

rH ='(/4~G/e (3.8)

The entire monopole, except for its Coulomb magnetic
field, lies within the horizon. The exterior solution is
then of the Reissner-Nordstrom form with the mass M
equal to the critical value for unit magnetic change.
Since we want it to be nonsingular, the interior solution
cannot be simply Reissner-Nordstrom. Instead, it is simi-
lar in form to the solutions for subcritical u at small r,
while near the horizon u and 1 —h vanish as powers of
rH —r. Two aspects of this solution may seem puzzling.
First, it may seem unphysical for the entire evolution of
the matter fields to take place within a finite range of r.
However, this becomes more plausible when one notes
that the physical distance from the origin is

1(r)=I dr@ A (r) . (3.9}
0

Since A diverges as (r —rH) near the horizon of the
critical solution, 1(rH ) is in fact infinite. In a sense, rath-
er than the monopole being compressed to fit within the
horizon, the horizon has been expanded outward to en-

compass the monopole. Second, the values for the fields

and their derivatives at any r ) rH do not determine the
solution everywhere, as evidenced by the fact that this
solution and the Reissner-Nordstrom agree in the exteri-
or region but differ in the interior. This is possible be-
cause the simultaneous vanishing of 1/A and (1/A)' at
the horizon prevents one from simply integrating across
the horizon and allows nonanalytic behavior at r = rH.

We have checked these arguments by numerically solv-
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ing the field equations. Starting with the small distance
expansions of Eqs. (3.1) and (3.2), we varied the constants
C„and C& until the proper asymptotic behavior was ob-
tained. In all cases we found that as v approached v„ the
solution tended toward one which was purely Reissner-
Nordstrom in the exterior region, rather than one for
which the fields were given by u and f at the horizon.

A sample of these results is displayed in Fig. 1, where
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O
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O
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O
0

eve(r)

O

FIG. 2. Plot of u(r) as a function of l(r), the physical dis-
tance from the origin, for p=8mGv equal to 0.1 (solid line), 1.0
(dashed-dotted line), 2.0 (dotted line), and 2.35 (dashed line).

O
0

C)
O

CO

O

O

we show u, h, and 1l A as functions for r for A, le = 1.0
and p=8~6v equal to 0.1, 1.0, 2.0, and 2.35. The last of
these values is as close as we were able to come to the
critical value p„=8~6v„.As p increases, the monopole
appears to be pulled inward. The minimum of 1/A also
moves inward, although less so. A contrasting view is ob-
tained by plotting these fields as functions of the physical
distance 1(r). As an example, u(r) is plotted in this
fashion in Fig. 2; we see that the change in the physical
size of the monopole is actually rather small.

We also studied the behavior of p„, finding it to be a
decreasing function of A. /e . In particular, for A, /e
equal to 0.1, 1.0, and 10.0, p„ is 3.7, 2.4, and 1.6, respec-
tively.

CV

O IV. BLACK HOLES IN MONOPOLES

0

O

(c) .
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~
'
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0

FIG. 1. Plots of (a) u(r), (b) h(r), and (c) 1/A(r) for
A, /e =1.0 and p=8m. GU equal to 0.1 (solid line), 1.0 (dashed-
dotted line), 2.0 (dotted line), and 2.35 (dashed line).

It was argued in the preceding section that for v )v„
all solutions will have singularities. In this section we
consider these supercritical solutions as well as another
class of singular solutions which may be viewed as black
holes embedded inside monopoles. Let us suppose that
PL(0) is nonzero and positive, with 2GJkt(0) much small-
er than the monopole radius, and that v (&Mz, so that
the monopole would not by itself become a black hole.
At small r, the effects of the matter fields can be neglected
and the metric will be similar to that of a Schwarzschild
black hole with mass JR(0). At larger r, the gravitational
effects will be small and the matter fields will resemble
those of a Aat-space monopole. One might object that
having structure outside the horizon would be forbidden
by the no-hair theorems, and that the monopole would
collapse into a Reissner-Nordstrom black hole. This is
not so. The behavior of the fields at the outer edges of
the monopole core is determined largely by the shape of
the position-dependent field potential U at that radius.
The effects on the fields in this region of a small black
hole near the center of the monopole would be small,
much as the effects of a small black hole at the center of
a large solid body (e.g., the Earth) would be negligible at
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r V'AB Q'

A
=r &AB

dP
(4.1)

with the metric given by Eq. (2.5). Multiplying both sides
by (P —$0), where $0 is a minimum of the V(P), and in-
tegrating from the horizon out to infinity gives

the outer regions of the body. To understand how equi-
librium is possible at the horizon, note that at r =rH the
covariant conservation of a diagonal energy-momentum
tensor reduces to the condition p+p„=0, where
T", =diag( —p,p„,pe, p&). While this cannot be achieved
in normal fluids, which have positive pressure, it is quite
possible in a field theory.

