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Collisions of relativistic clusters and the formation of black holes
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We perform numerical simulations of head-on collisions of relativistic clusters. The cluster particles
interact only gravitationally, and so satisfy the collisionless Boltzmann equation in general relativity.
We construct and follow the evolution of three classes of initial configurations: spheres of particles at
rest; spheres of particles boosted towards each other; and spheres of particles in circular orbits about
their respective centers. In the first two cases, the spheres implode towards their centers and may form
black holes before colliding. These scenarios thus can be used to study the head-on collision of two
black holes. In the third case the clusters are initially in equilibrium and cannot implode. In this case
collision from rest leads either to coalescence and virialization, or collapse to a black hole. This scenario
is the collisionless analog of colliding neutron stars in relativistic hydrodynamics.

PACS number(s): 04.20.Jb, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

A time-honored means of probing the nature of an in-
teraction in physics is to perform collision experiments.
Now, by means of numerical simulations, it is possible to
perform such experiments to study the gravitational in-
teraction. In addition to gaining theoretical understand-
ing from these simulations, one can model strong-field en-
counters that may actually occur in nature. Examples in-
clude collisions between neutron stars and between black
holes.

In this paper we explore collisions between relativistic
spheres of particles according to general relativity. The
particles are assumed to interact exclusively by gravita-
tion, i.e., they obey the relativistic collisionless
Boltzmann equation (Vlasov equation). For this purpose,
we have constructed a numerical code that solves
Einstein's equations for the gravitational field coupled to
matter sources obeying the Vlasov equation. This is the
same mean-field, particle simulation code described in
Refs. [1] and [2] to study nonspherical gravitational col-
lapse. The code is designed to handle axisymmetric sys-
tems with no net angular momentum. The present ver-
sion assumes equatorial symmetry. It is thus suitable for
studying head-on collisions between identical nonrotating
clusters of particles.

We consider three different collision scenarios: (1) the
collision from rest of spheres of particles with no initial
internal motion; (2) the collision of the same spheres ini-
tially boosted towards each other with a uniform veloci-
ty; (3) the collision from rest of equilibrium spheres of
particles, i.e., spheres in which the internal particle
motions maintain dynamical equilibrium when the
spheres are widely separated.

In the first two cases the nonequilibrium spheres col-
lapse towards their own centers and may form black
holes before they collide. Thus these scenarios provide a
way of studying the head-on collision of two identical
nonrotating black holes. This treatment is an alternative

means of analyzing this important problem, which has
only been considered [3) previously using the vacuum
Einstein equations ("topological" black holes). We thus
demonstrate how a code designed to handle matter in
general relativity can be used to treat black holes,
without having to develop special-purpose routines to
handle the boundary conditions for vacuum black holes.

The third case is the cluster analogue of the head-on
collision of two neutron stars [4]. Collisions of equilibri-
um clusters have previously been studied only in
Newtonian gravitation [5]. In a strong gravitational field
the collision can lead to black-hole formation. However,
stable equilibrium clusters do not implode on their own
centers. Thus a black hole can only form when the clus-
ters interact closely.

For each of these three cases, we first construct solu-
tions of the initial-value equations of general relativity.
%'e describe these solutions in some detail because they
may be useful for other simulations. For example, case
(2) furnishes a non-time-symmetric solution of the
initial-value equations with matter. Most previous inves-
tigations of these equations assume time symmetry be-
cause it is analytically simpler.

II. INITIAL DATA

+ A 2r 2(d i)+Psdt)2+B 2r 2 sjn2g dg2 (2.1)

The matter satisfies the relativistic Vlasov equation,
which we solve by particle simulation in the mean gravi-
tational field. The basic code is identical to the one de-
scribed in Refs. [1] and [2]. We list the key equations in

To follow the head-on collision of two clusters, we
solve the field equations in 3+ 1 form following Arnowitt,
Deser, and Misner (ADM) [6]. We use maximal time
slicing and isotropic spatial coordinates in axisymmetry.
The metric is

ds = adt + A —(dr+P"dt)
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the Appendix.
The initial configurations are all generalizations of the

momentarily static spheroids that were constructed in
Ref. [7]. We adopt the same notation as in that paper.

