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Interiors of Vaidya's radiating metric: Gravitational collapse
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Using the Darmois junction conditions, we give the necessary and sufficient conditions for the match-

ing of a general spherically symmetric metric to a Vaidya radiating solution. %e present also these con-
ditions in terms of the physical quantities of the corresponding energy-momentum tensors. The physical
interpretation of the results and their possible applications are studied, and we also perform a detailed
analysis of previous work on the subject by other authors.
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I. INTRODUCTION

Gravitational collapse is one of the fundamental prob-
lems for which general relativity can be of some impor-
tance. The problem has very interesting applications in
astrophysics, where the formation of compact stars is
usually preceded by an epoch of radiative collapse. From
the theoretical point of view, this subject must be studied
taking into account that the surface of the star divides
the whole space-time into two different regions: the re-
gion inside the surface of the star, called the interior re-
gion, filled with matter and radiation; and the region out-
side the surface, called the exterior region, which will
usually be filled with all types of radiation coming out of
the star itself. These two regions must be matched
smoothly across the star surface.

Therefore, in order to study gravitational collapse, it is
necessary to describe adequately the geometry of the inte-
rior and exterior regions and to give the conditions which
allow the matching of them. To describe the geometries,
the assumption of spherical symmetry has been widely
used because it gives a very good approximation to most
physical situations, the departure from sphericity being
seldom relevant for practical purposes. Thus, the exteri-
or region is usually described by the Vaidya radiating
metric [1],which is the only spherically symmetric metric
with a pure radiation energy-momentum tensor. In most
work on the interior region a more or less general
energy-momentum tensor is assumed, and then the reso-
lution of Einstein's equations provides the geometry
which must be matched to the exterior. However, as we
shall prove in this work, this procedure is not necessary
at all, because eUery spherically symmetric metric bound-
ed by a surface interpretable as the star surface (in a sense
that will be made precise later) can be matched with a
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Vaidya exterior. This important fact is in accordance
with the uniqueness of the Vaidya solution and permits
us to avoid the always dificult resolution of Einstein's
equations. We shall also give a satisfactory physical in-
terpretation of these results by proving that the only re-
quirement for performing the matching is that the sur-
face of the star be defined by the condition of vanishing
of the total radial pressure (or equivalent quantities as ex-
plained in the discussion) on the surface.

Historically, the pioneering work on gravitational col-
lapse appeared in the famous paper by Oppenheimer and
Snyder [2] in which they studied the collapse of dust with
a static Schwarzschild exterior. Much later, the case
with a static exterior was studied by Misner and Sharp
[3], for a perfect fluid in the interior, and by Bel and
Hamoui [4] in the general case without a flux of energy
across the surface of the star. After the appearance of
Vaidya s solution, Vaidya himself tri.ed to find interior ra-
diative solutions [5], and Misner generalized his previous
work in Ref. [6], where the condition of vanishing pres-
sure at the star surface appears for the first time. The
fact that Vaidya's metric is naturally written in radiative
coordinates led other authors to study the problem with
the interiors expressed in similar coordinates. The first
work in this line was presented by Bondi [7]; he found
part of the matching conditions by eliminating unbound-
ed discontinuities in the energy-momentum tensor, which
was assumed not to have anisotropic pressures. With the
same type of energy-mornenturn tensor, Herrera and col-
laborators [8] developed further this work, and they con-
structed a wide class of models for collapsing stars in a
series of subsequent papers (see, for example, [9—11])
which are summarized in an interesting report by Her-
rera and Nunez [12]. On the other hand, the use of the
intrinsic junction conditions of Darmois allowed these
studies to be performed with different types of coordi-
nates in the interior and the exterior. Glass started this
path in a short Letter [13]which was followed and much
improved in the work of Santos and collaborators
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[14—16]. Santos studied the case in which the collapsing
fluid is shear-free and has heat conduction but no aniso-
tropic pressures. These works were collected in an exten-
sive report [17] in which one can find most of the refer-
ences pertinent to the matter.