Let us now try to make these arguments more quanti-
tative. We begin by recalling the derivation of a no-hair
theorem [9] for a theory with a single scalar field P. We
restrict our consideration to spherically symmetric
configurations, so the matter-field equation can be written
as

we then have

u e(1 u e2}& u eh e2e2U2r2

h *u *2 & h ~( 1 —h ~2)QU 2r~

(4.3)

(4.4)

where u "—= u (rH ) and h *=h (rH ). Inequalities (4.3) and
(4.4) translate into the following possibilities: either u =0,
h = 1 (corresponding to the exterior solution being
Reissner-Nordstrom), or

)(U2r2 (1—h +~) & u +2 & 1 —h +~e~U~r

42 4'2

1 — h*2( 1 —u

Ar v er vH H

(4.5)

(4.6)

[There is one more possibility: viz. , h'=0. This can
only occur if (1/A)'=0, but we have already seen that,
for the critical case, h*=0 leads to singularities at the
horizon. ] Since u and h must lie between zero and one,
these inequalities require

J dr r t/AB P' +—(P Po)—
H A dP

L

Av TH 1 ) A, e

e2v2p2 & 1 g) e2 (4.7)

r V'AB p'(p —$0)

H
(4.2)

The right-hand side vanishes, since 1/A (rH ) =0, while
energetic arguments require that P'(P —$0) fall faster
than r at large distances. The first term in the integral
on the left-hand side can never be negative, since
A (r) & 0 outside the horizon. If $0 is the only minimum
of V(P), then the second term in the integrand is also
non-negative everywhere, and Eq. (4.2} can only be
satisfied if $(r)=$0 for all r & rH. Thus a necessary con-
dition for the existence of a nontrivial field outside the
horizon is that V(P ) have more than one minimum.

As we have seen, the monopole problem, when restrict-
ed to spherically symmetric configurations, resembles a
theory with two scalar fields and a position-dependent
field potential. The fields that minimize this potential are
different at large and small values of r If 2GA.(0) is
much less than both 1/(eu) and I/(&XU ), we would ex-
pect the fields at the horizon to be at or near the short-
distance minimum, u =1, h =0. There would then be
nontrivial behavior in the region outside the horizon as
the fields evolved to the asymptotic values corresponding
to the large distance minimum. On the other hand, if the
horizon is located at large r, where u =0, h =1 is the
only minimum of the potential, the no-hair theorem de-
rived above suggests that the fields must lie at their
asymptotic value everywhere outside the horizon.

This picture can be made more precise with the aid of
certain inequalities which rH and the values of the fields
must obey, if we make a few plausible assumptions. We
assume that the fields vary monotonically outside the
horizon, so that u ' is everywhere negative and h ' is every-
where positive, with u and h always taking values be-
tween zero and one. At the horizon, we have (1/A)' & 0,
with equality holding only for the critical solutions dis-
cussed in the preceding section. From Eqs. (2.24) —(2.26),

pp ) T(R
P

2e 7"

(4.8)

Integrating this to obtain the monopole mass I,„,and
then minimizing with respect to R, gives

1/4

2e pp
(4.9)

and

Since r~ is given by 2GJK(rH), it clearly increases as ei-
ther A, (0) or U is increased. Thus if we increase either of
these quantities, we will eventually reach a point when
these inequalities can no longer be satisfied. When this
happens, the only admissible solution to the inequalities
(4.3) and (4.4) is u ' =0, h *= l.

One could summarize these results by drawing a
"phase diagram" of the solutions as a function of JK(0)
and v. The nonsingular solutions considered in the
preceding section would lie along the JK(0)=0 axis, with
v (v„. Above this axis, and to the left of a critical line,
would be the black-hole solutions we have just described.
To the right of this line there would be no solutions. The
Reissner-Nordstrom solutions would not appear on the
phase diagram, because for these JK(0)= —ao.

Obtaining the precise boundaries in this phase diagram
would require that we return to the field equations
(2.16)—(2.18) and look for numerical solutions for vari-
ous values of At(0) and U. However, considerable insight
can be gained by the analysis of a somewhat simplified
model of a monopole. In this model the flat-space mono-
pole is composed of a core of radius R with uniform ener-

gy density, with only the Coulomb magnetic field extend-
ing outside the core. The energy density is then
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8~
mon (4.10)

2
3 M„

M& —M +
4 mon 3Mmon

(4.17)

2
At(0) Mmonr

r
4R

At(0) +Mm, „ 3MmonR

4r
r)R .