The axisymmetric three-metric that we adopt at t =0
is the "radiation-free" conforrnally fiat form

M„/2
Pw

4 3/3
(2.7)

V 4~ =4mp~ . (2.8)

everywhere inside the spheres. The Newtonian gravita-
tional potential 4N satisfies Poisson s equation

' 'ds =g 8"dx 'dx
lJ (2.2) In the lower half-plane, the solution is

Here we have chosen the "radiation variable"
r) = ln( A /B) to be zero at t =0, and hence M~ M~

2r1 2r2
r1 a

A =B=f (2.3)

For a moment of time symmetry, the shifts P' and all
components E' of the extrinsic curvature are zero. The
only Einstein equation that the initial data must satisfy
nontrivially is the Hamiltonian constraint

'"R =16'*, (2.4)

where p'=T„n"n" and n" is the normal vector to the
initial hypersurface t =0. Here ' 'R is the Ricci scalar
and T„„is the stress-energy tensor for a gas of collision-
less particles. The Hamiltonian constraint reduces to

2ng—p",.

with the boundary conditions

MP'/=0, r =0, $~1+, r ~~,
2r

(2.5)

(2.6}

where M is the total mass-energy of the configuration.
Consider two spheres of particles of radius a separated

by a coordinate distance 2zo along the z axis (see Fig. 1).
In Newtonian theory, if the spheres are homogeneous
and each of mass Mz l2, then the density is

M~ 3—
4a

r 2
1

a

MN
r, &a,

2r2

(2.9)

where

r)=[x +y +(z+zo) ]'~z,

rz=[x +y +(z —zo) ]'~
(2.10)

The solution in the upper half-plane is obtained by inter-
changing r1 and r2.

Now to obtain an analytic solution to the Hamiltonian
constraint (2.5), set the density profile p' by

2mg'p' =4m.p~ . (2.11)

Comparing the Poisson's Eq. (2.8), we immediately con-
clude that

(2.12}

Since at large radii 4&~ —Mz/r, we have, from Eqs.
(2.6) and (2.12),

M =2M~ . (2.13}

Note that outside the matter the three-metric is the same
as the solution given by Misner and Wheeler [8] for two
time-symmetric black holes. When the spheres are far
apart, the initial data describes two spherical black holes
at rest whenever a &0.25M in the adopted isotropic coor-
dinates.

The total rest mass of the configuration is

ZQ

Mo=f Qd x,
y

where, for a moment of time symmetry,

y = —u "n„,

(2.14)

(2.15)

and u" is the particle four-velocity. The total rest mass is
related to the total number of particles N by

Mo mN (2.16)

where m is the rest mass of a particle. In the special case
that the particles are initially at rest, y = 1 and

Mo= f 2p~(1 —@~)d x =2MN+4W~, (2.17)

where

FIG. l. Initial parameters for two colliding spheres of parti-
cles.

1~x ——
2 fpx4'wd'x (2.18)
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is the Newtonian gravitational binding energy. When the
spheres do not overlap,

M~
8'~ =

a
3 1 a
10 8 zo

(2.19)

Having determined the density profile, we now must
specify a velocity profile. Once it is given, we can then
distribute particles to sample the initial phase-space dis-
tribution function. We consider three different collision
scenarios, corresponding to three different initial velocity
profiles: spheres of particles initially at rest, spheres of
particles boosted towards each other with a z velocity,
and spheres of particles in circular orbits about their
respective centers. The initial data for the first and third
cases are at a moment of time symmetry, for which the
equations given above apply. In the third case we choose
the circular velocity profile so that the spheres would be
in dynamical equilibrium if they were very far apart.
Case (2) does not correspond to a moment of time sym-
metry. The equations for this case will be discussed
below.

A. Spheres of particles at rest

In this case, each particle is initially at rest and hence
is assigned initial four-velocity components

u, =0, u&=0, u&=0 . (2.20)

The time component of the four-velocity is determined by
the normalization condition u"u&= —1 [cf. Eq. (A16)].
From Eqs. (2.13) and (2.16)—(2.19), the rest mass m of a
particle can be determined once the total number of par-
ticles N in the cluster is chosen. By the equivalence prin-
ciple, the dynamical behavior of the collisionless gas is in-
dependent of ¹ Of course, N must be sufficiently large in
a numerical simulation that statistical fiuctuations are
unimportant.