In this paper, we shall treat the problem at a very
theoretical level. Our aim is to provide the most general
framework and to give the physical conditions for the
matching to be possible. In Sec. II we present the match-
ing conditions in the general case, and we also outline the
way it must be followed to actually match any interior
metric to a Vaidya exterior. These results are physically
interpreted in Sec. III, where we decompose the energy-
momentum tensor in an appropriate way which allows us
to express our main result in the form of a fundamental
theorem. Finally, we devote Sec. IV to discussing the
meaning of our results and to comparing other work with
the contents of this paper. We shall then adapt our fun-
damental theorem to the different possible coordinates or
particular cases which have been studied by other au-
thors.

II. MATCHING OF THE VAIDYA
AND SPHERICALLY SYMMETRIC METRICS

Let us consider a four-dimensional spherically sym-
metric space-time V divided into two regions Vr and VE
by an ordinary three-dimensional timelike surface X
preserving the symmetry of V. By an ordinary surface
we mean one that does not concentrate energy-
momentum, so that all quantities appearing in the
energy-momentum tensor may only have bounded
discontinuities across X. For the sake of convenience we
shall talk of the interior region Vr and the exterior re-
gion VE, but this distinction can be interchanged de-

pending on the concrete physical situation one wishes to
study.

We choose for the metric dsr acting on Vr the most
general spherically symmetric metric, which can be ex-
pressed in isotropic coordinates {xj'] = {t, r, 8,P],
p=0, 1,2, 3, as

ds~= —A~dt +B (dr +r dQ )

whey'e A and B are positive functions of t and r, and
I

X
dSI = dSE,

X
KI KE

(3)

X
where = means that the equality must be evaluated on
X. dsr lz and dsz l z are the first fundamental forms or in-
trinsic metrics of X seen from Vr and Vz, respectively,
and KI and KE are the second fundamental forms or ex-
trinsic curvatures of X seen from Vr and Vz.

If xP(g') and xg(g') are the parametric expressions of X
on Vr and Vz, respectively, where g', i =0,2, 3 are coor-
dinates for X, the intrinsic metric and extrinsic curvature
have the expressions

Bxjg Bxyg
dsr, lx= gIEijd—Cd' grzi v

aV

Krz =KrErr d gd P

8 X E dXrE BXrE
. + . . I irE„dc'dc', (6)"""

ag'agr aj ap
where n&E„are the outward unit one-forms normal to X
seen from Vrz, respectively.

In the case under consideration, we choose

{f ]
= {A, , 8,$] as coordinates of the surface X, where A, is

a time coordinate defined only on X and such that t (A, ),
r(A, ) and T(k), R (X) are the nontrivial parametric equa-
tions of X on the interior and exterior regions, respective-
ly. After a long calculation with multiple substitutions
taking into account equal relative orientation of the time
coordinates t, T, and X, the junction conditions (3) and (4)
[see the Appendix for the explicit expressions for the
quantities appearing in (3) and (4)] becoine

d Q =d 8 + sin 8 d(('i . For the exterior region Vz we
take the Vaidya radiating solution [1], which is given in
radiative coordinates [7] {xg ]

= {T,R, 8,P ], p =0, 1,2, 3,
by

ds = —ydT —2dR dT+R dQ

where y= I —2m /8, m being a function only of T.
In order to match the metrics (1) and (2) across X we

use the Darmois junction conditions [18], which can be
written

X
R =Br,
T= AB( At —Br)

dB B(Br)Br
Bt Br

'2

(7)

2BBr
Br

rB BB r BB
2B Br

0 = B —A' 2B ~ B — ~B +4B ~B +3 B'
Br2 Br Br Bt

+2B(A +B') A
B —AB

8 +BBA dB
ar at star er at

P T

BB+ A t Ar +2AB +2Br +2B +B r 2B —2AB —A
Br ar
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where an overdot denotes d/dk. These are the necessary
and suScient conditions for the matching of a spherically
symmetric metric and a Vaidya metric across a
(unspecified) timelike spherically symmetric surface.
From now on, we will refer to them as the matching con-
ditions.