(4.11)

The behavior of this function depends on the relative
magnitudes of At(0) and M,„. If At(0) (M,„/2,
At(r) /r diverges at r =0, falls to a minimum at
r

&
=(2At(0)/M~, „)'~ R, and then rises to a maximum at

with one-fourth of the monopole mass lying within the
core. These results are in qualitative agreement with the
exact results if R —1/ev, po-e v, and Mm~„- v je.

We now use this model to calculate At(r) and then use
the result to determine the positions of the horizons.
Specifically, in the presence of gravity we define
p=K/A + U =At' j(4mr ) and continue to model it by
Eq. (4.8), with R and M,„as given above. This gives

We can now construct the phase diagram of solutions.
This is shown in Fig. 3, where we have labeled the axes
by M,„(which is proportional to v) and M; we have
chosen the latter variable rather than At(0) in order to be
able to include the Reissner-Nordstrom solutions. The
line OA is given by M =M 0„,while the line BCis deter-
mi~~d by Eq. (4.17). The nonsingular monopole solutions
lie along the line OA, with the critical solution at point
A. In the region above and to the left of this line, but
below the line ABC, are the solutions with black holes in-
side nontrivial monopole configurations. Reissner-
Nordstrom solutions occur everywhere above the line
M =M„. These two regions overlap to the left of BC; in
this portion of the diagram, there are two distinct solu-
tions with the same values of M and M,„. Finally, since
we are excluding solutions with naked singularities, there
are no solutions in the region to the right of OA with
M &M„.

with

3RM,„
2[At(0)+M,„]

At(r2)
[At(0)+Mm, „]

(4.12)

(4.13)

V. DISCUSSION

We have seen that a variety of black-hole solutions
may be associated with the magnetic monopoles of spon-

It then decreases monotonically to zero as r —+00. The
horizons occur at the values of r such that 2GAt jr =1.
One such lies at a position rH & r

&
such that

H

4R
+At(0) =

26
(4.14)

R-N

With small v (and hence small Mm, „), the peak at r2 is
less than 1/(2G), and this is the only horizon. As v is in-
creased, with At(0) held fixed, the peak at rz rises, reach-
ing 1/(2G) when

M,„+At(0)=+4m. /e G

or, equivalently,

M =M„,

(4.15)

(4.16)

where M =At( ~ ) and we have introduced M„, the criti-
cal Reissner-Nordstrom mass for unit magnetic charge.
This behavior is quite analogous to what we saw for the
At(0) =0 case. Just as in that case, non-Reissner-
Nordstrom solutions are not expected to exist beyond
this critical point.

If instead At(0) )M,„/2, At(r)/r decreases monoton-
ically. Taken at face value, our formulas would always
imply the existence of a horizon. However, our discus-
sion of the no-hair theorem suggests that for a nontrivial
solution to exist the horizon must lie within the mono-
pole core, in which case it must satisfy Eq. (4.14). Re-
quiring that this equation have a solution with rH &R,
and using Eq. (4.10), we obtain the condition

mon

FIG. 3. The phase diagram of solutions for the simplified

monopole model discussed in the text. "R-N" refers to a
Reissner-Nordstrom solution with a horizon, while "Mon"
refers to the solutions with a black hole inside a nontrivial
monopole configuration.
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QM —M„T= 1

2mG M+ QM —M

As this black hole radiates it loses mass and increases its
temperature, thus accelerating the mass loss, until it
reaches a rnaxirnum temperature

2
max r 3/p Mp

3v 3(4~)
(5.2)

taneously broken gauge theories. The Reissner-
Nordstrom solutions with Abelian magnetic charge have
long been known; these need only a trivial modification to
accommodate the Higgs field. A notable feature of these
is that they require a nonzero minimum mass for any
given magnetic charge. The new class of solutions we
have found can have any mass down to that of the mono-
pole, while the mass within the horizon can be a arbi-
trarily small. Nevertheless, the black hole certainly car-
ries unit topological charge, since the Higgs field is topo-
logically nontrivial on the horizon. Whether or not it
contains unit magnetic charge is somewhat less clear-cut,
since the horizon lies in a region where the asymptotic
symmetry-breaking vacuum has not yet been established
and where the definition of the electromagnetic field
strength is ambiguous.