Equation (2.14) can now be employed to distribute par-
ticles in the interior of the spheres. We have

3
N= =—J p'P d x= —

3 Jgd d(cos8),

(2.21)

where we have used Eqs. (2.11}and (2.7) to express p in
terms of p~. The integrand in Eq. (2.21) gives the parti-
cle distribution in spherical polar coordinates r and 0.
Sampling from this distribution by a rejection method,
we can assign (r, 8} coordinates to the particles. By ax-
isymmetry, the particles are uniformly distributed in P.

This assignment of particle positions and velocities, to-
gether with the analytic three-metric, completely solves
the initial-value problem. The configuration consists of
two identical spheres of the type constructed in Ref. [7),
initially at rest and separated by a coordinate distance
2zo along the axis. In the Newtonian limit the spheres
are homogeneous, but relativistic configurations are inho-
mogeneous with density increasing outwards.

B. Boosted spheres

We next construct initial data which corresponds to
the same two spheres described above, but boosted to-
wards each other with velocity v along the z axis. To
completely specify the boost, we must designate which set
of observers measures the velocity v. We choose the nor-
mal observers. While arbitrary, this choice does elimi-
nate dependence of the velocity on the shift vector. The
particle coordinate positions are assigned exactly as in
the previous case. The coordinate components of the
particle four-velocities are

u„= Ayv cos8, u&= —Aryv sin8, u&=0,

where

(1 U2)
—1/2

(2.22)

(2.23)

With this assignment of phase-space particle coordinates,
the configuration is no longer at a moment of time sym-
metry at t =0. We are still free to set the dynamical vari-
ables g and K "& to zero. However, the full set of momen-
tum and Hamiltonian constraint equations has to be
solved. We proceed by iteration: first we calculate A and
m analytically for v =0 and total mass M as in the previ-
ous case. The particle positions, together with the veloci-
ties of Eq. (2.22), then allow us to calculate the matter
source terms (A17)—(A21) for the field equations. Next
we solve the momentum constraints, Eqs. (A4) and (A5),
the Hamiltonian constraint (A6), the lapse Eq. (A7), and
the shift Eqs. (A8) and (A9). We then compute the mass
from Eq. (A22}. In general it will not be equal to M be-
cause we have obviously added energy by boosting the
spheres. We then adjust the particle mass m and, using
the updated values of A, we recalculate the source terms.
We solve again the field equations and get a new value of
M. The process is repeated until convergence is achieved.
The result is a self-consistent solution of the initial-value
equations with matter but without time symmetry.

Our choice to set g and E'& to zero is computationally
convenient, but arbitrary. The choice is also motivated
by the desire to minimize the amount of gravitational ra-
diation put into the initial data. An alternative choice
would have been to set the transverse part of the extrinsic
curvature to zero, and solve for the longitudinal part.
Since the dominant burst of gravitational radiation arises
from the collision and coalescence of the two spheres, we
have ignored small differences in the choices of the initial
data and opted for the simplest numerical prescription.

C. Equilibrium spheres

The spheres constructed in the previous two eases,
when widely separated, each implode to black holes be-
cause they are not in dynamical equilibrium. In particu-
lar, they do not have any centrifugal support to hold back
their inward gravitational collapse. Now we wish to con-
struct spheres of particles which, when widely separated,
are in dynamical equilibrium. We do this by arranging
all the particles to be in randomly oriented circular orbits
with centrifugal forces exactly balancing gravity. Each of
these clusters is thus an Einstein [9] cluster in the absence
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of the companion. We choose the particle distribution so
that the density p* is again given by Eq. (2.11). Because
the spheres are at rest at t =0, the initial data corre-
sponds to a moment of time symmetry, and the Hamil-
tonian constraint is the only nontrivial initial-value equa-
tion. The Hamiltonian constraint once again can be
solved analytically, and g is again given by Eqs. (2.12)
and (2.9).