Let us see what the meaning of the matching condi-
tions is and what we can learn from them. First of all, it
is interesting to note that the right-hand side of (9) is the
well-known mass function introduced by Cahill and
McVittie [19], which represents the total gravitational
mass inside X. Thus, (9) simply refiects that the total
gravitational mass as seen from the exterior must coin-
cide with that seen from the interior on X, as should be
expected. In general, the matching conditions (7)—(9)
should be seen as mathematical relations between the
relevant quantities at both sides of X. However, the
matching condition (10) involves quantities of the interior
but not the exterior. Then, this equation is a real condi-
tion on the interior and X, and it has a slightly different
meaning, which is very important as we shall see in what
follows. In the next section we shall give an interesting
physical interpretation of Eq. (10) in terms of physical
quantities of the interior metric.

The path that we must follow in order to extract all in-
formation from the matching conditions will be different
depending on the known data. For example, an interest-
ing problem appears when we know 3 (t, r) and B(t,r),
i.e., when the interior geometry is given, and we wish to
determine the function m ( T) and the surface X. To treat
this problem, and bearing in mind the above comments
about Eq. (10), we proceed with the following steps.

(i) Equation (10) becomes a first-order ordinary
differential equation for r(t) of the form drldt =F(r, t).
If the functions 2 (t, r) and B(t,r) are such that F(t, r)
satisfies the Lipschitz condition, then we will find the
solution for r(t) up to a constant c, . This function r(t)
defines the surface X on the interior, and therefore we can
check whether or not X is timelike. If it is not, the
matching is not possible. Ho~ever, in most cases X will

be timelike and we can go to the next step.
(ii) Once r(t) is known, from (9) we can determine the

function m = m (t) up to a constant c, .
(iii) Now, from (8), we can obtain T(t) up to constants

c„c2, and from (7) we get the last function R (t). These
two functions define the surface X on the exterior.

(iv) Finally, and due to the fact that m is a function
only of T, we can get m (T) from the found solutions
m (t) and T(t), and the problem is finished.

Therefore, we have proven that for every pair of func-
tions 3 ( t, r) and B ( t, r), we can determine X and m ( T) if
and only if (10) has a solution for r (t) that defines a time-
like surface. In other words, given any spherically sym-
metric interior, we can always match it to a Vaidya exte-
rior provided that the surface defined by the solution r (t)
of the matching condition (10) is timelike. In the next
section, we shall give an alternative and more physical
version of this important result.

Let us consider now the converse problem: that is, in
what way do (7)—(10) restrict the possible interior
geometries if m (T) and X seen from Vz are given? And

if we only know m (T)? In these cases, by analyzing the
mathematical structure of the matching conditions it can
be seen that the problem is clearly undetermined and the
resulting equations are, in fact, functional relations for
the unknown variables. This is not a surprising result be-
cause, as is well known (remember, for instance,
Birkhoff's theorem), a fixed geometry can be the exterior
of many different interior metrics.

III. PHYSICAL INTERPRETATION

Our purpose now is to find the physical interpretation
of the results of the previous section. To that end, let us
consider the problem of radiative gravitational collapse,
and more generally, of spherical and radiating stars in
evolution. In this case, the matching conditions (7)—(10)
become surface equations of the spherically symmetric
radiating star, and the matching surface must be
identified with the star surface. Therefore, the nonradia-
tive part of the star matter must be comoving with the
matching surface and its unit velocity vector u will then
be given by

which is defined only on X and tangent to it, and where
we have put r' =dr ldt =r—'It'.

Now, one can define a unit timelike vector field on Vz,
which coincides with u on X, as follows:

(12)

where f (t, r) is an arbitrary function subject to the re-
strictions

Xf = r'(t),
g2 B2f2)0

(13)

(14)

The function f can be interpreted as defining the different
possible motions of matter inside the star, and it is only
restricted on X. There are many choices for f, and each
of them corresponds to a different fiuid (in a wide sense)
with different physical magnitudes. Because given the
timelike vector field u, or equivalently the function f, the
most general stress-energy tensor can be decomposed as
follows:

Tt„„=(p+p)u„u +pgt„, +Q l„l + 11„ (15)

where u can be considered as the velocity vector of the
interior matter, which is comoving with X by construc-
tion, p its energy density, and p its isotropic pressure. 0
is the radiating energy density, l" is an outgoing radial
null vector field, and H„ is a tensor of anisotropic pres-
sures (which is trace-free and orthogonal to u). Of
course, this decomposition depends essentially on u, that
is to say, on the particular choice of f. However, it is
convenient to remark here that for every A (t, r) and

B(t, r) such that r(t) exists, we can determine, via
Einstein s equations, p,p, 0, and II„„on and inside X for
every choice of f (t, r) compatible with (13) and (14).
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TF„=4L„L (16)

where L„ is a null one-form field proportional to dT,

which has been normalized such that L„u"= —1 for the
same reasons given above. The energy-momentum tensor
(16) is that of outgoing incoherent radiation.

It is very well known that, once the matching has been
performed with the Darmois junction conditions, some
relations between the energy-momentum tensors at both
sides of X can be deduced [20]. These relations are given

by

X
Tr„„«r = TE„„w nE

X
Tz„„nant" = TE»ngnz,

(17)

(18)

for any four-vector H= ju", Be, B&] tangent to X. The
fact that the vectors tangent to X are the same at both
sides of X is a simple consequence of the continuity of the
first fundamental form. In our case, the only nontrivial
relations derived from (17) and (18) are

(19)

X
p+Q +II„,ngn~" = 4 (20)

where we have taken into account that Tz„„ is given by
(15) and TE„„by (16). Combining the last two equations
we obtain

X
p +H„nant' = 0, (21)

which is a relation without quantities of the exterior.
Expressions (19)—(21) are the main physical equations

relating quantities at both sides of X, and they are closely
related to the matching conditions as we shall presently
see. Equation (19) expresses the fact that the energy den-
sity of the radiation must be continuous on the matching
surface. This relation can be obtained by differentiating
the matching condition (9), that is to say, by
differentiating on X the equality between the total gravi-
tational masses contained inside X. Of course, this is a
very natural result On the .other hand, (21) informs us
that the total normal pressure must vanish on the match-
ing surface, which again is a very satisfactory result and
generalizes similar properties in the static case. In fact,
(21) is strictly equivalent to the matching condition (10).
In order to prove this, let us note that (21) is generated by

Thus, despite the fact that the fluid is comoving with the
star (and matching) surface, great freedom remains with

respect to the fluid in the interior. This freedom is
mathematically described by the arbitrary function f.

The energy-momentum tensor (15) can then be thought
of as representing a nonperfect fluid with radially direct-
ed outgoing radiation. The vector fields l" and u" are
both chosen to be future direct, and then we normalize
them such that l„u"=—1.

The exterior of the star is described by the Vaidya radi-

ating metric so that the only nonvanishing component of
the stress-energy tensor Tz„ is listed in (A5). Neverthe-

less, it will be convenient to express Tz„as

X
Tgp~(u nt +nant ) = 0, (22)

which via Einstein's equations can be rewritten in terms
of the Einstein tensor GJ„as

X
Gr„(u "nt +n fnt") = 0 . (23)

Now, by using (A8}, (11),and (Al) —(A4}, it is straightfor-
ward to show that this last relation, and therefore (21),
leads exactly to the matching condition (10).

Therefore we can reformulate the results of this and
the previous sections in the form of the following funda-
mental theorem.

Every spherically symmetric metric can be locally
matched to an exterior Vaidya solution provided that there
exists a timelike surface such that the corresponding total
normal pressure vanishes on it. In that case, this surface is
the matching surface

This theorem is the natural generalization of similar re-
sults previously obtained by Bel and Hamoui [4] and Mis-
ner and Sharp [3] for the case of a Schwarzschild exterior
and no radiation. It is also a generalization of more re-
cent results obtained by Santos [14,17], as will become
clear in the next section.