It is interesting to consider the evolution of these solu-
tions as the system moves in the M-M, „plane. Since v

is a constant of nature (although one might perhaps en-
vision a time-dependent U in a cosmological context), this
motion must be along vertical lines in the phase diagram
of Fig. 3. Accretion of incident external particles would
increase M and move the system upward. Downward
motion could arise spontaneously through Hawking radi-
ation. In particular, a pure Reissner-Nordstrom solution
has a Hawking temperature [10]
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APPENDIX A

If ik(0) =0, any minimum of the functional

M=4m J dr r e '"'(K+ U)+e ' 'A(0)
0

(Al)

gives a nonsingular solution of the field equations. Here

P(r)= J dr 8mGrK (A2)

0, r &R +5/2,
u (r)= f„(r), ~r

—R~ & b, ,

1, r &R —b/2,
(A3)

while K and U are the gradient and potential terms given
by Eqs. (2.11) and (2.12). We have seen that for
v )v„-Mz there are no nonsingular solutions, and
hence no configuration which minimizes M. Since M is
bounded from below [see Eq. (2.21)], this implies that
there must be a sequence of configurations of decreasing
energy which does not converge on a limiting nonsingular
configuration. In this appendix we will display such a se-
quence.

M differs from the flat-space energy functional by con-
taining the factor of e . Because of this factor, a rapid
variation of the fields u and h about some value r =R
leads to a suppression of the integrand in the region
r &R. This suggests that we consider configurations of
the form

when M =(2/&3)M„. From this point, T rapidly falls,
reaching zero when M =M„. In the usual analysis, the
critical solution is thus the stable asymptotic end point of
the Hawking process, unless the black hole has managed
to discharge its magnetic charge [11];by choosing e small

enough this can be suppressed. However, our results sug-
gest that if v & v„ this may not be the whole story. For
the solutions we found in Sec. IV, corresponding to black
holes inside monopoles, the radius of the horizon can be
easily shown, using (4.17), to be larger than the horizon
radius for the Reissner-Nordstrom solution of the same
mass. Classically, since the area of the horizon cannot
decrease, this suggests that the Reissner-Nordstrom solu-
tions are unstable, possibly decaying to our solutions.
This can indeed be shown by a perturbation analysis
around the Reissner-Nordstrom solutions [12]. There is
thus the possibility of a transition from the pure
Reissner-Nordstrom solution to one in which the horizon
lies within the monopole core. Once this transition has
occurred, there is no longer any obstacle to the complete
evaporation of the horizon. These possibilities await fur-
ther exploration.

1, r &R +b/2,
h(r)= f&(r), ~r

—R~ &b, ,

0, r &R —4/2,
(A4)

where f„(r) and fz(r) are smooth functions interpolating
between the small-r and large-r values of the fields, and
the limit 6—+0 will eventually be taken. The large-
distance values u =0, h =1 are chosen to minimize the
potential term U; as will become evident shortly, the pre-
cise choice of the short-distance values has no effect on
the final result. For configurations of this form, K van-
ishes everywhere except in the transition region
~r

—R~ &b, , where it is proportional to I/b, . It follows
that P (r) =0 for r & R +b, /2 and is proportional to I /b,
for r &R —5/2. Hence, the entire contribution to M
from the interior region is suppressed by a factor of the
form e """ . The contribution from the exterior re-
gion, which is due entirely to U=1/(2e r ), is simply
2~/[e (R +b, /2)]. In the transition region, the contri-
bution from U is clearly of order 6, while that from K
can be estimated by writing r =r [R +0 (b, ) ] and noting
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R 2m

e'R
(A5)

where the terms represented by the ellipsis are suppressed
either exponentially or by powers of 5 as 6~0. Minim-
izing with respect to R gives R =+4mG/e + . . and
M =M„+ . . As 5 tends to 0, M approaches the criti-
cal Reissner-Nor dstrom mass M„, but the limiting
configuration, with 5=0, is singular at r =R and thus is
not an acceptable solution of the field equations.

APPENDIX B

In this appendix we derive some inequalities which ap-
ply to solutions with horizons which are not necessarily
Reissner-Nordstrom outside the horizon. In particular,
these apply to the solutions, considered in Sec. IV, which
described black holes inside monopoles. We assume that
for all r ~rH the matter fields u and h are nonsingular
and take values between 0 and 1, that u is monotonically
decreasing, and that h is monotonically increasing.