The magnitude of the equilibrium velocity v~ as mea-
sured by a normal observer is given by [10]

' —1/2 1/2
gS

2

' 1/2
m(rs ) 2m (rs)

Vj =
TSTS

(2.24)

Here Ts is the Schwarzschild radial coordinate measured
from the center of the sphere, m(rs) is the Schwarzschild
mass inside radius Ts, and g„„ is the Schwarzschild radial
metric coefficient. Transforming to isotropic coordinates,
and using the explicit form of the metric in Eqs. (2.12)
and (2.9), we obtain

Vy=

' 1/2
M~r, [1+(3M~/4a)(1 r, /a—)]'~~

1+(M~/4a )(3—Sr~ /a )
(2.25)

y
—(1 U2)

—1/2 (2.26)

Particle positions can now be assigned by rejection simi-
larly to the case of particles at rest. The only difference is
that there is a factor of 1/y in the integrand of Eq. (2.21)
because of the circular motion. Here

The components of the three-velocity of a particle in the
orthonomal frame of a normal observer are

zp sinO

V ~= Vj COS+

v~ sing, v = T +zp cosO
v~ sing,

(2.27)

Here y is an angle chosen from a uniform distribution in
[0,2m]. The corresponding four-velocity components are

u„=Ayv, u&= ATyv, u&= AT sinOyv~ . (2.28}

This prescription for the initial fields and matter
sources provides another exact solution of the initial
value equations. When the spheres are widely separated
(a/z0~0), the configuration corresponds to two identi-
cal spheres in equilibrium that will collide head-on from
rest.

III. GEOMETRIC PROBES

We construct a number of geometric diagnostics to
probe the spacetime during a simulation. We monitor
the conservation of mass-energy by calculating the Brill
mass at regular time intervals [see Eq. (A22)]. We search
for the presence of black holes by locating apparent hor-
izons, and compute their shape and area when they are
present. We probe for both a common horizon enclosing
both clusters (one black hole), and disjoint horizons sur-
rounding each of them separately (two black holes).

Starting, for example, from Eq. (29} of Ref. [11],we

derive parameteric equations for an apparent horizon
r =r(s), 8=8(s) in the form

d T

d$

2
dT

A ds
2

' + ' + cotO
dT dO+

T
'" +T '+2TA B A „B, dO

ds

2

rJV—dO

ds
(3.1)

d O 1

ds T

Ag Bg
A B

+ ' + cotO
dT

ds

2 2A„B„3 dT dO+ ' +-
A B T ds ds

A, e d8 + 1 ~dr
A ds r ds

(3.2)

where s is the arc length and
2

dr 1 g„+ dr d8 1 g„
ds B " ds ds B

"(fc"„+t')+— fc' .
ds B

(3.3)

These equations must be solved subject to the initial con-
ditions

dT dOs=0: T=Tp, O=O, =0
ds ds

1

AT
(3.4)

Note that Eq. (3.1) is indeterminate at s =0. L'Hopital's
rule gives

d T 1 , r , r 2 1

s2 2 A B

(3.5)

A common horizon is a solution of Eqs. (3.1}—(3.4) that
also satisfies the condition dT/ds =0 at O=m. Equatorial
symmetry allows us instead to satisfy the condition
dT/ds =0 at O=m. /2. The general strategy we adopt for
finding a common horizon is to start at the pole with a
trial value r =ro and integrate Eqs. (3.1) and (3.2) to the
equator. Vary Tp and search for a sign change of dT/ds
at the equator. If there is no sign change for any Tp, there
is no common horizon. If there is a sign change, iterate
until dT/ds =0 to locate Tp Precisely.

A disjoint horizon in the upper hemisphere is a solu-
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tion of Eqs. (3.1)—(3.4) for which 8 not only starts at zero,
but also returns to zero in the same hemisphere with

dr/ds =0. By equatorial symmetry there is an identical
horizon in the lower hemisphere. An iterative procedure
similar to the case of a common horizon can be used to
search for a disjoint horizon [12].

As in Ref. [7], we compute the area and circumferences
of any apparent horizon that is found. The area is

tive, the initial value of the area of a disjoint horizon
A /4aM has to be less than two.

%e used our dynamical code to evolve this initial data.
We found that, as in the case of computations of gravita-
tional radiation from colliding black holes in vacuum
spacetimes [3], here also the actual emission is consider-
ably less than the upper limit. In fact, for all the cases re-
ported in this paper, the gravitational radiation efticiency

A =2m f Br sin8ds, (3.6)
0

where s,„ is the terminal value of s. The polar cir-
cumference of an apparent horizon is

~ 80.