IV. DISCUSSION

The main result proven in this paper is that, in general,
every spherically symmetric space-time (apart from very
singular cases) can be matched to an exterior Vaidya
metric. It should be stressed that this can be deduced us-

ing geometrical arguments only, because it is a direct
consequence of the matching conditions (7)—(10), as was
proven in Sec. II. However, the fact that two metrics can
be matched smoothly must have a satisfactory interpreta-
tion from the physical point of view, and this interpreta-
tion has been given in Sec. III. This is not a trivial result,
because there are metrics which are usually thought of as
nonradiating, and therefore one might think that they
should not be matchable to a Vaidya exterior. The fact
that they are matchable indicates that there are alterna-
tive interpretations for the interior metrics in which they
do radiate, and we have identified them as those in which
the energy-momentum tensor is decomposed using a ve-

locity vector comoving with the matching surface and
such that the total normal pressure vanishes on it. Of
course, this velocity vector may not coincide with those
fixed a priori for other reasons. As an illustrative exam-
ple, let us note that the matching of a general
Robertson-Walker geometry and a Vaidya exterior has
been successfully performed recently by the authors [21].
It is usual to think that the Robertson-%'alker geometry
is generated by a perfect fluid without radiation, but the
fact that it can be matched to a Vaidya exterior geometri-
cally means that there are other possible sources for
Robertson-Walker geometry in which the matching sur-
face is comoving with the matter and there exists radia-
tion. The discussion of this matter can be found in Ref.
[21].

As is obvious, this paper studies the most general ease
of collapse with a Vaidya exterior because we have not
restricted the interior in any way whatsoever. This is an
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Ti —p+p u +pgi +g +g u +H (24)

where now q is the vector of heat flow, which must be or-
thogonal to u, and p, p, and II„„(which again is trace-free
and orthogonal to u) have the standard interpretation.
The forms (15) and (24) are strictly equivalent. They both
represent the most general energy-momentum tensor as-
sociated with u, and they simply are alternative possible
decompositions. The relations between the physical
quantities of (24) and those of (15) can be obtained
straightforwardly. Therefore, as in the previous decom-
position, for every A (t, r) and B(t, r) such that r(t) ex-

important point, for in previous work on the subject it
was thought that interior solutions to Einstein's equations
for some kind of prefixed matter were needed (see below
for a discussion of the work of other authors}. We have
shown that this is not the case, and that any reasonable
spherically symmetric metric can be a good interior for a
Vaidya exterior. Thus, one only has to choose the func-
tions A and B of the interior solution arbitrarily (possibly
using some reasoning to describe the desired models) and
match it to the appropriate Vaidya exterior by using the
matching conditions (7)—(10). Then, a coherent physical
interpretation always exists along the lines of the results
presented in Sec. III and summarized in the theorem
proven there.

We are now going to compare our results with some
work of other authors who have treated similar problems.
We shall identify the restrictions used in these works and
we shall discuss how their results can be obtained by par-
ticularizing our general framework to the cases they
study. This analysis will also allow us to present alterna-
tive, but equivalent, versions of our general results.

(a) We start with a series of relevant papers by Santos
et al. [14—16] in which radiative collapse has been treat-
ed. Their results were put together in a final and interest-
ing report [17] in which the work can be found.

In Santos's approach [14], isotropic coordinates are
used to describe Vt and radiative coordinates for the
Vaidya metric, just as in our work. However, in order to
find the surface equations using the Darmois junction
conditions, he imposes the condition that the isotropic in-
terior coordinates are comoving with the interior fluid
and the matching surface. This is exactly equivalent to
assuming that the velocity vector field of the fluid is
shear-free. In our general framework, their results can be
recovered by simply restricting the equation of X to
r =const and setting the function f (t, r) equal to zero,
which is the shear-free case. With these restrictions our
matching conditions specialize to exactly those of Santos.

On the other hand, Santos assumes that the energy-
momentum tensor of the interior matter is that of comov-
ing perfect fluid with heat conduction, and the main re-
sult of his work is that the pressure must be proportional
to the heat flux on X. Here there is an inexplicitly stated
assumption in the sense that the tensor of anisotropic
pressures is set equal to zero.

In fact, Santos's results can be straightforwardly gen-
eralized in the following way. Given the velocity vector
(12) subject to (13) and (14), we can decompose the
energy-momentum tensor either as in (15) or as

ists, we can determine, via Einstein*s equations, p,p, q,
and II„„on and inside X for every choice of f (t, r) com-
patible with (13) and (14). In terms of the new quantities,
we can obtain the relations deduced from Eqs. (17) and
(18), which are now

Xq=4
X

q = p+II„„nj'nt,

(25)

(26)

where q =q"nt„T.hese relations are equivalent to (19)
and (21), respectively. We can thus reformulate our
theorem of Sec. III as follows.