We first derive bounds on the mass outside the horizon.
The first step is to note that, after eliminating 8 with the
aid of Eq. (2.15), Eqs. (2.17) and (2.18) for the matter
fields can be written as

that the leading part of the integrand is then a total
derivative. This gives

e2r2 BU 8m.GrKu
2 Bu A

u(u —1) + 2 hp p 8mGrK. u'
+cub v-

r2
(Bl)

r h'

A

r BU 8~Gr Kh'
v2 Bh A

=2h + BV 8 G Kh'
2 (jh

(B2)

[For brevity, we have written V for the Higgs potential
(A. /2)v (h —1) .j Integrating the first of these, and re-
calling that u '( oo ) = I /3 ( rH ) =0, we get

f dr e v uh — =f dr . (B3)
"a r

We now integrate Eq. (2.16) to obtain the expression

M —JK(r )=4m f dr r —+UK
H A

(B4)

for the mass outside the horizon. Integrating by parts the
u' and h' terms in K and using the field equations (Bl)
and (B2), we obtain

~( ) 4 ~d 1 —u + pV+ ph BV+ 8nGrKh'
"a 2e2r2 2 Bh A

8 6 Ku'—u uhv-
e A

(B5)

Since u (r) ~ u (rH ):u' for —r & rH, we have, using Eq. (B3),

f

�8aGrKu
dru uh v—

H e A

8n.GrKu '

'a eA
2~u"f "dr', ", .

"a er
(B6)

Substitution of this into Eq. (B5) leads to

4 f d
1 u 2u ( 1 u ) ~ ~d 1 2u

Pa 2e2r2 2e2r2
(B7)

and hence

M JR(rH) ~ (1——2u* ) .
e r~

(B8)

To get an upper bound on M —JK(rH ), we start with the identity

f dr (r U)= f dr r U+r (r U)+r u' +r h'
dr Br Bu Bh

(B9)

The left-hand side gives only a surface term at r =rH. (The term at r = ~ vanishes. ) On the right-hand side, the last
two terms can be rewritten with the aid of the field equations (B1) and (B2). After some algebra and an integration by
parts this gives
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I

dr r U= r—U( ) —f d r ~ (r U)+ 16nGr K +2r K 1 + 2ru'u" + ru h'(r h')'
A A

3 U( )+ ~d ( 1 —u ) q 16lrGr K
p e2r2

I

1 r E 2u'—2r K —— +
A A

(B10)

Inserting this into Eq. (B4) and dropping positive terms, we obtain

&2

M At(—rH) &4n rHU—(rH)+ f dr
&

+
rH e2A e2r2 (Bl 1)

We now need a bound on the u' term. To obtain this we multiply Eq. (Bl) by u and integrate from the horizon to
infinity to obtain

~d u ~d u (1—u ) i ihi i+8mGrKuu' &
~ u (1—u )dr = dr —eve u + 8r

"H A "H rH r2
(B12}

Hence,

M JK(rH) &4n— rHU(rH—)+f dr
z &p e2r2

(B13)

M Af(rH—) &
i (1+2u' —u' ),2'

e rH
(B14)

Dropping the u in the integrand gives the inequality

have Reissner-Nordstrom solutions. In this case u'=0
and the inequalities (B15}simply say that the mass out-
side the horizon is given by 2n/e rH. For the type of
solutions discussed in Sec. IV, for which we have a hor-
izon, but for which the exterior region is not Reissner-
Nordstrom, these inequalities can be useful. There are
bounds we can put on the masses and horizon sizes of
such solutions. From Eqs. (2.12) and (2.24) we have,
since ( I/A)' is positive,

where u ' = u ( rH ). The inequalities (B8) and (B14) can be
combined as i ) 41TG(l, i)i

e
(B16)

2'
(1—2u "

) & M JN, ( rH )—42

e rH With 2GAI(rH)=rH, the left-hand side of inequality
(B15) leads to

(1+2u" —u' }
e rH

(B15)

As discussed in text, when the mass is large enough so
that the inequalities (4.7) are no longer respected, we and

M ) (1—2u*)
Ge

(B17)

GM — G M — (1—2u )2

1/2

&rH&GM+ G M — (1—2u+
e

' 1/2

(B18)

1/2

ra-r GM — G M — (1+2u* —u' )
e

(B19)

The right-hand side of (B15) does not constrain rH unless
M ) (4m /Ge )( 1+2u *i—u * ), in which case we get

Once we specify the value of u at the horizon, these
inequalities constrain the values of masses and horizon
sizes. For example, for the critical solutions with u'
given by Eq. (2.13), inequality (B16}gives

01

1/2

e v rH(1 ——1—zzz 1 MGe
2 4m.

2
1— (B21)

rH)GM+ G M — (1+2u* —u' )
e2

(B20) for A, &e . For M &4m. /Ge, this is a refinement of in-
equality (4.7) in the text. For A, & e, we get
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4n.(e +I, 2—A,e U rIt)
M +

Ge (e —
A, )

which requires that

(B22)

This is again a refinement of (4.7).

(B23)
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