~pole 2s max (3.7) 0.6 —--.

while the equatorial circumference of a common horizon
1s

(3.g)

i~~
I

0.2—

IV. RESULTS

The basic code employed to solve the equations listed
in the Appendix was described briefly in Refs. [1]and [2].
%e use similar computational resources to those reported
there, typically 100 radial and 32 angular zones, and 6000
test particles. Again, a key feature enabling us to track
motion approaching the origin or close to the axis is that
the angular grid can fan and the radial grid can contract
to follow the matter.

A. Spheres of particles at rest

0.6—
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0.2
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(b)

~Erad

affina

=1— (1—
M M

1/2

=0.073 .
SmM

(4.1)

Note that to guarantee that the radiated energy is posi-

To explore the range of possible initial data, we con-
sidered spheres with a variety of radii and separations.
Three interesting choices, all involving black holes, are
shown in Fig. 2. %hen the spheres are widely separated
(zo))M), they are black holes if a (0.25M. When
zo-M, the critical radius is somewhat less. Figure 2(a)
shows one of the spheres in the upper half-plane with
a =0.1M and z0=0.4M. The spheres are too far apart
for there to be a common horizon, but there is a disjoint
horizon. From the location of the horizon, we see that
any value of a up to about 0. 18M would give the same
horizon, since the exterior metric is independent of a.
The area of a single Schwarzchild black hole of mass
M/2 is 4~M, which is a convenient unit for the area of
disjoint horizons. Likewise we use the unit 2aM for the
circumference of a disjoint horizon. The area of the hor-
izon in Fig. 2(a) is A/4mM =1.72. Its polar circumfer-
ence is C ~„/2a M = 1.32.

Because the collision results in the formation of a sin-
gle Schwarzschild black hole, one can use the area
theorem to provide an upper limit to the amount of grav-
itational radiation that can be emitted during this en-
counter:

0 I I I
I I I

0.6.—

~-04

~II

0.2 '-:'.';-''::.-:
I.

0

I

I
I
I

I

I

I

I

I

t I « I

0.2 0.4
EquatOr

(c)

0.6 0.8

FIG. 2. Snapshots of particle positions at t =0 for spheres of
particles initially at rest. The coordinate positions (in units of
M) are projected onto a meridional plane. Because of symme-

try, we show only one quadrant in the upper hemisphere: there
is an identical sphere in the lower hemisphere. Dashed lines
show the locations of apparent horizons. The three cases shown
describe three different initial data sets for black holes colliding
from rest. In case (a) the spheres are sufBciently compact that
they each are surrounded by a disjoint horizon, but they are far
enough apart that there is no common horizon. In case (b) they
have been moved close enough that now there is also a common
horizon. In case (c) the radius of each sphere has been in-
creased. Now there are no disjoint horizons, but only a com-
mon horizon. Numerical values of the initial parameters and
horizon measures for each case are given in the text.
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is much less than l%%uo by the time we terminate the in-
teg rations.

Figure 2(b) shows the initial data for two spheres of the
same radius as in Fig. 2(a), but separated by only
zp =0.25M. Now there is also a common horizon. Nor-
malizing to a Schwarzschild black hole of mass M, we
find that its equatorial and polar circumferences are
8~/4mM =0.87, C ~&,/4m M = 1.06. Despite its non-
spherical shape, its area is A/16m. M =1.00. The vacu-
um geometry is identical to the case examined by Bishop
[13], and we are in good agreement with the numerical
values he reports for the various horizon parameters.
Evolution of this data leads to a more spherical black
hole, as expected.

In Fig. 2(c) the separation is the same as in Fig. 2(b),
but the radius of the spheres has been increased to
0. 16M. We see that the disjoint horizon has disappeared,
while the common horizon has precisely the same struc-
ture as in Fig. 2(b).

2.0-

1.5-

I I I I
I

I I I I
I

I I I

t/M =0

inates and the encounter is hyperbolic. The case v -0.3
would give M/Mp=1, which corresponds to free fall
from rest at infinity.

We have numerical evidence that one cannot find ini-
tial data for this sequence with v arbitrarily close to one.
The iteration of the combined constraint and gauge equa-
tions described in Sec. II B fails to converge. The reason
appears to be that gpp changes sign, which implies that t
is no longer a timelike coordinate. Hence the adopted
form of the ADM equations breaks down.