EUery spherically symmetric metric can be locally
matched to an exterior Vaidya solution prooided that there
exists a timelike surface such that the corresponding total
radial pressure p+II„nj'nt and heat flux q are equal on

it In t.hat case, this surface is the matching surface.
Equation (26) is the generalization of Santos s main re-

lation to arbitrary fluids, shear-free or not, with a non-
vanishing tensor of anisotropic pressures. As is obvious,
this generalization reduces to his main relation when

X
II„„ntt'nt' = 0.

(b) In studying radiative collapse, radiative coordinates
at both sides of the matching surface have been common-
ly used by several authors [7—12]. In order to include
their results in our general framework, it is convenient to
rewrite our matching conditions in terms of the men-
tioned coordinates. To that end, let us describe the gen-
eral spherically symmetric interior metric as

dsi2= —e ) 1 — dt —2e ~dt dr+r dQ2,
r

(27)

where p and m are functions of the new radiative coordi-
nates t, r, which should not be confused with the coordi-
nates t, r in (1).

The Darmois junction conditions (3)—(4} lead now to

Xr=R, (2&)

t 2P

T
Xm=m,

(29)

(30)

BP 2m

Br r
Bm 1 BPr ~px0'
Br 2r Br t

(31)

These are the matching conditions expressed in the new
radiative coordinates, and they are fully equivalent to
(7)—(10). As before, we see that for all smooth functions

p and m, (31) will have a solution for r(t). When this
solution defines a timelike surface X the matching is pos-
sible. For the sake of simplicity we will choose A, =T

X
from now on. Then X will be defined by R = R (T} in

X X
VF and r = r(T), t = t(T) in Vt.

Suppose now that we have already matched some given
interior with a Vaidya exterior; i.e., that p, rn, m and
r ( T), t ( T), R ( T) are known functions. Then we can per-
form a coordinate transformation in Vi, t, r~t, P, in
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satisfies the properties mentioned above, where t (T) is
the solution found by solving the matching conditions.
This coordinate transformation implies that the new
functions m and P are related to the old ones by

(33)

We can now rewrite the matching conditions (28)—(31)
in terms of the new coordinates T,R and the new func-
tions P, m (considered now as functions of T and R), and
we get

X=0,
X

m =m,

(34)

(35)

BP
1

2m
BR R

am 1 apx
BR 2R BT

(36)

From a historical point of view the matching conditions
(35), (36) were first found by Bondi [7], and he used them
to study systems of collapsing radiating stars. The full
set of conditions (34)—(36) were obtained later by Herrera
and collaborators [8] and successfully used in the series of
papers about gravitational collapse referred to before. As
we have just seen, for each matching performed by means
of (28)—(31) there exists a geometrically equivalent
matching performed by means of (34)—(36). We can say
then that both systems of matching conditions are
equivalent. However, there are some important features
of the first system (28)-(31) that make it preferable, as we
shall see below.

In the cited works of Bondi and Herrera et al. , has
been usual to start with some knowledge of the structure
of P and m, leaving some undetermined functions for
which the matching conditions must be satisfied. In addi-
tion, they consider some prefixed form of the energy-
momentum tensor. Then, from the who1e set of equa-
tions they try to determine the unknown functions to-
gether with X. This type of program may run into
difhculties because of two difFerent reasons. First, be-
cause of the prefixed form of the energy-momentum ten-
sor, which usually does not take into account the tensor
of anisotropic pressures, it could happen that an interior
solution is matchable to a Vaidya exterior but does not

I

such a way that the new coordinates verify that dt is
~ X X

timelike, cP is null, t = T, 9 = R. In these coordinates
the metric takes the same form (27) but with new func-
tions P and m (which we call P and m). If such a coordi-
nate transformation is possible then we shall say that
both sides of X are described with the same coordinate
system. According to this, t and 9 will be renamed as T
and R, respectively (i.e., the coordinates in VE ).