B. Boosted spheres

Next we consider a sequence of spheres, "identical" to
the ones considered in Sec. IVA, but now boosted to-
wards each other by increasing amounts. The spheres
each have a radius a =0.8M and are separated by
zp=1.4M, so there are no apparent horizons initially.
These nonequilibrium spheres implode on their own
centers while approaching each other head-on.

Figure 3 shows the evolution of the first member of the
sequence, where there is no velocity boost. At t =5M a
disjoint horizon forms around each of the spheres. The
spheres then implode rapidly toward their centers. We
are forced to terminate the integrations when the field
gradients near the cluster centers become so large that we
can no longer maintain accuracy. This is the same prob-
lem that limits integrations of spherical collapse to black
holes with maximal time slicing and isotropic coordinates
[14]. By the time the lapse has fallen exponentially to
—10 at the cluster center, the coordinate separation of
the spheres is still & 1M. Thus these coordinates are not
adequate to follow the entire collision and coalescence.

Figure 4 shows the evolution of spheres with an initial
boost velocity v =0.12. Again the spheres implode, and
a disjoint horizon appears at t =6M. Now, however, the
boost enables the clusters to get closer before the integra-
tions are forced to terminate. By the end of the simula-
tion a common horizon envelops the system.

In Fig. 5 we increase the boost velocity to v =0.15.
This time a common horizon appears before the disjoint
horizon. Finally, in Fig. 6 we show the case for v =0.S.
A common horizon appears, but no disjoint horizon, and
the two spheres actually make contact inside the black
hole as the integrations terminate.

The sequence of boosted cases is a sequence of increas-
ing kinetic energy. This is reflected in the values of the
ratio M/Mp along the sequence 0.68, 0.74, 0.76, and 1.30
respectively. In the first three cases the velocity is low
enough that negative gravitational binding energy dom-
Inates over the kinetic energy contribution to the total
mass-energy M. In the last case, kinetic energy dom-

0.5—

Q I I I

2.0—
t/M = 5.5

0.5—

Q I I

2.0—
t/M = 7.2

& 5—

0.5-

0 I i « i I I I I I I I i « I I I

0.5 1.0 t.5
Equator

2.0

FIG. 3. Snapshots of particle positions at selected times for
the collision of two spheres of particles initially at rest. The ini-
tial radius of each sphere is a =0.8M, and their centers are at
zo= +1.4M. The spheres implode on their own centers as they
fall toward each other, forming disjoint horizons at t =5M. The
area of each disjoint horizon is A /4aM = 1.2 at the end of the
integration. While this value must be 1 if the black holes are far
apart, it can be greater than 1 when they interact, but must al-
ways be less than 2. The polar circumference of the horizon is
8'~l, /2aM=1. 1. Again the deviation from 1 is due to interac-
tions.
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C. Equilibrium spheres

%orking with equilibrium spheres allows us to study
collisions without the clusters imploding on their own
centers before making contact. This is the collisionless
analogue of the head-on collision of neutron stars in hy-
drodynamics.

In Newtonian theory the head-on collision from rest of
two clusters leads to violent relaxation, coalescence, and
virialization to a new equilibrium state [5]. In general re-

lativity, however, there is the possibility that the collision
will be followed by collapse to a black hole. To anticipate
when this might happen, note first that a single spherical

cluster is dynamically unstable to collapse whenever its
radius in Schwarzschild coordinates is less than 6M, cor-
responding to an isotropic radius of 4.95M. Numerical
examples of this phenomenon are given in Ref. [10]. Two
well-separated spheres of mass M/2 are thus individually
unstable if a (2.47M. If these spheres were suddenly su-
perposed, the resulting sphere would be unstable if the
original a was less than 4.95M. In fact, the final sphere
would be unstable for even larger values of a because the
original internal velocities that maintained equilibrium
were those appropriate to a mass M/2 rather than M.
%e thus expect to find for a value of a ~ 5M a transition
between collisions leading to black-hole formation and
those leading to virialization to a merged equilibrium.
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FIG. 4. Snapshots of particle positions at selected times for
the collision of the same spheres shown in Fig. 3, but now boost-
ed towards each other with a velocity v =0.12. Because of the
boost, the clusters can get close enough for a common horizon
to form as well as the disjoint horizons. The area of each dis-
joint horizon is A/4n. M =1.1 at the end of the integration,
while the area of the common horizon is A /16~M =0.95. The
polar circumference of the disjoint horizon is 8~,&,/2mM=1. 1.
The circumferences of the common horizon are
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FIG. 5. Snapshots of particle positions at selected times for
the collision of the same spheres shown in Fig. 3, but boosted
towards each other with a velocity v =0.15. Now the common
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A /16+M =0.86, and it grows to 0.99 by the end of the integra-
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C ~&,/4mM = 1.1. By this time the disjoint horizon has an area
A/4' =1.1 and a polar circumference C~,&,/2aM=1. 0.
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In Figs. 7—9 we consider a sequence of collisions from
rest between equilibrium clusters with successively small-
er values of a /M. Figure 7 shows the evolution of
spheres of radius a =64M separated by zo =256M. This
case is essentially Newtonian. Following coalescence and
violent relaxation, the two clusters achieve virial equilib-
rium. To monitor the approach to virial equilibrium, we
computed the ratio 2T/~ W~, where T is the Newtonian
kinetic energy and 8' is the Newtonian gravitational po-
tential energy. In equilibrium, this ratio is precisely uni-

ty. After some initial large oscillations, the ratio had fal-
len to 1.07 by the time we stopped the integration. As ex-

pected, violent relaxation produces equilibrium in just a
few dynamical time scales.

Figure 8 shows a more relativistic encounter, with
a =9M and z0= 36M. The outcome is qualitatively simi-

lar to the Newtonian case. The virial ratio is no longer
applicable when relativistic effects are important. How-

ever, the quantity

E = —g(1+u')
J

(4.2)
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FIG. 6. Snapshots of particle positions at selected times for
the collision of the same spheres shown in Fig. 3, but boosted
towards each other with a velocity v =0.5. Now only a corn-

mon horizon appears, as the spheres are in contact at the end of
the integration. Its area is A/16~M =0.70, while its cir-
cumferences are C,q/4~M =0.76 and Ppp] /4' =0.85.

FIG. 7. Snapshots of particle positions at selected times for
the collision of two equilibrium spheres of particles whose

centers are initially at rest. The initial radius of each sphere is

a =64M, and their centers are at zo =+256M, so that this case
is essentially in the Newtonian regime. Following collision and

coalescence, the spheres virialize.
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served over several orbital periods towards the end of our
integrations, indicating that we have reached a steady
state.

By contrast, Fig. 9 shows the evolution when a =7M
and z0=28M. Now the merger results in collapse to a
black hole. Thus the critical radius at which the transi-
tion from stable merger to catastrophic collapse occurs

lies in the range 7M ~a &9M.
The real significance of this numerical experiment is

that we expect analogous behavior for the head-on col-
lision of neutron stars. In particular, the collision of two
neutron stars, each of which is below the maximum mass
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FICx. 8. Snapshots of particle positions at selected times for
the collision of two equilibrium spheres of particles whose
centers are initially at rest. The initial radius of each sphere is
a =9M, and their centers are at zo=+36M. While this case is
more relativistic than in Fig. 7, the behavior is qualitatively the
same.

FIG. 9. Snapshots of particle positions at selected times for
the collision of two equilibrium spheres of particles whose
centers are initially at rest. The initial radius of each sphere is
a =7M, and their centers are at zo= +28M. Now the spheres
are sufBciently relativistic that the collision is followed by cata-
strophic collapse to a black hole. The common horizon shown
in the blowup at t/M =590 has an area A /16~M = 1.1, while
its circumferences are C~/4aM= 1.1 and C~,&,/4aM= 1.0.
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limit, can result in a merged configuration that is too
massive to be stable. The collapse may be postponed,
however, if the fluid is sufficiently shock heated that
thermal pressure provides an appreciable fraction of the
total pressure support. This behavior has already been
demonstrated for the collapse of single spherical stars
above the maximum mass [15]. These stars can exist in
stable equilibrium as long as their temperature remains
high. Eventually, after neutrino cooling, any neutron
star must collapse if its total mass exceeds the cold mass
limit. For collisions between 1.4Mo neutron stars, how-
ever, thermal pressure may be unable to impede dynami-
cal collapse. Just as for cluster collisions, where there is a
critical value of a/M, there should be a critical mass for
neutron-star collisions above which collapse will occur
even on a dynamical time scale.