It is easy to prove, taking into account that (28)-(31)
hold, that the coordinate transformation

(32)

have a satisfactory interpretation in terms of the physical
quantities. This would be the case if the prefixed velocity
vector of the Quid were eventually not comoving with the
matching surface. This is closely related to the freedom
in choosing the function f, a freedom which must be
maintained. In other words, the function f must not be
determined a priori by means of the Einstein equations
for the previously given energy-momentum tensor.

The second problem arises when the set of equations
they solve does not have a solution, which can happen be-
cause of the fixed functional form of P and m. For in-
stance, it might occur that condition (34) is not verified,
and if so, its solution will be incompatible with condition
(36). In any case, this is a spurious and irrelevant prob-
lem which arises due to the peculiar way in which the
subject is treated in the cited references. For, given any P
and m, one has to bear in mind that these functions are
only a particular choice among the infinite number of
possible P's and m's which give rise the same interior.
Thus, if the chosen P does not satisfy the necessary condi-
tions one must find another one, which always exists, that
does satisfy the conditions. Usually, this amounts to tak-
ing a new function P by subtracting Pz from the initial
one. In this way, (36) is not an algebraic relation for
R (T) and becomes a differential equation for the same
variable, as is the initial matching condition (31).

Therefore, it becomes obvious that the natural way to
treat this problem is to start from (28)—(31) without
prefixing anything and carrying out the program that we
have presented. Somehow, this method chooses the
specific form of the function P naturally. We also believe
that this should be the way to do the matching from a
theoretical point of view, because in principle nothing
can be said about the relation between the coordinates at
both sides of X.

Finally, we should like to note that the matching con-
ditions (7)—(10) hold also in the case in which the interior
part of the space-time is interchanged with the exterior
one. Thus, our work can be applied to the study of a
Vaidya radiating cavity surrounded by a general spheri-
cally symmetric metric. This can be of interest in the
case of local inhomogeneities in a regular universe, along
the lines of Ref. [21].
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A.PPENDIX

In this appendix we shall present the lengthy formulas
used in the main text.

The nonvanishing components of the Einstein tensor
GI„„for the line element (1) are

Z a'a i aa 4 aa 3 aa
a q, ~ ar

+
ra ar

2
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1 2 1BB
G = 6 =rI22 . 2g I33

2 BB+ 2 aBaB+ 2 aA aB
B ar at+ B2 ar at

+
AB ar at

1 BB + 2 OB+ 2 RAM+ 2 BA+B 2BB
B2 ()r rB Qr AB Qr Qr rA Qr A 2 B gt2

1 8B 1 0B 1 8 A 1 BA
B2 Qr rB Qr A g 2 rA Qr

L

B 2 BB 1 BB 2 BA BB
A2

2
OB 2 aA aB
Bt AB Bt Bt

(A2)

(A3)

(A4)

On the other hand, the only nonvanishing component of Gz„„related to the metric (2) is

2 dmGE~- (A5)

The explicit expressions for the erst fundamental forms of X are given by

ds
~

= —( A t Br' )d A—, +B r d Q

ds~ ~ q
= (yT+2R—

) T d A, +R d Q

and the unit outward one-forms normal to X are

( i d—t + t dr ),AB

( A 2t' 2 Bzr 2)1/2

(A6)

(A7)

(A8)

( —R dT+TdR) .
(yT 2RT)'—

Finally, the explicit expressions for the nonvanishing components of the extrinsic curvatures of X are

(A9)

AB aA

( A2t 2 B2r 2)1/2 A (it

A aA . 2 2
1 aB2+2 2 BA 1 aB + B aB -+t t —2r' — t +r t — —— +r' —r't'+ r't'

9r B at
+

A ar B ar A at
(A10)

1 ~ Ar
&I22= sin2gg(A2t 2B2r2)1/2

B rr' r)B . t)(Br)+t
Bt Br

(A 1 1)

+EOO
X T

(yT'+2RT)'"
T mg
R R

dm T Tm

dT
~ 0—R (A12)

r T
sin 8 (yT +2RT)'

RR +2m —R
T

(A13)
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