Even if one carried out a simulation with a very large
number of particles and grid zones, there is an additional
problem associated with the choice of coordinates. For
example, for the collision depicted in Fig. 3, the black
holes have hardly approached each other by the time we
are forced to terminate the integration. As we discovered
in our studies of spherical collapse [14], maximal time
slicing with isotropic coordinates is inadequate to follow
late time evolution well after a black hole forms —the
central singularity grows too rapidly for numerical accu-
racy to be retained. In the spherical case we showed that
a combination of polar time slicing and the introduction
of "freezing" variables allows one to integrate far into the
future. Clearly, a suitable generalization of these coordi-
nates needs to be explored for the nonspherical case.
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APPENDIX

J J (Al)

The evolution equations, which we use to determine
the "radiation variables" ri= ln( 8 /B) and E "s, are

Here we list the key equations for the evolution of an
axisymmetric configuration in the ADM 3+ 1 decompo-
sition of general relativity. We specialize to the case of
no net angular momentum [17]. We adopt the spacetime
coordinates (t, r, e, p). Because of axisymmetry all quanti-
ties are functions only of (t, r, e).

The metric is given by Eq. (2.1). In addition to the
metric coefficients a, p', p, A, and 8, the ADM formal-
ism introduces the components of the extrinsic curvature
tensor E'. It is convenient to introduce the related
quantities

a,~=, i+p"a„~+p'a,~+ay' p'cote, — (A2}

a,t",= ', a„(r'P"t",)+—.
' as(slneP't", ) — .

" a, ""
a, (ar) — ', a„(ar)a,(@sine)

r2 sing r sing g ~ 2

+E" (asP a„P")+(2X —3t~~}a—eP" ABa, ——„' a,~ + a„(Ar)aux — S„
Ar

(A3)

where

i=k" +2k

and where matter source terms such as S„&will be defined below.
The momentum constraint equations, which we use to solve for 2"„and k~&, are

2g
a&( sine'"„)+ a E

&
= —Stt+ a„(r k" ),

sinO sin O ~ r
(A4)
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d„(r E",}+Xg&d„q =S„— 8 ( sin8E' ),

where T = A /8. The Hamiltonian constraint equation determines /=8 '~:

(AS)

B„(r 8,@)+ Bg( sin88yfi) = ——g —B,{rB,g)+ der r sin r r?

+ 9—3M +3(k ) +7.2ys

r
'2

P
4g

(A6)

To impose the maximal slicing condition on the time coordinate, we solve the "lapse" equation for a:
1

B„[r B,(af))+ Bg[ sin88g(ag)]= —ag ——B„(rB„g)— 2 der r sin 7II 70 2

A 2B2
+ ){,

'—3M' +3(tg )'+ '+ —(p +2S)1

B

(A7)

Imposing isotropic spatial coordinates leads to the
"shift" equations for p" and p:

dQ '=0,
di

{A15)

ra ——aP = (2R —3k& ),
r A B

(A8)

ra p'+a P" 2a
A Br

(A9)

dr +ur

dt up
(A 10)

d8
dt

Qug

uA r
(Al 1)

dP a
Br sine Q

(A12)

The geodesic equations of motion for the collisionless
particles are

where the renormalization condition u "u = —1 gives
I ' 1/2

Q Qg
2 2

Qy
2

u —=au = 1+ + +
Q 2 r2g 2 B2r2 sjn28

(A16)

S,=

mu~

(r sin8b, rh8b, g)

muj

(r sin8b, rh86$)

mu Jg

(r sin8hrlL86$).

(A17)

(A18)

(A19)

The particles are binned to determine the source terms
for the field equations:

dQr
ud„a+ u—„d„P'+u g B,Pdt

2u

Q

+a,
B r sin8

1

r2A2 Qe

(A13)

mu Ju Je
ig X uj(r sin8hrb, 8b,g}.

S=p X
u (r2sin8hrh85$)~

(A20)

(A21)

dQO
uBgQ+u Bgp +ugBgp

The BriB Inass of the spactirne is given at any instant
by

a 1 1
Bg u„+Bg ug

2u r A
M= Jd x (V in/) +t; E'J + p'1 1 A'

2K ~J sg 2B2

+Be Q
1 2

B r slIl 8
(A14)

where V is the flat-space gradient operator.

(A22)
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